

Introduction to research needs, harmonization and future cooperation

Marit Almvik, Marianne Stenrød, Ole Martin Eklo, Nina Holteberg², Paulien Mulder², Roger Holten, Roger Roseth NIBIO and ²Norwegian Food Safety Authority

Research Needs

Environ Sci Pollut Res DOI 10.1007/s11356-016-7087-1

CONFERENCE REPORT

Pesticide regulatory risk assessment, monitoring, and fate studies in the northern zone: recommendations from a Nordic-Baltic workshop

Marianne Stenrød¹ · Marit Almvik¹ · Ole Martin Eklo¹ · Anne Louise Gimsing² · Roger Holten^{1,3} · Kai Künnis-Beres^{4,5} · Mats Larsbo⁶ · Linas Putelis⁷ · Katri Siimes⁸ · Inara Turka⁹ · Jaana Uusi-Kämppä¹⁰

Received: 7 June 2016 / Accepted: 13 June 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com

Introduction

The recent revision of the legal framework for authorization of use of plant protection products and pesticides within the European Union/European Economic Area (EU/EEA; Regulation EC 1107/2009, Directive 2009/128/EC) imposes a need for close collaboration across country borders within the three pesticide authorization zones (designated the north, central, and south zones) in Europe. The principles of zonal evaluation and mutual recognition embedded in Regulation EC 1107/2009 concerning marketing of plant protection products are intended to reduce the approval times for pesticides. have been outlined for pesticide modeling in Europe (Blenkinsop et al. 2008; Fig. 1). Pedoclimatic or agricultural constraints could entitle the individual states to adopt restrictions on the use of pesticides approved within their zone or even to refuse approval.

To achieve a sound scientific basis for zonal evaluation and collaboration on a regulatory level, it is also necessary to increase research collaboration and knowledge exchange within the scientific community. Here, we report the main conclusions and recommendations from a Nordic-Baltic workshop on the environmental fate of pesticides, which was conducted in Ås, Norway, in September 2014 with the aim of promoting

Monitoring of pesticides in water

Different foci:

Leaching to ground water in 5 geographical zones in Denmark (50 pesticides)

Runoff to selected agricultural streams in Norway and Sweden (automated composite sampling) (115/130 pesticides)

Runoff and leaching to rivers, tributaries and ground water in Finland (grab sampling)

Runoff to selected rivers in Estonia (grab sampling) (10-47 pesticides)

Knowledge gaps

Identify pesticides of concern in the the northern zone:

- Pesticides in groundwater. Monitoring
- Pesticide transport during autumn and winter
- Pesticide residues in soils. Lack of soil monitoring.
- Degradation half-lives in the Northern Zone. Review.
- Pesticides in sediments
- Insecticides in aquatic environment: P(N)ECs are often 100-fold lower than analytical methods are able to quantify
- Need harmonized EQS-values for pesticides and metabolites in the northern zone
- Are EQS-values suitable as a measure of toxicity to aquatic organisms?

Knowledge gaps (cont.)

Adapt models to northern zone conditions:

- Define northern zone agricultural soil and climate conditions to improve fate and risk assessment
- Better models for the assessment of multiple metabolites, low application rates and effects of winterrelated processes
- Need harmonized FOCUS runoff and leaching scenarios adapted to northern zone conditions

FOCUS groundwater (•) and surface water scenarios ($\mathbf{\nabla}$ = drainage, Δ = runoff)

FOCUS groundwater (•) and surface water scenarios ($\mathbf{\nabla}$ = drainage, Δ = runoff)

New models «forget» to include data from large areas within the northern zone

Screens from PERSAM (Persistence in Soil Analytical Model). A software tool for calculating the predicted environmental concentration (PEC). (VITO NV, 2016)

Harmonization

Challenges for the Northern Zone (NZ) fate team

- The majority of degradation studies (lab/field) use soils from outside the NZ
- \rightarrow challenging to assess representativity for the NZ
- PEC models developed in the EU mainly focus on conditions in the Southern and Central zones e.g. no R-scenarios from the NZ, new PECsoil models
- \rightarrow challenging to evaluate protectiveness for the NZ
- Data gap regarding pesticide fate under Nordic cold winter conditions (slow degradation and risk of mobilization of sorbed pesticides in winter/spring caused by freezing/thawing of soil)

NZ needs for scientific research

- Field dissipation studies* performed in the NZ
- Laboratory degradation and adsorption studies* with soil from the NZ
- Data on the risk of pesticide loss during the winter season in cold climatic areas
- Monitoring data
- Development of NZ surface water runoff scenarios

*If peer reviewed papers are made, it would be helpful to make the EU-RMS aware of this research during the commenting period

Future cooperation

EU RAA/EFSA food safety priorities

Annex A - Food safety risk assessment priorities (Delphi study)

Generic	Chemical	Microbiological	Environmental	Nutrition
1. Methods and systems for identifying emerging food risks (e.g. new food-borne diseases)	8. Harmonisation of methods for risk assessment of chemical contaminants	12. Systems for monitoring and characterising microbes isolated from food, environment and human illness cases	19. Improving information on the occurrence and spread of harmful organisms	25. Indirect effects on human health due to modified agricultural practices (e.g. via reduction of pesticide use, changed content of mycotoxins)
2. Development of standard risk- benefit assessment methods (of foods)	9. Cumulative exposure assessment (e.g. for pesticide residues/ PAHs)	13. Improve the use of genetic data (e.g. from whole genome sequencing) for risk assessment of microbiological contaminants	20. Ribonucleic acid interference (RNAi) applied to food producing organisms as pesticide, veterinary medicine or newly expressed trait in genetically modified crops	26. Developing standard biomarkers of intake of and/or exposure to contaminants
3. Common data collection/ surveillance scheme	10. Infant and baby food	14. Antimicrobial/ antibiotic resistance	21. Better understand biological organisms and plant substances used in crop protection (reducing the need for chemicals, e.g. pesticides)	27. Food supplements risk/benefits (in general)
 Multiple contaminant impacts on the risk profile of foods 	11. Emerging contaminants	15. Microbial food pathogens (in general)	22. The impact of chemicals on the ecosystem (release of chemicals into the environment)	28. Determination of allergen thresholds (clinical studies), in conjunction with immune- chemical measurements of allergens in foods
5. Risks/benefits of botanicals/herbals in food supplements	-	16. Food-borne viruses (in general, e.g. Hepatitis A and Norovirus in fruit and vegetables)	 Presence/detection of environmental contaminants in food (e.g. from agricultural, industrial or household sources) 	-
6. Allergenicity/ food allergens in general (risk assessment and management)	-	17. Campylobacter (e.g. in poultry and ready-to-eat foods)	24. Cocktail effects (health risk assessment of chemical mixtures, e.g. food additives)	-
7. Aggregated exposure (via cocktail effects, but including environmental/ food exposure)	-	18. Zoonoses (in general, including bio-hazards, MRSA etc.)	-	-

S NIBIO

http://www.efsa.europa.eu/en/supporting/pub/1007e

EU RAA/EFSA food safety priorities

22. The impact of chemicals on the ecosystem (release of chemicals into the environment)

You should:

- By September 9., 2016: Express interest to your national EFSA Advisory Forum member (<u>https://www.efsa.europa.eu/en/people/afmembers</u>)
- 2017: Establish consortium, outline project, find funding source on list from EFSA AF
- «Exposure and risk assessment of pesticides in the environment in the Northern Zone»

Engage with EFSA

Support and help to guide our work

Registered stakeholders can engage with EFSA through a combination of standing and ad-hoc platforms, according to their interests and expertise

Stakeholders

Have your say

Share your insights, data and other feedback on draft versions of our scientific assessments and corporate initiatives

Consultations

Attend an open meeting

Our scientific experts open a selection of their meetings to the public – you can follow their work up close, ask questions and discover how experts assess food safety

Observers

Submit your data

Data is crucial for EFSA's scientific assessments. We collect data from providers in Member States, the European Commission, research institutions and industry

Calls for data

Nordic-Baltic Pesticide Fate Network

Pesticide fate in soil and water in the northern zone

Create a social group on web for knowledge sharing:

• LinkedIn

• Facebook

450 mill. users

1700 mill. users

ResearchGate

3 mill. users

• Others?

ADMINS

Toby Webb

Head of Marketing - Agribusin... OWNER

James Larbi

Social and Content Marketing...

Gareth Moore Content Marketing Manager

Rory Brown Product Marketing Manager a...

ABOUT THIS GROUP

The Pesticide and Chemical Network is your hub for regular discussion with industry peers and experts, alongside news, insight and analysis on the regulation, legislation and litigation of pesticides and toxic substances.

Members are encouraged to share their industry knowledge and views, ask questions, and interact with the industry professionals gathered in this group.

Regular news, insight and analysis will be

YOUR CONNECTIONS

Katri Siimes research scientist at SYKE

Lise Gunn Skretteberg Engineer at Glava

Hager H.

Наппал

Nirmeen

Khaled

أسماء ساتى

May

Mostafa

Hanaa

Mady

Venner som liker Tomb-

Nashwa

Nada

22

ResearchGate

HOME

PROJECTS QUESTIONS JOBS

m Search

🖓 🔊 – 🕒 Add new

 \square

Go explore!

