

by Tille

Karen Beauchemin and Sean McGinn

Lethbridge Research Centre, Lethbridge, Alberta, Canada

Outline

- Contribution of livestock to GHG emissions
- Measuring emissions
- Potential for mitigation
- "Holo"-istic approach whole farm modeling
- Future perspectives

GHG emmisions - Global issue receiving a lot of attention

Animal scientists need to be aware of this issue

Source: CRS graphic from IEA estimates (extracted January 8, 2008).

http://www.fas.org/sgp/crs/row/RL34659.pdf

Figure 3. Estimated Per Capita GHG Emissions in 2005

Source: CRS graph from IEA estimates for 2005 (extracted January 8, 2008).

http://www.fas.org/sgp/crs/row/RL34659.pdf

Proportion of total GHG for the country

Proportion of agricultural GHG by source

Livestock's Long Shadow Report, FAO 2006

- "Livestock is one of the top three most significant contributors to environmental problems."
- "Livestock and their manure account for 18% of global GHG emissions"
- "Ruminants worst offenders because of enteric methane."

Livestock sector is under increasing pressure to be more environmentally sustainable

Feed digestion by ruminants

Animal production contributes to GHG emissions

(8-18% of all GHG emissions)

Livestock contribution to GHG

- FAO Long Shadow report (2006)
 - 18% of global emissions
 - Included production of feed to animals, production of inputs, transport and processing, deforestation, changes in land use

Global agricultural emissions (2005) (IPCC sources)

5-7 Billion tonnes CO₂eq/year

Source: US EPA (2006)

Methane production is a microbially driven process

Production of methane in the rumen

Methane formation in the rumen

- 2 to 12% of the gross energy consumed is converted to methane (Ym, methane conversion factor)
- 6 8% forage based diets
- 3 4% feedlot finishing cattle

Methane emission and dry matter intake

Grainger et al. 2007. J. Dairy Sci.

Enteric methane emissions by region

As summarized by F. O'Mara, 2010 GGAA

A Research Approach

Outline

- Contribution of livestock to GHG emissions
- Measuring emissions
- Potential for mitigation
- "Holo"-istic approach whole farm modeling
- Future perspectives

Types of Emission Measurements

Tracers

Chambers

Dispersion (methane and ammonia)

Caution ... SF₆ tracer method

Measures individual animal emissions ...

- need to know within- and between-animal variability to understand treatment effects
- requires knowing feed intake for individual animals
- variability high (10-18%)

Can be used for grazing ... but

measuring feed intake is difficult

Problem with gas leakage from cannulated cattle

Alternative tracer method

Individual animals, Dr. David Griffith University of Wollongong, Australia

Tracer release inside a barn with downwind measurements

Concentrations measured downwind

Methane Emissions using Animal Chambers (the gold standard)

Oils DDG **Oil seeds Acids Ionophores Grain/Forage Essential Oils Yeasts** Forage type

SF6 Tracer vs Chamber Emissions

Methane Emissions from Animal Chambers - doubling emission following feeding

Lethbridge animal chambers

Aarhus University (Denmark) Anne Louise Frydendahl Hellwing

Modeling the gas plume dispersion

Dispersion model relates concentration C to emission rate E ... measure C and the model can then infer E

Sensors

Mixing capacity of air

Concentration using open-path lasers and FTIR (7 gases includes N_2O)

Example at a Dairy Farm

Dairy Farm Methane Emissions

Methane Emissions (g/cow/d)

- **IPCC Tier I**
- **New Zealand**
- Canada
- German

- 323 (lactating cow)
- **330** (lactating cow)
- 400 (as high as 491)
- **300** (non-lactating cow)

Example at a Alberta Beef Feedlot

- 22,500 cattle
- Equipment set up in middle

Pattern of methane emissions - feedlot

Beef Cattle Ammonia Emissions

32

Lethbridge Isolated Pens – using GPS collars

Laser Concentration

SF₆ Tracer Method with GPS on collar

Precision of Dispersion Model for Dietary Trts

CSIRO Australia – Methane Pasture Study

GRAZING CATTLE ARE A LARGE % OF THE GLOBAL METHANE EMISSIONS

- Mitigation ?

141 ± 147 g / (animal d)

(McGinn et al. 2011)
Dispersion of Methane from Grazing Cattle

Rangeland Study at Onefour Station

Final point

Team approach

Outline

- Contribution of livestock to GHG emissions
- Measuring emissions
- Potential for mitigation
- "Holo"-istic approach whole farm modeling
- Future perspectives

How can beef and dairy industries reduce methane emissions?

Mitigating Methane from Ruminants

- What is the metric?
 - g CH₄ / head / day (amount)
 - g CH₄ / kg dry matter intake (intensity)
 - g CH₄ / L energy corrected milk (intensity) efficiency
 - g CH₄ / ha (intensity)

	Methane Mitigation Approaches			
	Reduce CH ₄ formation in the rumen	Increase animal efficiency	Increase animal productivity	
Feed intake	= ??		1	
Animal product	= ??	=		
Methane g / head / day			1	
g / kg milk or meat				

Animal Breeding

- 1. High vs low methane emitters
 - 15% variability amongst animals in CH₄ / kg DMI (NZ)
 - Realistic given other breeding objectives?

2. Increased feed conversion efficiency

- Animals that eat less (low RFI)
- Approach used for beef cattle (CA, AU)
 - Higher efficiency cattle produced 24% less methane/kg gain than less efficient cattle (Hegarty et al. 2007. JAS 85:1479)

Rumen Manipulation

- Alter rumen microbial ecology to reduce methane production in the rumen
 - Vaccine: animals develop antibodies to methanogens (AU, NZ)
 - Experimental, success unknown (15% reduction?)
 - Acetogens (bacteria that use H₂ to form acetate)
 - Exist in the rumen at low numbers
 - Can we promote them in the rumen?
 - Exploratory, success unknown

Animal Management Strategies

- Reduce inefficiencies
- Increase reproductive performance
 - Reduce number of open (non-pregnant) cows
 - Reduce number of replacement heifers (heifers contribute to emissions (20-30%), but not to product)
 - Increase longevity of mature cows
- Reduce number of days to market
- Others

Dietary Strategies

1. Increase animal productivity (higher inputs)

lowers CH₄/kg meat or milk

Dietary Strategies

- 2. Decrease methane formation in the rumen
 - Diet manipulation and additives
 - Decreases CH₄/cow/day

I. Adding fat to the diet

Fats used in studies at Lethbridge	% crude fat
Whole cottonseed	23
Whole sunflower seeds	41
Crushed canola seeds	40
Crushed flaxseed	40
Tallow and animal fats	100
Sunflower oil	100
Corn and wheat distillers dried grains	15

Adding ground oilseeds (3% added fat) to the diet of lactating dairy COWS (Beauchemin *et al., 2009. J. Dairy Sci. 92: 2118*)

Methane	Contol	Sunflower	Linseed	Canola
DMI, kg/d	18.7 ^c	19.5 ^{ab}	19.0 bc	20.1 ^a
OM digestibility, %	63.5 ^a	52.0 ^c	58.1 ^b	64.3 ^a
3.5% FCM	24.2	23.3	23.5	23.7
CH ₄ , g/d	293 ^a	264 ^b	241 ^b	265 ^b
CH ₄ , g/kg DMI	16.3 ^a	14.6 ^{ab}	13.4 ^b	13.7 ^b
CH ₄ , % GEI	4.9 ^a	4.3 ab	3.9 ^b	4.0 ^b

Control was a rumen inert Ca-soap

6% reduction/1% added fat

Meta-analysis – adding lipids to diet

Data for cattle (n = 59)

- Increase fat in diet
 - From 3 to 4% DM (4.7% \downarrow in CH₄ yield)
 - From 3 to 6% DM (14% \downarrow in CH₄ yield)
- No effect of
 - Form of fat (oil vs oilseeds)
 - Type of fatty acid(C12+C14, C18:1, C18:2, C18:3)
 - No effect of ingredient source (canola, coconut, linseed, soybean, sunflower)
 - Not enough data to conclude
- Future research

II. Feeding more grain (starch vs fiber)

- Feeding grain (starch) decreases methane (/d and /kg product)
- Need to conduct a life cycle assessment to examine entire farm GHG budget
 - Very much depends of the local agriculture
- Not consistent with niche role of ruminants of converting high fiber feeds to meat/milk

III. Forages

- Grain-based forages vs grasses
 - e.g., corn silage; small grain silage
 - Higher starch content decreases g CH₄ / kg DMI
 - Often improves animal productivity, decreases CH₄ / kg meat (milk)
 - Higher cropping inputs (need LCA)
- Legumes vs grasses
 - Forage legumes produce less methane
 - Legumes have lower fibre content, faster rate of passage from the rumen

Improving forage quality

- Complicated!!!!
- Harvesting at early maturity
 - Increases CH₄ g/d because animals eat more
 - Higher intake decreases CH₄ g/ kg DMI
 - Higher digestibility increases CH₄ g/ kg DMI
- Improves animal productivity, decreases CH₄/kg meat (milk)

IV. Feed Additives (experimental)

- Tannins (bind protein)
 - Tannin-containing forages (e.g., sainfoin)
 - Extracts
 - quebracho trees, black wattle trees (A. mearnsii)
- Saponins (defaunation agents)
 - Yucca extracts (CA)
- Essential oils (anti-microbials)
 - Garlic
- Bacterial direct fed microbials
 - Promote propionate
- Feed enzymes
- Yeast

Enteric Methane Mitigation: What is feasible?

Reduction	Strategy
10%	Improved feed conversion efficiency through animal breeding
10%	Management: reduced replacements, better reproductive performance
10%	Increased animal productivity through nutrition
20%	Reduced methane formation in the rumen through diet (ex. oils, grain, forage source, additives)
50%	Additivity ?

Outline

- Contribution of livestock to GHG emissions
- Measuring emissions
- Potential for mitigation
- "Holo"-istic approach whole farm modeling
- Future perspectives

Country and Production Specific Mitigation Strategies

Tailored approach for each farm

Importance of GHG models

Whole-farm

Farm Based GHG Emissions

Holos – A tool to estimate and reduce GHGs from farms

Life Cycle Assessment of Beef Production in Western Canada (Beauchemin et al. 2010. Agric. Syst.)

•8 year cycle

•All feed produced on the farm

•GHG emissions / kg of beef produced

Mitigation of GHG for Beef Prodiction (LCA approach)

Percent change from the baseline emission = 21.73 kg CO_2e (kg beef carcass)⁻¹

Outline

- Contribution of livestock to GHG emissions
- Measuring emissions
- Potential for mitigation
- "Holo"-istic approach whole farm modeling
- Future perspectives

Projected growth of global milk and meat production

FAO (2006) as presented by F. O'Mara, 2010 GGAA

Future Perspectives for Livestock

"The Earth's vital signs are in a danger zone: human population and consumption stretch the capacity of the planet ..."

Bernard 2010 p25

GHG Emissions Will Increase with Increasing Demand for Food

- Decreasing total GHG emissions from agriculture not likely
- Need to consider GHG efficiency
- "GHG viewed as investment" (H. Janzen, GGAA2010)

efficiency = kg meat/milk tonne of CO₂e

Do we have GHG models and technology for the developing world?

GHGs are only one measure of environmental impact

 Need to expand our models to include other ecosystem services.

Ruminant Livestock: Stressors or benefactors?

Facet	Detrimental	Favorable
Greenhouse	Source of	Grassland C
gases	CH_4 , N_2O	SINK
Food	Compete for grain	Food from inedible grass
Nutrients	Pollutant source	Recycling agent
Biodiversity	Land use change	Grassland preservation
Social aspects	Nuisance	Aesthetic appeal

From H. Janzen, GGAA2010

Connecting Livestock to their Habitat

"Grasslands comprise approximately 40% of the earth's land area (excluding areas of permanent ice cover)"

Wang and Fang 2009

Food from fiber

Maintain biodiversity

Carbon sequestration in grasslands
Take Home Message

- Agriculture is responsible for 8 12% of GHG emissions
- Regionally, livestock emissions broadly related to numbers and production practices
- Population growth will drive up GHGs from agriculture
- Need to consider efficiency
- Need to look beyond GHGs (otherwise we can make the wrong decisions in terms of our grasslands)

Take Home Message

- Need integrated teams (livestock, crop, soils, measurement, ecologists, economists, etc) to make a difference
- Need to involve developing countries
- Need local data solutions are place dependent
- Better use of models to integrate the information and allow testing of "what-if scenarios"

