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Summary 
The aim of the Vallsat project was to evaluate the potential of Sentinel-2 satellites to monitor biomass 

and nutrition quality of leys in Northern Sweden. More than 540 samples were collected over 2 years 

from 4 sites of Northern Sweden. Several methods were tested to link the spectral information with 

the field data: vegetation index-based regression, multivariate regression based on the individual 

spectral bands of Sentinel-2, and a hybrid inversion of the PROSAIL radiative transfer model. 

Vegetation indices showed moderate performances for biomass prediction and poor performances for 

nutrition quality estimation (crude protein and neutral detergent fibre contents). The hybrid inversion 

approach of PROSAIL showed poor results for biomass prediction (it was not tested for nutrition quality 

estimation, as no parameter of the model could be used as a proxy for protein or neutral detergent 

fibre). Multivariate models, on the other hand, showed very promising performances, for both quantity 

and quality predictions. Indeed, the error of estimation was of 0.4 t/ha for dry matter yield and 17.0 

and 26.1 g/kg DM for crude protein and neutral detergent fibre contents, respectively. More work is 

required to confirm these results, but the project confirmed the potential of the Sentinel-2 satellites 

to serve as a basis for a practical tool for farmers. 

1. Introduction 
Forage crops, predominantly mixed leys, are a cornerstone of the farming sector in Northern Sweden, 

where it represents more than 70% of the agricultural land use. Farmers aim to maximise harvest yield, 

while maintaining a high level of forage quality. Indeed, quantity and quality of produced forage have 

a direct influence on the economic and ecological performances of the meat and dairy production 

industries, as forages with low protein or energy concentrations require the use of concentrates to 

maintain the productivity, and low harvest yield needs to be compensated by purchasing extra feed. 

One of the main levers for maximising yield is N fertilisation, and N recommendations are based largely 

on expected biomass yield and clover content, which are both difficult to estimate. A tool for mapping 

the biomass and nutrition quality of a ley could assist the farmer with feed budgeting. 

 

Figure 1. Summary of the workflow of the project. 

Satellite remote sensing is largely used in agriculture to monitor the dynamics of crops based on their 

spectral signatures. The Sentinel-2 satellites provide open-access, ready for analyse images, at a spatial 

resolution that suits the operational needs for field monitoring in Northern Sweden. Moreover, these 
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satellites have a high frequency of revisit (approximately 2 days at high latitudes). Last but not least, 

the sensor used on the Sentinel-2 satellites provides spectral information in 13 bands located in the 

visible, near infrared and shortwave infrared spectral regions. Although the visible and near infrared 

bands are commonly used to perform biomass estimation, very little work has been carried with the 

shortwave infrared bands to estimate the nutrition quality of the swards. Indeed, this region is used in 

the spectral-based laboratory methods to estimate the nutrition quality. 

Therefore, the objective of the project is to evaluate how Sentinel-2 data could be used to monitor the 

biomass and quality of forage fields in Northern Sweden. The overall approach and workflow are 

summarised in Figure 1. 
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2. Material and methods 

2.1. Field sampling 
Data were collected over two years (2019 and 2020) at four sites located in Northern Sweden (Lännäs, 

Röbäcksdalen, Ås and Öjebyn). In total, height ley fields were used to harvest samples across the 

growing season to capture biomass and nutrition quality variability. For each measurement, three in-

field locations were randomly selected, and for each of these locations, three samples were taken 

using 0.25m² sampling quadrats. For each of these samples, the following workflow applied: GPS 

coordinates were measured, the canopy height was measured using a ruler and the dominant grass 

and legume species were visually determined. At Röbäcksdalen only, two additional measurements 

were performed: (i) the leaf chlorophyll contents of 5 plants of grass and 5 plants of legume were 

measured to approximate the canopy chlorophyll content, and (ii) spectral readings were acquired 

from a Yara N-sensor. Samples were then harvested and taken back to the laboratory for manual 

separation of grass, legume and weeds species. Fresh samples were then dried for 48 hours at 60°C 

and further ground to pass a 1-mm sieve. In total, 549 samples were collected from the two years of 

the project. Samples acquired in 2019 (with the exception of the Öjebyn-acquired data, which were 

not estimated to be suitable for nutrition analysis) were sent for forage nutritional analysis by wet 

chemistry methods. Samples collected in 2020 were not sent for analysis, as the harsh winter 

conditions resulted in a high level of weeds in the harvested swards. 

2.2. Satellite imagery 
The Sentinel-2 constellation consists of two satellites that acquire images with 13 spectral bands from 

the visible, near infrared and shortwave infrared ranges, with a spatial resolution varying between 10-

, 20- and 60-meters depending on the spectral band. Acquired images are managed by the European 

Space Agency and pre-processed for geometric and radiometric corrections, making them ready for 

analysis. All images are open-access and can be downloaded from the Copernicus huba. A total of 275 

Sentinel-2 images were downloaded over 2019 and 2020 for the four sites of the project. 

2.2.1. Computation of vegetation indices 
Vegetation indices (VIs) are a combination of two or more spectral bands. VIs are designed to maximize 

the effects of a vegetation-related trait, such as e.g. the aboveground biomass or the canopy 

chlorophyll content, while minimizing confounding effects such as e.g. soil reflected light or 

atmospheric aerosols. In total, 48 VIs were computed from the Sentinel-2 data (the complete list of VIs 

is provided in Appendix). 

2.2.2. Performing inversion of the PROSAIL radiative transfer model 
Radiative transfer models (RTMs) are physically-based models that describe the interaction of light 

with vegetation. The PROSAIL1 RTM is a combination of the leaf PROSPECT model and of the canopy 

SAIL model. It describes reflected light patterns as a function of the chemistry of the leaf, of the 

structure of the canopy and of the geometry between the sun and the sensor. Using appropriate 

mathematical tools, RTMs can also be used to estimate vegetation traits such as leaf area index, leaf 

water content or leaf chlorophyll content from measured spectra. However, this type of operation 

requires a very rich spectral information, usually composed of hundreds of bands, which are not 

available from the Sentinel-2 data. Hybrid approaches are a combination of RTMs with machine 

learning algorithms, and have been proposed to overcome these limitations (e.g. Berger et.al2). The 

overall principle is to use RTM to generate a large theoretical spectra database, where each spectrum 

is linked to predefined values of the parameters of the RTM. These spectra will then be resampled to 

 
a https://scihub.copernicus.eu/ 
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match Sentinel-2 spectral characteristics and used as explanatory variables in a machine learning 

algorithm, where the predefined chemistry and structure values of the canopy will be used as response 

variables. The prosail R package3 was used to perform the hybrid inversion approach using support 

vector machine as the machine learning algorithm. The outputs consisted of estimated values of leaf 

area index and leaf mass per unit area, which are relevant proxies to estimate dry matter yield. 

2.3. Regression modelling 
Vegetation information was linked to the spectral information through two main approaches: (i) linear 

regression and (ii) multivariate regression. Linear regressions were used to link crop traits with either 

VIs computed from satellite images or PROSAIL-estimated canopy parameters. The lm function from 

the R stats package5 was used to build the linear regression models. Multivariate regression models 

were used to link crop traits with the spectral bands from the Sentinel-2 images. Several algorithms 

were tested: partial least squares (pls R package6), random forest (randomForest R package7) and 

support vector machine (e1071 R package8). This choice was motivated by the fact that these different 

algorithms rely on various assumptions, and their outcomes might show significantly different 

performances. 

Two metrics were used to evaluate the performances of the regression models, i.e. the coefficient of 

determination (𝑅2) and the root mean square error (𝑅𝑀𝑆𝐸). 
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3. Results and discussion 

3.1. Biomass prediction 
The results related to the biomass prediction were obtained by extracting the spectral information 

from the pixels of the satellite images that were related to the locations of the samples. The resulting 

database has been filtered to remove potential sources of error, like e.g. wrong measured spatial 

coordinates of the sampling locations, presence of clouds or shadows over the sampled area on the 

satellite image, etc. In total, 513 samples were available to build regression models. 

3.1.1. Vegetation index-based regression 

As expected, the different vegetation indices computed showed very contrasted performances (see 

example on Figure 2). The worst results were obtained for the Transformed Chlorophyll Absorption 

Reflectance Index (TCARI), with a 𝑅𝑀𝑆𝐸 of 1.26 t/ha and a 𝑅2 of 0.01. Saturation phenomena were 

observed for several VIs, like e.g. the Normalized Difference Vegetation Index (NDVI) and the 

Normalized Difference Red Edge Index (NDRE). 

 

Figure 2. Observed vs Sentinel-2 predicted dry matter yield, expressed in tons per hectare. Three VIs (NDVI, NDRE, and MCARI) 
were selected among the 48 that were computed to show the range of performances. 

This is illustrated on Figure 2 A and B, where predicted dry matter yields reach a threshold around 2 

t/ha. The best performances were obtained for the Modified Chlorophyll Absorption in Reflectance 

Index (MCARI11, please refer to Appendix), with a 𝑅𝑀𝑆𝐸 of 0.75 t/ha and a 𝑅2 of 0.64 (Figure 2 C). 

 

Figure 3. Dry matter yield prediction from time integrated values of NDVI. These results are preliminary and need to be further 
explored. 
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These results outline the limited potential of vegetation indices to monitor the dry matter yield for 

forage grassland. However, more approaches should be tested, and more particularly, the use of time 

series of vegetation indices. Such approach has been shown to overcome the saturation effect 

reported above, and preliminary results from the data acquired in the current project showed 

satisfactory performances (Figure 3). This will be further assessed in the coming year. 

3.1.2. Multivariate regressions 

Three multivariate regression models were tested for their capability to estimate the dry matter yield 

from the individual spectral bands of the Sentinel-2 images: partial least squares, random forest and 

support vector machine (hereinafter referred to as PLS, RF and SVM, respectively). Obtained results 

showed good performances, especially for the RF and SVM algorithms (Figure 4 and Table 1). With a 

validation 𝑅𝑀𝑆𝐸 and 𝑅2 of 0.4 t/ha and 0.91, respectively, RF appears to be a strong candidate for dry 

matter yield prediction from Sentinel-2 images. 

 

Figure 4. Observed vs predicted dry matter yields, expressed in tons per hectare. Predictions were performed with partial least 
squares (A), random forest (B) and support vector machine (C) regression algorithms. 

However, it is important to emphasize that multivariate regression models in general, and machine 

learning algorithms in particular, are prawn to overfit: in other words, despite showing good 

performances with both calibration and validation datasets, there is no guarantee that these models 

will not fail if run on a new dataset. To overcome this limitation, the best option is to increase the size 

and the representativeness of the training dataset (e.g. collect new data from various regions in 

Sweden with contrasted climates, soil conditions, etc.) 

Table 1. Statistics summary of the multivariate regression algorithms for the prediction of the dry matter yield. 

Regression model Dataset 𝑹𝑴𝑺𝑬 (t/ha) 𝑹𝟐 
PLS Calibration 0.7 0.66 

PLS Validation 0.7 0.74 

RF Calibration 0.2 0.97 

RF Validation 0.4 0.91 

SVM Calibration 0.2 0.96 

SVM Validation 0.5 0.88 

New datasets are currently being collected through the “Cybergrass 1” project, in collaboration with 

researchers from Finland. These datasets will be used to update the multivariate models presented 

here and evaluate their robustness. 
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3.1.3. PROSAIL hybrid inversion-based regression 

Two parameters were obtained from the PROSAIL hybrid inversion approach that could be linked to 

biomass with a univariate linear regression approach: the leaf area index (LAI, expressed in m²/m²) and 

the leaf mass per area (LMA, expressed in g/cm²). LAI is a common proxy for crop biomass estimation, 

as the accumulation of biomass is directly linked to the leaf area available for photosynthesis. The 

combination of LAI and LMA provides a direct estimation of the leaf dry matter yield, which is a close 

proxy for the whole plant dry matter yield, especially in the case of leys. However, the results obtained 

from this project showed poor performances, with 𝑅2 smaller than 0.1 and 𝑅𝑀𝑆𝐸 superior to 1.1 t/ha. 

Several hypotheses can be proposed to explain this: first, contrary to the VIs and multivariate 

regression approaches, and because of technical difficulties in the inversion process, the dataset used 

consisted of field averaged values of reflectance. This could partially explain the poor performances of 

the inversion approach, as fields showed clear patterns of heterogeneity, especially in 2020, due to the 

harsh winter conditions. Second, the inversion process heavily relies on the initial parameterization of 

PROSAIL, and the values used in this project might be suboptimal. This will be further assessed in the 

next year. 

3.1.4. Biomass prediction: summary 

Three approaches were tested to estimate the biomass of forage fields from Sentinel-2 images: VI-

based univariate linear regression, individual spectral bands-based multivariate regression and 

PROSAIL inversion-based univariate regression. Among all these approaches, multivariate regressions 

showed the best performances, with random forest and support vector machine outperforming all 

other approaches. Although encouraging, caution is advised, as machine learning algorithms are prawn 

to overfit. Nevertheless, if confirmed, these results could be converted into a useful tool for farmers 

for biomass prediction. More work is also required for VI- and PROSAIL-based approaches before these 

methods can be discarded. 

3.2. Nutrition quality prediction 
Although samples were collected for quality analysis during the Vallsat project, the data used to build 

the following models were obtained from Hans Lindberg and Bengt-Ove Rustas in the framework of 

Vallprognos. The choice to not use the data collected from Vallsat was motivated by the fact that too 

few data were available. This is mostly due to the fact that data from 2020 were not suitable for 

analyses, due to their very high weeds contents, and that no data were available for Öjebyn in 2019 

due to samples processing difficulties. In total, 87 samples collected in 2020 and 2021 from 28 farms 

located over all Sweden were used to build regression models for crude protein and neutral detergent 

fibre (NDF) prediction. Corresponding spectral information was extracted at the field level from 

Sentinel-2 images and further used for regression. 

3.2.1. Vegetation index-based regression 

Similar to biomass prediction, 48 VIs were computed from the Sentinel-2 images and further linked to 

crude protein and NDF using a univariate linear regression. All models showed poor performances, 

with most 𝑅2 smaller than 0.05, both for crude protein and NDF predictions. The best performances 

were obtained with the normalized difference red edge index for the prediction of NDF, with a 𝑅2 of 

0.17, which remains too poor to be of any interest for a practical application. These results, however, 

need to be further controlled for potential issues before being discarded for good. 

3.2.2. Machine learning-based regression 

Partial least squares, random forest and support vector machine algorithms were tested on their 

capability to estimate the crude protein and neutral detergent fiber from Sentinel-2 individual bands. 
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Although all models showed satisfactory accuracy, RF outperformed both PLS and SVM (Figure 5, 

Figure 6 and Table 2). 

 

Figure 5. Observed vs predicted crude protein content, expressed in grams per kilograms of dry matter. Predictions were 
performed with partial least squares (A), random forest (B) and support vector machine (C) regression algorithms. The colour 
of the symbols codes for the sampling site. 

With a 𝑅𝑀𝑆𝐸 of 17.0 g/kg DM and a 𝑅2 of 0.91, RF regression appeared to be the most accurate 

method to predict the crude protein concentration. The same conclusion applies for neutral detergent 

fibre content, with a 𝑅𝑀𝑆𝐸 of 26.1 g/kg DM and a 𝑅2 of 0.92. 

Similar to what was mentioned for biomass prediction, it is important to consider these results with 

caution. In this case, no calibration/validation process was used due to the relatively small size of the 

dataset (n=87), and the performances might be overoptimistic. This will be further controlled with 

currently available and upcoming datasets. 

 

Figure 6. Observed vs predicted neutral detergent fiber content, expressed in grams per kilograms of dry matter. Predictions 
were performed with partial least squares (A), random forest (B) and support vector machine (C) regression algorithms. The 
colour of the symbols codes for the sampling site 

Nevertheless, it is worth to note that the error percentage of RF algorithms for both crude protein and 

neutral detergent fibre fall below the 10% threshold (9% for crude protein and 6.5% for neutral 

detergent fibre). If their performances are confirmed, these models will be an asset for farmers to 

support management strategies. 



10 
Closing report for RJN project #10-2018 

Table 2. Statistics summary of the multivariate regression algorithms for the prediction of the crude protein and neutral 
detergent fiber contents. 

Variable Regression model 𝑹𝑴𝑺𝑬 (g/kg DM) 𝑹𝟐 
Crude protein PLS 29.9 0.45 

Crude protein RF 17.0 0.91 

Crude protein SVM 25.5 0.68 

NDF PLS 40.2 0.58 

NDF RF 26.1 0.92 

NDF SVM 33.8 0.72 

 

3.2.3. Nutrition quality prediction: summary 

Vegetation index-based regression showed very poor performances for the prediction of both crude 

protein and neutral detergent fibre contents and are currently of no interest for monitoring the quality 

of forage grasslands. On the other hand, multivariate regression, especially random forest, showed 

very promising results, which however remain to be confirmed. 
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4. Summary of the results 

4.1. Main outputs 
• Multivariate regressions, especially machine learning algorithms (random forest and support 

vector machine) appear to outperform vegetation index- and PROSAIL inversion-based regression 

models, both for biomass and for quality predictions. 

• More work is needed for the vegetation index- and PROSAIL inversion-based approaches for 

biomass prediction. The use of time series of vegetation indices could dramatically improve the 

performances of the prediction models, and a finer tuning of PROSAIL could also result in improved 

prediction performances. 

4.2. Benefits for farmers 
• The Vallsat project confirmed the potential of the Sentinel-2 data for dry matter yield prediction. 

• These conclusions also apply for the prediction of crude protein and neutral detergent fibre 

contents. 

• More work is being carried out to confirm current results, and new datasets are collected from 

other projects. This will allow to validate the potential of Sentinel-2 data for leys management 

support. 

• If the performances of Sentinel-2 data-based models are validated, an updated version of CropSAT 

could be proposed to the farmers to get a free access to information that can support their 

management decisions. 

4.3. Communication and collaborations 
So far, no paper has been published from the current results. It is planned that the four following 

articles will be submitted to international scientific journals in the coming two years: 

• Machine learning-based estimation of the biomass of forage swards from Sentinel-2 spectral data, 

Peng, J., Morel, J., Parsons, D., Söderström, M., Féret, J.-B. (draft) 

• Sentinel-2 and Planet Dove NDVI time series to predict biomass production of forage grasslands 

(planned scientific paper) 

• Multivariate regression on Sentinel-2 data to estimate nutrition quality of forage grasslands 

(planned scientific paper) 

• PROSAIL hybrid inversion to estimate the biomass of forage grasslands (planned scientific paper) 

A participation to the Joint XXIV International Grassland and XI International Rangeland Congress was 

planned, but did not happen due to the pandemic situation. 

Data collection and analysis were supported by one Master student from SLU (Niklas Zeiner) and an 

undergraduate student from Toulouse University, France (Clémentine Bussière). More recently, a new 

postdoc has joined the NJV department (Junxiang Peng). His main work objective is to finalize the 

analyses of the Vallsat data and to help write scientific papers to valorise the results. 

The results initiated in the Vallsat project will be continued through several collaborations: the 

nutrition quality data that will be acquired for Vallprognos in 2022 will be shared to improve the 

robustness of the models developed in Vallsat. International collaborations have been initiated: the 

Interreg project “Cybergrass 1” is currently being conducted with researchers from Finland, and a 

project has recently been submitted for funding by researchers in Norway where the experience and 

data acquired in Vallsat could be valorised and further developed. 
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Appendix 
Below is a list that includes names and formulas of every vegetation index calculated from Sentinel-2 

images. Indices and references can be retrieved on indexdatabase.de 

Name Formula 

CIRe1 (𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒1) − 1 

CIRe2 (𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒2) − 1 

CIRe3 (𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒3) − 1 

CVI (𝑛𝑖𝑟 𝑔𝑟𝑒𝑒𝑛⁄ )/(𝑟𝑒𝑑 𝑔𝑟𝑒𝑒𝑛⁄ ) 

DVI 𝑛𝑖𝑟 − 𝑟𝑒𝑑 

GCI (𝑛𝑖𝑟 𝑔𝑟𝑒𝑒𝑛⁄ ) − 1 

GDR 𝑔𝑟𝑒𝑒𝑛 𝑟𝑒𝑑⁄  

GDVI 𝑛𝑖𝑟 − 𝑔𝑟𝑒𝑒𝑛 

GMR 𝑔𝑟𝑒𝑒𝑛 − 𝑟𝑒𝑑 

GNDVI (𝑛𝑖𝑟 − 𝑔𝑟𝑒𝑒𝑛)/(𝑛𝑖𝑟 + 𝑔𝑟𝑒𝑒𝑛) 

GOSAVI 1.16 × ((𝑛𝑖𝑟 − 𝑔𝑟𝑒𝑒𝑛) (𝑛𝑖𝑟 + 𝑔𝑟𝑒𝑒𝑛 + 0.16)⁄ ) 

GRVI 𝑛𝑖𝑟 𝑔𝑟𝑒𝑒𝑛⁄  

IRECI1 (𝑛𝑖𝑟 − 𝑟𝑒𝑑) (𝑟𝑒𝑑𝑒𝑑𝑔𝑒2 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒1)⁄  

IRECI2 (𝑟𝑒𝑑𝑒𝑑𝑔𝑒3 − 𝑟𝑒𝑑) (𝑟𝑒𝑑𝑒𝑑𝑔𝑒2 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒1)⁄  

MCARI11 ((𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒1) − 0.2 × (𝑛𝑖𝑟 − 𝑔𝑟𝑒𝑒𝑛)) × (𝑛𝑖𝑟 𝑟𝑒𝑑𝑒𝑑𝑔𝑒1⁄ ) 

MCARI12 ((𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒2) − 0.2 × (𝑛𝑖𝑟 − 𝑔𝑟𝑒𝑒𝑛)) × (𝑛𝑖𝑟 𝑟𝑒𝑑𝑒𝑑𝑔𝑒2⁄ ) 

MCARI13 ((𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒3) − 0.2 × (𝑛𝑖𝑟 − 𝑔𝑟𝑒𝑒𝑛)) × (𝑛𝑖𝑟 𝑟𝑒𝑑𝑒𝑑𝑔𝑒3⁄ ) 

MCARI21 ((𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 − 𝑟𝑒𝑑) − 0.2 × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 − 𝑔𝑟𝑒𝑒𝑛)) × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 𝑟𝑒𝑑⁄ ) 

MCARI22 ((𝑟𝑒𝑑𝑒𝑑𝑔𝑒2 − 𝑟𝑒𝑑) − 0.2 × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒2 − 𝑔𝑟𝑒𝑒𝑛)) × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒2 𝑟𝑒𝑑⁄ ) 

MCARI23 ((𝑟𝑒𝑑𝑒𝑑𝑔𝑒3 − 𝑟𝑒𝑑) − 0.2 × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒3 − 𝑔𝑟𝑒𝑒𝑛)) × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒3 𝑟𝑒𝑑⁄ ) 

MTVI 1.5 × (1.2 × (𝑛𝑖𝑟 − 𝑔𝑟𝑒𝑒𝑛) − 2.5 × (𝑟𝑒𝑑 − 𝑔𝑟𝑒𝑒𝑛)) √(2 × 𝑛𝑖𝑟 + 1)2 − (6 × 𝑛𝑖𝑟 − 5√𝑟𝑒𝑑 − 0.5)⁄  

NDI1 (𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒1) (𝑛𝑖𝑟 + 𝑟𝑒𝑑)⁄  

NDI2 (𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒2) (𝑛𝑖𝑟 + 𝑟𝑒𝑑)⁄  

NDI3 (𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒3) (𝑛𝑖𝑟 + 𝑟𝑒𝑑)⁄  

NDRE1 (𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒1) (𝑛𝑖𝑟 + 𝑟𝑒𝑑𝑒𝑑𝑔𝑒1)⁄  

NDRE2 (𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒2) (𝑛𝑖𝑟 + 𝑟𝑒𝑑𝑒𝑑𝑔𝑒2)⁄  

NDRE3 (𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒3) (𝑛𝑖𝑟 + 𝑟𝑒𝑑𝑒𝑑𝑔𝑒3)⁄  

NDVI (𝑛𝑖𝑟 − 𝑟𝑒𝑑) (𝑛𝑖𝑟 + 𝑟𝑒𝑑)⁄  

NNIR 𝑛𝑖𝑟 (𝑛𝑖𝑟 + 𝑟𝑒𝑑 + 𝑔𝑟𝑒𝑒𝑛)⁄  

OSAVI 1.16 × ((𝑛𝑖𝑟 − 𝑟𝑒𝑑) (𝑛𝑖𝑟 + 𝑟𝑒𝑑 + 0.16)⁄ ) 

REDVI1 𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 

REDVI2 𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒2 
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REDVI3 𝑛𝑖𝑟 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒3 

RVI 𝑛𝑖𝑟 𝑟𝑒𝑑⁄  

S2REP1 705 + (35 × (0.5 × (𝑛𝑖𝑟 + 𝑟𝑒𝑑) − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒1) (𝑟𝑒𝑑𝑒𝑑𝑔𝑒2 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒1))⁄  

S2REP2 705 + (35 × (0.5 × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒3 + 𝑟𝑒𝑑) − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒1) (𝑟𝑒𝑑𝑒𝑑𝑔𝑒2 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒1))⁄  

SWIR_MCARI1 ((𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 − 𝑠𝑤𝑖𝑟1) − 0.2 × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 − 𝑔𝑟𝑒𝑒𝑛)) × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 𝑠𝑤𝑖𝑟1⁄ ) 

SWIR_MCARI2 ((𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 − 𝑠𝑤𝑖𝑟2) − 0.2 × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 − 𝑔𝑟𝑒𝑒𝑛)) × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 𝑠𝑤𝑖𝑟2⁄ ) 

SWIR_NRI1 (𝑠𝑤𝑖𝑟1 − 𝑟𝑒𝑑) (𝑠𝑤𝑖𝑟1 + 𝑟𝑒𝑑)⁄  

SWIR_NRI2 (𝑠𝑤𝑖𝑟2 − 𝑟𝑒𝑑) (𝑠𝑤𝑖𝑟2 + 𝑟𝑒𝑑)⁄  

SWIR_OSAVI1 1.16 × ((𝑛𝑖𝑟 − 𝑠𝑤𝑖𝑟1) (𝑛𝑖𝑟 + 𝑠𝑤𝑖𝑟1 + 0.16)⁄ ) 

SWIR_OSAVI2 1.16 × ((𝑛𝑖𝑟 − 𝑠𝑤𝑖𝑟2) (𝑛𝑖𝑟 + 𝑠𝑤𝑖𝑟2 + 0.16)⁄ ) 

SWIR_TCARI1 3 × ((𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 − 𝑠𝑤𝑖𝑟1) − 0.2 × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 − 𝑔𝑟𝑒𝑒𝑛) × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 𝑠𝑤𝑖𝑟1⁄ )) 

SWIR_TCARI2 3 × ((𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 − 𝑠𝑤𝑖𝑟2) − 0.2 × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 − 𝑔𝑟𝑒𝑒𝑛) × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 𝑠𝑤𝑖𝑟2⁄ )) 

TCARI1 3 × ((𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 − 𝑟𝑒𝑑) − 0.2 × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 − 𝑔𝑟𝑒𝑒𝑛) × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 𝑟𝑒𝑑⁄ )) 

TCARI2 3 × ((𝑟𝑒𝑑𝑒𝑑𝑔𝑒2 − 𝑟𝑒𝑑) − 0.2 × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒2 − 𝑔𝑟𝑒𝑒𝑛) × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒2 𝑟𝑒𝑑⁄ )) 

TCARI3 3 × ((𝑟𝑒𝑑𝑒𝑑𝑔𝑒3 − 𝑟𝑒𝑑) − 0.2 × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒3 − 𝑔𝑟𝑒𝑒𝑛) × (𝑟𝑒𝑑𝑒𝑑𝑔𝑒3 𝑟𝑒𝑑⁄ )) 

TCI (𝑟𝑒𝑑𝑒𝑑𝑔𝑒2 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒1) (𝑟𝑒𝑑𝑒𝑑𝑔𝑒1 − 𝑟𝑒𝑑)⁄  

 


