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Abstract

In the paper several proposals for exact or at least conservative paramet-
ric multivariate tests in the general linear model are considered that are
also applicable for high-dimensional data, where the dimension of the
observations may exceed the sample size. The common feature is the
inclusion of principal component transformations into the test. Whereas
a test proposal by Srivastava and von Rosen originally assumes that the
multivariate data have a known reduced rank which is used in the con-
struction of the test, several versions of so-called PC tests by Läuter and
colleagues accept a reduction of variance and utilize it for a “stabiliza-
tion” of the test in terms of power. The different tests are compared
with respect to their philosophy as well as their performance in two real
data examples and in simulation studies. It is shown that the test of
Srivastava and von Rosen is a conservative test, even when a rank is as-
sumed to be smaller than the true one. It is, however, less conservative
than the conservative version of the PC test derived for the construction
of convenient confidence region for the investigated effects. The exact
PC tests turned out to have the largest power.
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1 Introduction

Classical parametrical multivariate tests such as Wilks’ Λ or Hotelling’s trace
statistic require sample sizes that are larger than the number of variables –
an assumption which is often not met in real data. To overcome this problem
of high-dimensional analysis, O’Brien (1984) or Lachin (1992) among others
presented tests based on condensed constructs (scores) of the high-dimensional
data. However, these tests are only asymptotic level α tests. To our knowledge,
so far there are only very few proposals for exact parametric tests in this
situation. We will consider and discuss several of them based on some kind of
principal component decomposition.

A very different approach is used in Kropf et al. (2007), where the analysis
is based on pairwise distances of sample elements (as known from cluster anal-
ysis) and the tests are carried out as so-called rotation tests (Landsrud, 2005;
Läuter et al. 2005). These tests are still restricted to simple test situations
and are therefore not considered here in the comparison of methods.

We will discuss the assumptions, the motivation and the performance of
three proposals for tests in the general linear model with multivariate normal
data given in papers by (i) Srivastava and von Rosen (2002, 2004), (ii) Läuter
(1996) and Läuter et al. (1996, 1998) and (iii) Läuter and Glimm (2005).

After the introduction of the mathematical model in Section 2 and two
examples in Section 3, the three methods are explained in detail in Sections
4, 5, and 6, respectively. An additional result concerning the proposal of
Srivastava and von Rosen in the case of a misspecified rank is given in Section
7 where the test statistics are compared. The results obtained so far are
illustrated in some simulation experiments in Section 8. The discussion of
pros and cons of the methods in Section 9 completes the paper.

2 The model

We consider a general linear model with fixed effects, where the p-dimensional
sample observations y1, . . . , yn are dependent on the design matrix X =
(x1, . . . , xn )′ of size n × s, the parameter matrix B = (βij)s×p, and i.i.d.
multivariate normal noise vectors e1, . . . ,en:

Y =




y′1
...

y′n


 =




x′1
...

x′n


B +




e′1
...

e′n


 = XB + E, E ∼ Nn×p(0, In ⊗Σ), (1)

where In denotes the identity matrix of size n. For convenience of notation we
assume that the design matrix X is of full rank s (s < n), which can usually
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be achieved by a suitable reparametrization. The covariance matrix Σ of the
noise vectors is positive semidefinite. It may be singular in all procedures
considered here later on and in one of them it is even assumed to be singular.
The null hypothesis of interest is directed to the parameter matrix B:

H0 : CB = 0 ,

where the m× s-matrix C (m < s) has to be specified with a full rank m.
In the classical multivariate analysis with positive definite Σ and suffi-

ciently large sample size n one would estimate the parameter matrix by

B̂ = (X ′X)−1X ′Y .

For the test of the multivariate null hypothesis H0 one could determine the
sums of squares and cross products matrix for the residual errors

G = (Y −XB̂)′(Y −XB̂)

=
(
Y −X(X ′X)−1X ′Y

)′
(2)

= Y ′QGY with QG = In −X(X ′X)−1X ′,

and that for the deviations from the null hypothesis

H = B̂′C ′
(
C(X ′X)−1C ′

)−1
CB̂

= Y ′X(X ′X)−1C ′
(
C(X ′X)−1C ′

)−1
C(X ′X)−1X ′Y (3)

= Y ′QHY ,

with QH = X(X ′X)−1C ′ (C(X ′X)−1C′)−1
C(X ′X)−1X ′, and then use

one of classical multivariate test statistics such as Wilks’ Λ criterion

Λ =
|G|

|H + G| =
Πp

i=1l
(i)
G

Πp
i=1l

(i)
W

, (4)

where l
(i)
G and l

(i)
W (i = 1, . . . , p) are the eigenvalues of G and W = H + G,

respectively.
The null hypothesis is rejected if Λ < Up,m,f,α, where the quantiles Up,m,f,α

depend on the number p of variables, the rank m of the contrast matrix C, the
remaining degrees of freedom f = n− s for the residuals, and the significance
level α of the test. Tables for the quantiles are given, e.g. in Pillai and Gupta
(1969). In practice one often uses the F approximation

F =
uv − 2γ

pm

1− Λ1/u

Λ1/u
∼ Fpm,uv−2γ (5)
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with

u =

√
p2m2 − 4

p2 + m2 − 5
, v = n− s− p−m + 1

2
, γ =

pm− 2
4

. (6)

For m = 1 and m = 2 these transformations even yield exact F distributions
with the given degrees of freedom.

Here our main interest is in situations where the sample size is smaller
than the number of variables such that the matrices G and H are singular
and the Wilks’ test is no longer applicable.

3 Data sets

To illustrate the methods two real data sets will be used. The first one is
from Russell et al. (1967), presented in Srivastava and Carter (1983, p.128)
and Srivastava and von Rosen (2004) and considers soil characteristics. In
a simplified presentation, eight soil samples have been taken from each of
two blocks of an area of interest. The samples are taken at four different
conditions (two samples per condition and plot) representing a combination
of depths and contours. Eight characteristics have been determined for each
sample (cf. Table 1). Thus we have n = 16 independent observations, p = 8
response variables, and two factors (“Block” with 2 levels, and “Condition”
with 4 levels) in a complete balanced block design, and we are going to test
that there is no block effect in the example.

If the 16 independent observation vectors are arranged in the matrix Y in
the same order as in Table 1, then the design matrix X can be set up as

X =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 1 1 1 0 0 0 0 0 0 0 0 −1 −1 −1 −1
0 0 0 0 1 1 1 1 0 0 0 0 −1 −1 −1 −1
0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1




′

, (7)

where the first column of X corresponds to the total mean (β1), the second
one to the “block” effect with two levels (β2), and columns 3 to 5 to the
“condition” effect with four levels (β3, β4, β5). Thus the matrix C consists of
one row with the indicator for the parameter β2,

C = ( 0 1 0 0 0 ) . (8)

In this example the sample size would be large enough for the application of
the classical tests. The variables are, however, highly correlated such that the
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Table 1: Soil data example with 16 soil samples from two blocks of an experiment
area and at four different conditions. The variables and units are as follows: V1 =
pH; V2 = total nitrogen (%); V3 = bulk density (gm/cm3); V4 = total phosphorus
(ppm); V5 = exchangeable + soluble calcium (me/100 gm); V6 = exchangeable +
soluble magnesium (me/100 gm); V7 = exchangeable + soluble potassium (me/100
gm); V8 = exchangeable + soluble sodium (me/100 gm).

Block Condition V1 V2 V3 V4 V5 V6 V7 V8
1 1 5.40 0.188 0.92 215 16.35 7.65 0.72 1.14
1 1 5.65 0.165 1.04 208 12.25 5.15 0.71 0.94
2 1 5.14 0.260 0.95 300 13.02 5.68 0.68 0.60
2 1 5.14 0.169 1.10 248 11.92 7.88 1.09 1.01
1 2 5.14 0.164 1.12 174 14.17 8.12 0.70 2.17
1 2 5.10 0.094 1.22 129 8.55 6.92 0.81 2.67
2 2 4.70 0.100 1.52 117 8.74 8.16 0.39 3.32
2 2 4.46 0.112 1.47 170 9.49 9.16 0.70 3.76
1 3 4.37 0.112 1.07 121 8.85 10.35 0.74 5.74
1 3 4.39 0.058 1.54 115 4.73 6.91 0.77 5.85
2 3 4.17 0.078 1.26 112 6.29 7.95 0.26 5.30
2 3 3.89 0.070 1.42 117 6.61 9.76 0.41 8.30
1 4 3.88 0.077 1.25 127 6.41 10.96 0.56 9.67
1 4 4.07 0.046 1.54 91 3.82 6.61 0.50 7.67
2 4 3.88 0.055 1.53 91 4.98 8.00 0.23 8.78
2 4 3.74 0.053 1.40 79 5.86 10.14 0.41 11.04

covariance matrix is nearly singular. The eight original variables might – in
good approximation – be represented by a smaller number of components.

The second example considers data from the field of occupational medicine.
Workers of a metallurgic company (exposed to lead vapour, n1 = 26), car
painters (exposed to organic solvents, n2 = 45) and workers with similar jobs
but without special exposition (control group, n3 = 48) were investigated
with a large scale of physiological, psychological and other tests to detect
if a long-termed exposition at a low level induces disturbances (Böckelmann
et al. 1998). We neglect group 2 here, such that 74 workers remain in the
analysis, and we focus on the data of a psychophysiological investigation with
altogether 84 variables describing the performance, physiological data and
a subjective assessment of the stress in seven stages of a computer-guided
session where the proband had to solve several tasks. Some of the variables
were log-transformed to get approximately normal data, missing values were
imputed by a regression-like estimator (Kropf, 2000, pp. 157-159). All workers
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were adult males (age 25-60 years). The main interest is the multivariate
comparison of the two groups considered here, so that many small effects in the
single parameters may add up in the test. However, traditional multivariate
tests are not possible here as p > n. The age differed a bit between the two
groups and many of the considered parameters are age-dependent to some
degree. Therefore, age is included as a covariable.

The design matrix has 74 rows representing the workers of the two groups
and three columns corresponding to the expectation in group 1 (β1), the ex-
pectation in group 2 (β2) and the covariate age (β3):

X =




1 0 a1
...

...
...

1 0 a26

. . . . . . . . .
0 1 a27
...

...
...

0 1 a74




′

, (9)

where a1, . . . , a74 denotes the age of the 74 workers. To compare the two
groups, we choose

C = ( 1 −1 0 ) . (10)

4 MANOVA with singular covariance matrix

Srivastava and von Rosen (2004) consider the situation where the covariance
matrix of the p dimensional residuals has a reduced rank r (r < p) which
is assumed to be known and to be not larger than the remaining degrees of
freedom f . The main aim of their paper was to estimate the parameters B
and Σ but they also proposed a test similar to Wilks’ Λ. The authors use
a principal component decomposition of the unknown true covariance matrix
Σ, Σ = ΓΛΓ′, where Γ is the diagonal matrix of the r positive eigenvalues of
Σ and Γ is a p× r-matrix with the corresponding m eigenvectors as columns.
Furthermore, a p× (p− r)-matrix Γ0 is chosen such that (Γ, Γ0) is an orthog-
onal matrix. This matrix is used to decompose the model (1) into one part
containing the “independent” information (random part) of the p variables
and a second one presenting the linearly depending portion (dependent part):

Y (Γ,Γ0) = XB(Γ,Γ0) + E(Γ,Γ0) .
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Based on this decomposition, they derive “maximum likelihood type” estima-
tors of the parameters and prove that the “rank reduced” Wilks’ statistic

ΛSRr =
|Γ̂′GΓ̂|

|Γ̂′(H + G)Γ̂|
. (11)

can, due to the rank restriction of the data, be computed with the r non-zero
eigenvalues of the “original” matrices G and W = H + G. Now (11) equals

ΛSRr =
l
(1)
G · · · l(r)G

l
(1)
W · · · l(r)W

, (12)

and (4) implies that (12) also has the distribution of a Wilks’ statistic but
with reduced dimension parameter, i.e. with r instead of p, such that the null
hypothesis can be rejected if

ΛSRr < Ur,m,f,α . (13)

Thus the procedure is fairly similar to the non-singular case. One has to cal-
culate the same sums of squares and cross products matrices and to determine
their eigenvalues. Only the products in the final statistic are reduced and the
reference distribution is changed in one parameter.

A problem in this approach is that the rank of the covariance matrix Σ
should be known and that this “real dimension” has to be smaller than the
remaining degrees of freedom. But with these restrictions, the formal limita-
tion that the number of variables may not exceed the degrees of freedom is
no longer present. In practice one would expect that the empirical covariance
matrix usually has the full rank as determined by the minimum of number of
variables and degrees of freedom due to some noise in the data. But only the
first r eigenvalues should substantially deviate from zero. This discussion is
continued in Section 7. It should be noted here, however, that – in contrast to
the ‘original’ Wilks’ Λ – the statistic ΛSRr is no longer scale invariant if such
noise is present.

Considering the first example, inserting the data matrix Y from Table 1,
the design matrix X as given in (7) and the matrix C from (8) into (2) and
(3) gives
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Table 2: Results of the Srivastava-von Rosen test to detect block effects in the
soil data example from Table 1 for varying assumptions of the rank r of the error
covariance matrix.

Eigenvalues of G 8925 54.75 16.20 4.27 0.17 0.14 0.029 0.001
Eigenvalues of W 9105 55.68 24.15 4.40 0.53 0.15 0.035 0.001
Reduced rank r 1 2 3 4 5 6 7 8
Reduced Wilks’ Λ 0.98 0.96 0.65 0.63 0.21 0.19 0.16 0.16
F transformations 0.22 0.19 1.64 1.19 5.37 4.16 3.76 2.72
p-values 0.646 0.831 0.248 0.386 0.024 0.053 0.082 0.174

G =




0.20 -0.00 -0.01 -14.51 -0.38 -1.42 -0.09 -0.80
-0.00 0.01 -0.04 7.85 0.43 0.11 -0.00 -0.07
-0.01 -0.04 0.26 -18.14 -2.32 -1.33 0.02 -0.03

-14.51 7.85 -18.14 8920.25 168.97 78.65 18.74 -57.99
-0.38 0.43 -2.32 168.97 41.74 20.45 -0.73 3.95
-1.42 0.11 -1.33 78.66 20.45 26.62 0.97 10.09
-0.09 -0.00 0.02 18.74 -0.73 0.97 0.35 0.24
-0.80 -0.07 -0.03 -57.99 3.95 10.09 0.24 10.79




and

H =




0.52 0.00 -0.17 -9.72 1.48 -0.73 0.24 -1.13
0.00 0.00 -0.00 -0.02 0.00 -0.00 0.00 -0.00

-0.17 -0.00 0.06 3.21 -0.49 0.24 -0.08 0.37
-9.72 -0.02 3.21 182.25 -27.74 13.70 -4.52 21.13
1.48 0.00 -0.49 -27.74 4.22 -2.09 0.69 -3.22

-0.73 -0.00 0.24 13.70 -2.09 1.03 -0.34 1.59
0.24 0.00 -0.08 -4.52 0.69 -0.34 0.11 -0.52

-1.13 -0.00 0.37 21.13 -3.22 1.59 -0.52 2.45




.

Table 2 shows the eight eigenvalues of the matrices G and W = H + G, the
Wilks’ statistics (11) as cumulative products from these eigenvalues, and the
corresponding F - and p-values according to (12)/(13) with the transformation
(5)/(6).

So, if we assume a full rank of 8 then no block effect is seen. The eigen-
values of the matrix G of residuals indicates, however, that the “real” rank
might be in the range of 4 to 7. Depending on that choice, the p-value differs
considerably, also including values below 0.05. It is interesting to note that the
results change dramatically if, e.g., variable V1 is multiplied with the factor
1000 in all samples. Then all p-values for r ≤ 6 give significant block effects.

7



In the second example, we have 84 variables and a total sample size of
74 in both groups. The matrices G and W have the reduced rank 71 and
72, respectively. As Figure 1 shows, there are several small jumps in the
decreasing eigenvalues of G giving only little hint for the choice of the rank
r. One might choose r = 9, where the first small gap appears in the dotted
curve. The corresponding p-values are smaller than 0.05 in the range from
r = 3 to r = 30 with a minimal p-value of 0.0059, indeed for r = 9.

Figure 1: Scree-plot: the eigenvalues of the matrix G in the second example.

5 Principal component test (PC test)

Läuter (1996) and Läuter et al. (1996, 1998) consider a slightly different
situation. They also assume that a considerable proportion of variation of
the p variables can be expressed by a smaller number q of scores (1 ≤ q ≤
min(p, n − s)) corresponding to latent variables hidden in the observed data.
Therefore, they transform the p-dimensional data vectors yi (1 ≤ i ≤ n) into
q-dimensional scores zi = D′yi with a data-dependent weight matrix D of size
p× q in a first step and then carry out univariate or multivariate tests at that
reduced dimension q. The transformation can be included in the test statistic
by replacing the matrices G, H and W by the corresponding matrices D′GD,
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D′HD and D′WD, respectively, and by changing the dimension parameter p
into q. Theorems given in the mentioned papers ensure that the tests with the
score vectors exactly keep the error of first kind as long as the weight matrix
D is dependent on the data only through the total sum of squares and cross
products matrix W and the matrix of score vectors Z = ( z1, . . . ,zn )′ = Y D
has rank q with probability 1.

Particularly, we consider the PC test here, where the q columns of the
weight matrix D are the eigenvectors of the matrix W corresponding to its q
largest eigenvalues, i.e., D is a solution of the eigenvalue equation

WD = DΛ , D′D = Iq (14)

with the diagonal matrix Λ containing the q largest eigenvalues. This yields
a scale dependent test. In the above papers, mainly a scale invariant version
is considered using the eigenvalue equation

WD = Diag(W )DΛ , D′Diag(W )D = Iq . (15)

We will use both versions here, the scale dependent version in order to be
comparable with the method of Srivastava and von Rosen and the conservative
version of the next section, and the scale invariant version as it might be more
appropriate to the examples with variables of rather different scales.

As final test statistic one can again use the Wilks’ statistic (4) but now
with the transformed sums of squares and cross products matrices

ΛLGKq =
|D′GD|

|D′(H + G)D| =
l
(1)
D′GD

· · · l(q)
D′GD

l
(1)
D′W D

· · · l(q)
D′W D

, (16)

where l
(i)
D′GD

and l
(i)
D′W D

denote the eigenvalues of the matrices given as suffix.
ΛLGKq has to be compared to the dimension reduced quantile Uq,m,f,α, i.e.,

ΛLGKq < Uq,m,f,α , (17)

for significance. Both ΛSRq and ΛLGKq use transformations of the original
sums of squares and cross products matrices, as seen from (11) and (16). But
in (11) a reduced rank r of the data is assumed, leading to the effect that each
estimator Γ̂ of full rank r delivers the same value of the final test statistic with
the transformed sums of squares and cross products matrices. In contrast, with
the PC test we accept that there exists variance in the data beyond the effect
of the suspected q latent variables. As a consequence, the weight matrices are
not all restricted to the same q-dimensional subspace and do have influence
onto the statistic.
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Table 3: Results of the scale dependent and scale invariant versions of the PC test
to detect block effects in the soil data from Table 1 for different score dimensions q.

Score dimension q 1 2 3 4 5 6 7 8
p-values, scale dep. .645 .813 .238 .374 .019 .049 .082 .174
p-values, scale invar. .531 .028 .008 .011 .025 .044 .102 .174

Thus, the score dimension q of the PC test is not restricted to the real
rank of the covariance matrix. One even wants to drop ineffective components
to gain a high power of the test. The choice of an efficient dimension q can be
derived from the data. The proof of the type I error control covers also the
situation where q is calculated as function of the matrix W . In practice, one
uses methods known from factor analysis, particularly in the scale invariant
version. A convenient proposal is the Kaiser criterion, where q is chosen as
the number of eigenvalues of W exceeding 1.

The results with both test versions for the first example are given in Table
3. The p-values for the scale dependent version in the upper line are similar
to those of the Srivastava-von Rosen test. The corresponding eigenvalues of
(14) are 9105.9, 55.7, 24.1, 4.40, 0.529, 0.149, 0.035, and 0.001, giving no clear
hints for the choice of q because of the very different scales of the variables.
In the scale invariant version (15), the eigenvalues are 2.89, 2.19, 1.28, 1.09,
0.24, 0.21, 0.05, and 0.04. Following the Kaiser criterion, the use of four-
dimensional scores would be recommended connected with the p-value 0.011
indicating significance.

In the second example, the results for the scale dependent PC test are very
similar to the Srivastava-von Rosen test. The p-values are smaller than the
threshold 0.05 for q-values in the range from 3 to 31 with a minimal p-value
of 0.0017 for q = 7. In the scale invariant version, the Kaiser criterion, e.g.,
would indicate the use of 17 scores (q = 17). The final p-values are smaller
than 0.05 for the q-values 3, 5, 7 to 45 with the minimum of 0.00057 for q = 25.

6 Conservative principal component test

It is an advantage of the PC test that the explicit determination of the weights
can also be used to interpret the q scores through their weights or their corre-
lations to the original variables. Just in this setting it would be useful to have
confidence regions for the investigated effects, preferably in terms of the de-
rived scores. Basically, confidence regions for the investigated effects CB can
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be derived by an inversion of the PC test (16)/(17) with the weight matrix D
from (14) or (15). To do this, we consider shifted null hypotheses CB = M by
replacing the term CB̂ in the calculation of the matrix H in (3) by the shifted
term CB̂ −M. The confidence region for CB then contains all matrices M
for which the modified test accepts the shifted null hypothesis. Unfortunately,
the dependence of the test statistic on the shift M is sophisticated as each
shift already yields modified matrices H and W and thus modified weights
D. Therefore, even in a very simple test problem as the comparison of two
independent samples, the resulting confidence regions have rather irregular
and unhandy shapes (Kropf, 2000).

This was the starting for Läuter and Kropf (2002) and in a more general
form Läuter and Glimm (2005) to derive a conservative modification of the
PC test. It has been shown there that a scale dependent version of the PC test
can also be derived with the weight matrix D̃ composed from the eigenvectors
of the eigenvalue problem

GD̃ = D̃Λ̃ , D̃
′
D̃ = Iq . (18)

When the final test is carried out with Wilks’ Λ statistic,

ΛLGq =
|D̃′

GD̃|
|D̃′

(H + G)D̃|
=

l
(1)

D̃
′
GD̃

· . . . · l(q)
D̃
′
GD̃

l
(1)

D̃
′
W D̃

· . . . · l(q)
D̃
′
W D̃

, (19)

where again l
(i)

D̃
′
GD̃

and l
(i)

D̃
′
W D̃

denote the eigenvalues of the matrices given as
suffix, then the test statistic is always larger than that of the scale dependent
PC test above. Hence the test is conservative if the test rejects the null
hypothesis when

ΛLGq < Uq,m,f,α. (20)

The advantage is that the weight matrix D̃ then no longer depends on the shift
in the above modified test problem. As a consequence, the confidence regions
become much more convenient. In the special case s = 1 and q = 1, e.g., the
confidence region is limited by two parallel (p−1)-dimensional hyperplanes of
the p-dimensional space.

The resulting test is very close to the Srivastava-von Rosen test insofar as
the projections of the sums of squares and cross product matrices with the
weight matrix D̃ in (19) are identical to those with Γ̂ in (11). The difference
is that the projection with Γ̂ is omitted in the final statistic (12) due to the
supposed rank restriction, whereas it is maintained in (19), thus accepting the
additional noise.
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Table 4: Results of the conservative versions of the PC test to detect block effects in
the soil data from Table 1 for different score dimensions q.

Score dimension q 1 2 3 4 5 6 7 8
p-values, conserv. test .646 .846 .260 .398 .050 .058 .082 .174

For the first example with the soil data, the eigenvalues have already been
given in Table 2. With this scale dependent version, it is difficult to decide
about a suitable choice of q. One might think about values in the range from
1 to 4. According to the results given in Table 4, however, only for q = 5,
we have a p-value slightly below the 5 %-threshold. Thus we fail to find a
significant result.

In the second example, the p-values are below the significance threshold
for q in the ranges 2 to 17 and 24 to 29; the minimum is attained for q = 0.011.
As seen in Figure 1, just q = 9 seems to be a well acceptable choice. So we
have found a significant result, but compared to the other test versions it is
the “least significant” one.

7 Comparison of the different test statistics

As discussed in Section 3, the proposal of Srivastava and von Rosen is designed
for the case that the covariance matrix has a reduced and known rank r (r <
min(p, f +1)). If this is really the case, then the test will be exact and so it is
identical with the scale dependent PC test as well as with the conservative PC
test when these use the same score dimension q = r. The latter follows from
the fact, that with the rank the columns of the theoretical weight matrix Γ̂
in (11) and those of D in (16) and of D̃ in (19) span the same r-dimensional
subspace with probability 1.

But in practice, the Srivastava-von Rosen test will also be applied in sit-
uations with a small amount of additional noise. So the question arises how
the test based on statistic (12) behaves in these noisy situations. Here we will
show that the same techniques as used in Läuter and Glimm (2005) for the
proof that the PC test based on ΛLGq always yields a conservative test can be
applied to characterize the behaviour of the test (12)/(13) in the case of an
inaccurately specified rank. When the true rank r0 is larger than the specified
rank, then the two representations (11) and (12) of the Wilks’ statistic are
no longer identical. Instead, the statistic (12), which would be used for the
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practical procedure, can be reformulated as

ΛSRr =
l
(1)
G · · · l(r)G

l
(1)
W · · · l(r)W

=
|D̃′

GD̃|
|D′WD| ,

where D and D̃ are the solutions of (14) and (18), respectively, each consisting
of the r eigenvectors belonging to the r largest eigenvalues of W and G,
respectively. This can be seen from the decompositions W = DpΛpD

′
p and

G = D̃pΛ̃pD̃
′
p, where Dp and D̃p are the p× p-matrices of all p eigenvectors

of W and G, respectively, and Λp and Λ̃p are the corresponding diagonal
matrices of eigenvalues, such that

∣∣D′WD
∣∣ =

∣∣∣D′DpΛpD
′
pD

∣∣∣ =
∣∣∣∣
(
Iq,0q×(p−q)

)
Λp

(
Iq

0(p−q)×q

)∣∣∣∣ = l
(1)
W · · · l(q)W

and
∣∣∣D̃′

GD̃
∣∣∣ = l

(1)
G · . . . · l(q)G analogously.

Now, basic results of matrix computations state that the matrix E con-
sisting of the eigenvectors belonging to the r largest eigenvalues of a p × p-
matrix M maximizes the determinants |Y ′MY | for all p × q-matrices Y

with Y ′Y = Iq (Rao, 1973). It follows that D′WD ≥ D̃
′
WD̃ and

D̃
′
GD̃ ≥ D′GD. Now remembering that ΛLGKq = |D′GD|/|D′WD| and

ΛLGq = |D̃′
GD̃|/|D̃′

WD̃|, we can state that

ΛLGr ≥ ΛSRr ≥ ΛLKGr , (21)

where ΛLKGr refers to the scale dependent version of the PC test.
As all three test statistics use the same quantile for the test decision and

we know that the PC test based on ΛLKGr exactly keeps the pre-specified
error level, the other two statistics yield conservative tests. Thus, the test of
Srivastava and von Rosen is conservative if the rank restriction of the data is
not met exactly, but it is less conservative than the PC test from Section 6.
This opens the possibility to use the test (12)/(13) also in situations where
the number of variables is larger than the sample size, even if there are no
strict dependencies between the variables.

8 Simulation experiments

The results collected so far for a general linear model will now be demonstrated
in some simulation experiments in the special case of a comparison of two
independent samples ykl ∼ N(µk,Σ), l = 1, . . . , nk; k = 1, 2, with respect to
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their expectation (H0 : µ1 = µ2). In this situation, the two matrices G and
W are given by W =

∑2
k=1

∑nk
l=1(ykl−ȳ)(ykl−ȳ)′ and G =

∑2
k=1

∑nk
l=1(ykl−

ȳk)(ykl − ȳk)′, respectively, where ȳ1, ȳ2 and ȳ denote the group-wise and
total means of the two samples. In order to restrict the computing time though
reflecting the situation that the dimension of the observation is in a similar
order of magnitude as the sample size, we use the dimension p = 10 and the
sample sizes n1 = n2 = 10.

Data for the simulation experiments are generated in the following way:

• First two samples of 10 iid three-dimensional vectors zkl (k = 1, 2; l =
1, . . . , 10) are generated representing three independent latent variables
following a standard normal distribution. The vectors zkl are put un-
derneath each other and form a matrix Z of size 20× 3.

• In the first sample a shift δ = 1.5 is added to the first ν latent variables,
where ν is varying in the different simulation runs from 0 to 3.

• Then a transformation matrix A of size 3× 10 and a noise matrix U of
size 20× 10 both with iid standard normal variables are generated. The
10 column vectors of A are divided by the root of their quadratic norm.

• The matrix Y of the 20 × 10-dimensional “observed” sample vectors is
finally calculated as Y = ZA+σU , where σ varies in the different runs:
0, 0.25, 0.5, 1, 2, 4.

Thus, the observed 10-dimensional data are essentially determined by three
latent variables. But in all runs with σ 6= 0 a noise of varying intensity is
added. With these data the four described tests (Srivastava-von Rosen, PC
scale dependent, PC scale invariant, PC conservative) are carried out using the
ranks/score dimensions q = 1 until q = 5 in parallel. The experiments used
1,000,000 repetitions per data configuration and the percentage of runs with
rejections of the null hypothesis (at the nominal level α = 0.05) is determined
for each test version.

Figure 2 shows the results for the simulations under the null hypothesis. As
can be seen, both versions of the exact PC test really keep the nominal error
level in all situations. The Srivastava-von Rosen test and the conservative PC
test are both exact in the situation for which the Srivastava-von Rosen test has
been constructed, i.e. for the simulations without additional noise (σ = 0) and
with the correct assumption of the rank (q = 3). In all other situations, these
tests are conservative with increasing degree for increasing noise intensity.
The deviations from the nominal level are smaller when the assumed rank/the
number of scores used agrees with the number of latent variables used for
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Figure 2: Results of the simulation experiments under the null hypothesis. The bars
represent the empirical type I error of the test versions for different choices of the
dimension parameter q (corresponding to r for the Srivastava-von Rosen test).

the generation of the observed data vectors. As predicted by the theory, the
Sivastava-von Rosen test is less conservative than the conservative PC test.
In both cases the degree of conservativeness may become considerable.

Results for the simulated data under a shift in two of the three variables
are shown in Figure 3. One can see that the conservative behaviour of some of
the test versions under the null hypothesis causes also a smaller power. All test
versions, of course, loose power with increasing noise intensity. However, for
each fixed value of the noise parameter and for each test dimension q, the scale
dependent PC test has the largest power. The scale invariant version is only
slightly inferior in these data with equal scale. So it should be used in data
with variables of different scale. The Srivastava-von Rosen test has a distinctly
smaller power and the conservative PC test has the worst performance. Again
all test versions have the largest power if the dimension parameter is chosen

15



Figure 3: Results of the simulation experiments with a shift in two of the three latent
variables. The bars represent the empirical rejection rates of the test versions for
different choices of the dimension parameter q (corresponding to r for the Srivastava-
von Rosen test).

properly. Only for high noise intensities a smaller q might be favourable which
could be better seen in a rearranged graphic (not shown here).

If the constant shift is added only in one of the three latent variables then
all test versions loose power. The other relations are the same as above but
the power differences between test versions and parameter configurations are
larger. Correspondingly, with the shift in all three latent variables, all test
versions have a high power and so the differences are smaller but again the
relations are the same. Therefore, these results are not given here in more
detail.
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9 Summary and discussion

We have considered several versions for tests in high-dimensional data and
have compared them. All tests considered here are exact parametric tests or
at least conservative ones. They consider transformations of the original data
by principal component analysis. Whereas this transformation is performed
explicitly in the proposals by Läuter and colleagues, it is only the background
in the proposal by Srivastava and von Rosen and the transformation itself is
omitted because this proposal is based on the assumption of a reduced rank
of the residuals (combined with corresponding restrictions of the parameter
space). Under this assumption, a reduction of dimension is no longer necessary.
In applications, however, the situation with a reduced and known rank will be
rare because even in cases with some known influential factors usually further
noise will be included in the observed data.

The different assumptions should lead to different choices of the dimension
parameters r or q. In the Srivastava-von Rosen test, the dimension r should be
pre-specified. If (contrary to the theoretical basis) the rank is derived from the
data, then the rank should be large enough to cover almost the whole variation
in the data. In the PC test versions some loss of variance is included already
in the concept and the data should be reduced to an efficient dimension. The
simulation experiments underline that the largest power is attained when the
dimension q is near to the number of “essential” input sources. Of course, this
dimension is additionally limited by the sample size because the conventional
multivariate test with the scores needs positive degrees of freedom. With the
results presented above for the behaviour of the Srivastava-von Rosen test in
case of an under-specification of the true rank, the situation changes. That test
can now also be carried out neglecting a non-ignorable part of the variation
and the simulation experiments show that this is also useful in terms of power.

Nevertheless, as the exact versions of the PC test also had the largest
power, there is no reason to use one of the other tests as far as the significance
statement for the global multivariate test is the main issue. As mentioned
in Section 6, the construction of confidence regions for the investigated effect
might be another aim of the analysis preferring the conservative PC test.

It should finally be mentioned that the results for the power of the tests
would change if the investigated effects are (in contrast to our simulation
scheme) assumed not to be connected to the main latent variables. This is,
however, a rather artificial assumption.
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