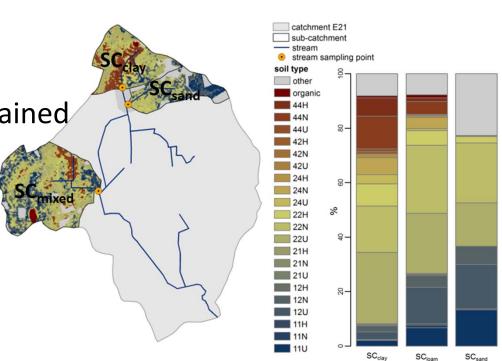
Spatial and temporal patterns of pesticide losses to surface waters in a small agricultural catchment

Maria Sandin

Background

- Diffuse losses of pesticides to surface waters
- Do we need to consider surface runoff in risk assessment and planning of mitigation strategies?



Study of a small agricultural catchment Study site

Catchment E21

- Monitoring program for pesticides since 2002
- 1633 ha
- 92% agricultural land
- 477 mm/year
- Large variation in soil types
- Systematically subsurface drained

Three smaller sub-catchments selected based on soil type

Study of a small agricultural catchment Water sampling

Stream

"Event-activated" passive sampler Sub-catchment outlets

Drains

Manual grab sampling
Drains discharging in stream

Surface runoff

Passive sampling 1 field in SC_{clay} and 1 in SC_{mixed}

Sampling conducted during spring and summer in 2013 to 2015 Analyses of >100 substances through LC-MS

Results

We are currently finalizing the data analyses and intend to publish the results from this study in a peer-reviewed journal shortly.

However, an overall conclusion from the study is that we demonstrated substantial differences in pesticide losses from the three sub-catchments which could mainly be attributed to differences in soil texture (i.e. higher losses from the clay area and lower losses from the sandy area).

Thank you!

Audience for listening

 Jenny Kreuger, Nicholas Jarvis, Kevin Bishop and Mats Larsbo for advice and support

KompetensCentrum för Kemiska Bekämpningsmedel &

for funds