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Abstract Quantification of landscape pattern is of pri-

mary interest in landscape ecological studies. For quanti-

fication purposes, a large number of landscape metrics have

been developed, with definitions based on measurable

patch attributes. Calculation of these metrics is commonly

conducted on wall-to-wall maps, whereas a new interest is

to use sample data. It is argued that a sample survey takes

less time and results are more reliable. The overall objec-

tive in this paper was to present the potential of the line

interest sampling method for estimating a special contagion

metric. The specific objective was to assess statistical

properties in terms of root mean square error (RMSE) and

bias of the contagion metric estimator. This study was

conducted on 50.1 km2 already manually delineated land

cover maps from the National Inventory of Landscape in

Sweden. Monte-Carlo sampling simulation was employed

to assess the statistical properties of the estimator. The

simulation was conducted for different combinations of

two sampling designs, four sample sizes, five lines transect

configurations, three lines transect lengths, and two clas-

sification systems. The systematic sampling design resulted

in lower RMSE and bias compared to a simple random one.

Both RMSE and bias of the contagion estimator tended to

decrease with increasing sample size and line transect

length. We recommend using a combination of systematic

sampling design, straight line configuration and long line

transect. We conclude that there is no need to use mapped

data and thus polygon delineation errors can considerably

be reduced or eliminated.

Keywords Spatial indicators � Landscape metrics �
Monte-Carlo simulation � Bias � Root mean square error

Introduction

In landscape ecological surveys, much attention is given to

landscape pattern analysis since it is argued that landscape

pattern can influence many ecological processes such as

biodiversity and population dynamic (Turner 1989; Gus-

tafson 1998). The pattern as a predictor variable should be

quantified at the first step, in order to gain a better under-

standing of the pattern-process relationship (Wiens and

Moss 2005). For this purpose, a large number of landscape

metrics have been developed (McGarigal and Marks 1995).

These metrics are defined in terms of quantities of land-

scape elements (patches), such as the number, area and

edge length of patches. Landscape metrics have various

applications; for instance, they have been employed to

predict variables such as abundance and distribution of

both animal and plant species (McGarigal and Marks 1995;

With et al. 1997); landscape metrics are useful tools to

describe current status and also to monitor landscape

changes over time (O’Neill et al. 1988).

A common approach for quantifying landscape pattern

through landscape metrics is to use (raster-based) wall-to-

wall maps. FRAGSTATS (McGarigal and Marks 1995) is a

frequently used software for this purpose. In mapping,

homogenous areas are first delineated as polygons, either

manually or automatically. Manual approaches are usually

applied, but some automated and computer-assisted

approaches have recently been developed (e.g., Blaschke

2004). A manual approach is time–consuming and can be

associated with subjective polygon delineation errors

(Corona et al. 2004). The automated approach is sometimes
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unreliable; for instance, when land cover types that are

similar in terms of spectral reflectance should be separated

(Wulder et al. 2008). In some cases, monitoring analyses

are based on vector based data, i.e., aerial photographs such

as Norwegian 3Q (NIJOS 2001) and National inventory of

landscape in Sweden (NILS) (Ståhl et al. 2011). In addi-

tion, some errors can be introduced by converting vector

data to raster; for instance, small patches may disappear

(Lunetta et al. 1991; Wade et al. 2003; Jenness 2004).

A new interest, however, is to use sample data where

basic sampling methods like point, line intersect sampling

(LIS) and plot sampling have been used in remote sensing

data for estimating some landscape metrics (Hunsaker et al.

1994; Corona et al. 2004; Ramezani et al. 2010; Hassett

et al. 2011; Ramezani and Holm 2011). Kleinn (2000) and

Kleinn et al. (2011) also demonstrated the possibility of

deriving some metrics from field–based forest inventory.

The sample-based approach was found as a promising

alternative to the wall-to-wall approach in terms of both

cost and data quality. Note that currently used landscape

metrics were originally defined for mapped data. Hence,

many of them might not be estimated by sampling data

(Ramezani et al. 2013), and this issue is considered to be a

main disadvantage of sample-based estimation of land-

scape metrics.

Line intersect sampling (LIS) is generally recognized as

an efficient and simple method for surveying linear features

within landscapes, such as edge lengths, ditches, and roads

(Matérn 1964; Eiden et al. 2005). In LIS, assessment is

conducted along sampling units (i.e., line transect) and

objects are sampled when intersected by the line transect.

This sampling method can be carried out both in remote

sensing data and in field surveys. In estimating total edge

length, LIS is a cost-efficient alternative to the wall-to-wall

approach where all the potential polygons are often delin-

eated manually (Corona et al. 2004; Ramezani and Holm

2011).

A contagion metric has been used in many studies for

quantifying the configuration aspect of a landscape (e.g.,

O’Neill et al. 1988; Hunsaker et al. 1994; Ricotta et al.

2003), and there are several definitions of it (see, Riitters

et al. 1996; Wickham et al. 1996). Configuration refers to

the spatial arrangement of patches within the landscape.

Commonly, this metric is calculated on raster-based maps.

However, more recently, Ramezani (2010) demonstrated

the possibility of estimating this metric through point

sample data. A sampling experiment was conducted on a

set of vector-based maps made from aerial photographs.

In the sample-based approach, a given metric may be

estimated through different sampling methods and the

efficiency of a given sampling method depends on the

selected metric (Ramezani 2010). For instance, LIS is more

efficient for edge-related metrics, whereas point sampling

is preferred to metrics involving area proportion of land

cover types like Shannon’s diversity index. It is thus of

interest, from a statistical viewpoint, to explore an efficient

sampling method for a given metric (e.g., contagion), in the

way Ramezani (2010) previously assessed the statistical

performance of the contagion estimator using point sam-

pling method.

The overall objective here was to present the potential of

the LIS method for estimating one of the contagion met-

rics. The specific objective was to assess statistical prop-

erties in terms of root mean square error (RMSE) and bias

of the contagion metric estimator using LIS. To achieve

this, different sampling designs (random and systematic),

sample sizes, line transect configurations, and line lengths

were tested on real landscape data.

Materials and methods

In this study, the focus was on sampling errors, and the

wall-to-wall maps from aerial photographs were used as

reference data for the sampling experiment. Both true and

estimated values were calculated through a specific pro-

gram in FORTRAN.

Study area

The study was conducted as a sampling experiment, with

line transects selected from already photo-interpreted

landscapes in vector format. Interpreted landscapes were

obtained from the NILS (Ståhl et al. 2011), which is a

major environmental monitoring program run by the

Swedish Environmental Protection Agency. A 25 km2

quadrate is used in order to capture the broad landscape

context. Within a 1-km2 centrally located quadrate, a

detailed delineation of polygons is made. To obtain a

genuine sample of landscapes for our study, we used data

from 50 randomly selected NILS quadrates.

The aerial photographs, in which interpretations were

made, were infrared in color and had a ground resolution of

0.4 m. Polygon delineation was made using the interpre-

tation program summit evolution from DAT/EM and

ArcGIS from ESRI. For the purpose of the present study,

the NILS variables were used together with two different

classification systems (7 and 20 classes) in order to produce

land cover maps. The classification systems are described

in Table 1.

Contagion metric (C)

Contagion is a measure of clumping of classes within

landscape. This metric was first proposed by O’Neill et al.

(1988) and was then improved by Li and Reynolds (1993).
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The original definition was based on raster–based data

where the data are assumed to be arrays of pixels with

equal side lengths. Contagion values range between 0 and

1. A high value indicates an unfragmented landscape with a

few large patches, while a low value indicates a fragmented

landscape. This metric is highly correlated with metrics of

diversity, dominance, and patches of richness (Riitters et al.

1995; Cain et al. 1997; Frohn 1998).

More recently, a vector-based contagion was developed

by Ramezani and Holm (2012), where definition is point-

based and a distance function. However, the vector-based

contagion (i.e., Eq. 1) of Wickham et al. (1996) is more

adapted to the LIS method. The definition of contagion

used by Wickham et al. (1996) is

C ¼ 1þ
Ps

i

Ps
i 6¼j pij: lnðpijÞ

ln 0:5 s2 � sð Þð Þ ð1Þ

where pij = Lij
�
L

� �
is the proportion of edge length

between classes i and j (Lij) to total edge length (L) within

the landscape, and s can be either the number of classes in

the classification system or the observed number of classes.

In this study, s refers to the number of classes in the system

(here, seven and 20 classes). In order to estimate the con-

tagion value at the first step, its component pij = Lij
�
L

� �

should be estimated and then inserted into Eq. 1. Both Lij
and L can unbiasedly be estimated through estimator (2).

True values of Lij and L were obtained directly from the

delineated map.

Line intersect sampling

LIS is a simple and statistically efficient method for the

estimation of different types of objects, especially linear

shaped objects such as roads, tree rows, and edge lengths.

An edge refers to the border between two different classes

(land cover types). With LIS, edge length can be estimated

without bias by simply counting the number of intersec-

tions between a patch border and line transects. The esti-

mators of total and edge length between two adjacent

classes (Eq. 2) were based on the method of Matérn (1964).

According to Matérn (1964), the edge length estimator L̂

(m ha-1), using multiple sampling lines of equal lengths, is

given by

L̂ ¼ 10000 � p � t
2 � l � n ð2Þ

where t is the total number of intersections, l is the length

of the sampling line per configuration (m), and n is the

sample size (the number of line transect). LIS can be

implemented either with single straight lines or multiple-

segmented transects such as the L-shape as used in Canada,

Y-shape transects as used by the U.S. Forest Service and

the National Forest Inventory of Switzerland (Affleck et al.

2005), and square transects as in NILS (Ståhl et al. 2011).

Figure 1 shows a systematic distribution of straight line

transects with random direction on 1 km 9 1 km land

cover map from NILS.

Monte–Carlo sampling simulation

The Monte–Carlo sampling simulation is recognized as a

useful approach to study the statistical performance of

Table 1 Classes according to the two different classification systems

(with seven and 20 classes) (from Ramezani and Holm 2011)

Level 1 (seven classes) Level 2 (twenty classes)

1-Forest 1-1-Coniferous-dense

1-2-Coniferous-sparse

1-3-Deciduous-dense

1-4-Deciduous-sparse

1-5-Mixed-forest-dense

1-6-Mixed-forest-sparse

2-Urban 2-1-Housing-areas

2-2-Urban-green-areas

2-3-Urban-forest

3-Cultivated fields 3-1-Crop fields

3-2-Grassland

4-Wetlands 4-1-Bog

4-2-Fen

4-3-Mixed-wetland

5-Water 5-1-Open-water

5-2-Water-vegetation

6-Pasture 6-1-Open-pasture

6-2-Pasture-sparse-trees

6-3-Wooded-pasture

7-Other land 7-1-Other land

Fig. 1 Illustration of systematic distribution and random direction of

straight line transect on 1 km 9 1 km land cover map from NILS

sample plot
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estimators in sampling surveys (e.g., Hazard and Pickford

1986; Ståhl 1998). The simulation has also been employed

for the assessment of statistical properties of some other

landscape metrics (Ramezani et al. 2010; Ramezani and

Holm 2011). In this study, sampling simulation was used to

estimate bias and RMSE of the contagion estimator. Bias

(or systematic error) is the difference between the expected

value of the estimator and the true value. RMSE is the

square root of the expected squared deviation between the

estimator and the true value.

Sampling simulation was conducted for each combina-

tion of two sampling designs (random and systematic), four

sample sizes (16, 25, 49 and 100), five lines transect con-

figurations (straight line, L, Y, triangle and square shapes),

three configuration lengths (37.5, 75 and 150 m), and two

classification systems (seven and 20 classes). The direction

of line transects was random in both systematic and ran-

dom sampling designs. The simulations were indepen-

dently replicated a large number of times.

To avoid map border effects, the external buffer zone

method was employed (Gregoire and Valentine 2008)

where the center of a line configuration was allowed to fall

within a buffer outside the map. Only intersections and line

lengths within the map were included. Samples in which

total numbers of intersections were less than five were

excluded.

Efficiency evaluation

Properties of the contagion estimator were derived through

a large number of simulated samples, taken independently

for all combinations of designs, length, configuration, and

classification systems. For an estimator, for example,Ĉ the

expected value was estimated by the mean over the

simulations

Ê Ĉ
� �

¼ 1

m

Xm

i¼1

Ĉi ð3Þ

where Ĉi is the estimated value of the ith simulation and m

is the number of simulations. The estimated bias is

ÊðĈÞ � C, where C is the true value. The variance was

estimated analogously by the sampling variance. The

RMSE was estimated by

RM̂SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

Ĉi � C
� �2.

m

s

ð4Þ

In the case of an unbiased estimator, RMSE is the same as

the obtained standard deviation of the estimator. Finally,

the mean value of the estimated bias and RMSE over the 50

squares was calculated.

Table 2 Estimated RMSE and bias of contagion estimator for com-

binations of four sample sizes, five transect configurations, three

transect lengths, two sampling designs (random design is provided in

parenthesis) and for a system with seven classes

Sampling

designa
Sample

size

Conf.b Length

(m)

RMSE

(%)

Bias

(%)

1 (2) 16 1 37.5 35 (38) 29 (31)

1 (2) 16 1 75 30 (33) 23 (26)

1 (2) 16 1 150 20 (25) 14 (18)

1 (2) 25 1 37.5 31 (33) 24 (27)

1 (2) 25 1 75 23 (26) 17 (20)

1 (2) 25 1 150 14 (19) 9 (13)

1 (2) 49 1 37.5 22 (25) 16 (18)

1 (2) 49 1 75 14 (18) 9 (12)

1 (2) 49 1 150 8 (12) 4 (7)

1 (2) 100 1 37.5 13 (16) 8 (10)

1 (2) 100 1 75 7 (11) 4 (6)

1 (2) 100 1 150 4 (8) 2 (3)

1 (2) 16 2 37.5 38 (41) 33 (35)

1 (2) 16 2 75 32 (36) 26 (29)

1 (2) 16 2 150 22 (27) 16 (20)

1 (2) 25 2 37.5 34 (36) 28 (30)

1 (2) 25 2 75 25 (29) 19 (22)

1 (2) 25 2 150 16 (21) 10 (14)

1 (2) 49 2 37.5 25 (27) 19 (21)

1 (2) 49 2 75 16 (19) 10 (13)

1 (2) 49 2 150 9 (13) 5 (8)

1 (2) 100 2 37.5 15 (18) 10 (12)

1 (2) 100 2 75 9 (12) 4 (7)

1 (2) 100 2 150 5 (8) 2 (4)

1 (2) 16 3 37.5 39 (41) 33 (35)

1 (2) 16 3 75 32 (35) 26 (28)

1 (2) 16 3 150 23 (27) 17 (21)

1 (2) 25 3 37.5 34 (37) 28 (30)

1 (2) 25 3 75 26 (29) 20 (22)

1 (2) 25 3 150 16 (21) 10 (14)

1 (2) 49 3 37.5 25 (27) 19 (21)

1 (2) 49 3 75 16 (19) 11 (13)

1 (2) 49 3 150 9 (13) 5 (8)

1 (2) 100 3 37.5 15 (18) 10 (12)

1 (2) 100 3 75 8 (12) 4 (7)

1 (2) 100 3 150 4 (8) 2 (4)

1 (2) 16 4 37.5 45 (47) 39 (41)

1 (2) 16 4 75 40 (42) 34 (35)

1 (2) 16 4 150 29 (33) 23 (26)

1 (2) 25 4 37.5 41 (43) 35 (37)

1 (2) 25 4 75 33 (36) 27 (29)

1 (2) 25 4 150 22 (26) 16 (19)

1 (2) 49 4 37.5 33 (35) 26 (28)

1 (2) 49 4 75 22 (25) 16 (18)

1 (2) 49 4 150 13 (17) 7 (11)
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Results

The statistical properties (RMSE and bias) of the contagion

estimator were investigated for different sampling designs

and combinations. As expected, in all cases, a simple

random sampling design resulted in larger RMSE and bias

compared to systematic design. Estimated RMSE and bias

of contagion estimator for all combinations are provided in

Tables 2 and 3.

Figure 2 shows the relationship between RMSE and bias

of the contagion estimator and different sampling line

lengths. Both RMSE and bias of the estimator decreases

with increasing sample size and line length per configura-

tion. Straight line transect resulted in smaller RMSE and

bias than did the other four configurations, and for a given

sample size, a longer line transects resulted in smaller

RMSE and bias compared to a shorter one.

The contagion estimator generally showed the same

behavior in both seven and 20 classification systems. A

comparison in terms of RMSE of the contagion estimator

was also made between two classification systems (seven

and 20 classes). The system with 20 classes showed a

larger RMSE than the system with seven classes, in par-

ticular with a small sample size (16). This holds true for all

five line transect configurations. Figure 3 shows an exam-

ple the RMSE of the contagion estimator in seven and 20

classification systems with two lines transect configurations

(straight line and square shape).

Table 2 continued

Sampling

designa
Sample

size

Conf.b Length

(m)

RMSE

(%)

Bias

(%)

1 (2) 100 4 37.5 21 (23) 15 (17)

1 (2) 100 4 75 12 (15) 7 (10)

1 (2) 100 4 150 6 (10) 3 (5)

1 (2) 16 5 37.5 45 (47) 39 (41)

1 (2) 16 5 75 39 (41) 33 (35)

1 (2) 16 5 150 29 (32) 22 (25)

1 (2) 25 5 37.5 41 (43) 35 (37)

1 (2) 25 5 75 32 (35) 26 (29)

1 (2) 25 5 150 21 (25) 15 (18)

1 (2) 49 5 37.5 33 (35) 26 (28)

1 (2) 49 5 75 21 (24) 15 (18)

1 (2) 49 5 150 12 (16) 7 (10)

1 (2) 100 5 37.5 21 (23) 15 (17)

1 (2) 100 5 75 12 (15) 7 (10)

1 (2) 100 5 150 6 (10) 2 (5)

a Sampling design; systematic 1, random 2
b Configuration; straight line 1, L shape 2, Y shape 3, triangle 4,

square 5

Table 3 Estimated RMSE and bias of contagion estimator for com-

binations of four sample sizes, five transect configurations, three

transect lengths, two sampling designs (random design is provided in

parenthesis) and a system with 20 classes

Sampling

designa
Sample

size

Conf.b Length

(m)

RMSE

(%)

Bias

(%)

1 (2) 16 1 37.5 44 (45) 42 (44)

1 (2) 16 1 75 33 (36) 31 (34)

1 (2) 16 1 150 21 (25) 19 (23)

1 (2) 25 1 37.5 36 (38) 34 (36)

1 (2) 25 1 75 24 (27) 22 (25)

1 (2) 25 1 150 14 (18) 12 (16)

1 (2) 49 1 37.5 23 (26) 21 (24)

1 (2) 49 1 75 13 (17) 12 (15)

1 (2) 49 1 150 7 (11) 6 (9)

1 (2) 100 1 37.5 13 (15) 11 (14)

1 (2) 100 1 75 7 (10) 5 (8)

1 (2) 100 1 150 4 (6) 3 (5)

1 (2) 16 2 37.5 47 (49) 46 (47)

1 (2) 16 2 75 35 (39) 34 (36)

1 (2) 16 2 150 22 (26) 21 (24)

1 (2) 25 2 37.5 39 (41) 38 (39)

1 (2) 25 2 75 26 (29) 25 (27)

1 (2) 25 2 150 15 (19) 14 (17)

1 (2) 49 2 37.5 26 (28) 24 (26)

1 (2) 49 2 75 25 (18) 14 (17)

1 (2) 49 2 150 8 (12) 7 (10)

1 (2) 100 2 37.5 15 (17) 13 (16)

1 (2) 100 2 75 8 (11) 7 (9)

1 (2) 100 2 150 4 (7) 3 (5)

1 (2) 16 3 37.5 47 (49) 46 (47)

1 (2) 16 3 75 36 (38) 34 (36)

1 (2) 16 3 150 23 (27) 21 (25)

1 (2) 25 3 37.5 39 (41) 38 (39)

1 (2) 25 3 75 27 (29) 25 (27)

1 (2) 25 3 150 16 (20) 14 (18)

1 (2) 49 3 37.5 26 (28) 24 (27)

1 (2) 49 3 75 15 (19) 14 (17)

1 (2) 49 3 150 8 (12) 7 (10)

1 (2) 100 3 37.5 15 (17) 13 (16)

1 (2) 100 3 75 8 (11) 7 (9)

1 (2) 100 3 150 3 (7) 3 (5)

1 (2) 16 4 37.5 56 (58) 55 (56)

1 (2) 16 4 75 45 (47) 43 (44)

1 (2) 16 4 150 29 (33) 28 (30)

1 (2) 25 4 37.5 50 (51) 48 (49)

1 (2) 25 4 75 35 (37) 33 (35)

1 (2) 25 4 150 21 (24) 19 (22)

1 (2) 49 4 37.5 35 (37) 33 (35)

1 (2) 49 4 75 21 (24) 20 (22)

1 (2) 49 4 150 11 (15) 10 (13)
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Discussion

Sample-based assessment of landscape metrics is a new

trend in landscape pattern analysis. It is considered as a

cost-efficient alternative to the wall-to-wall mapping

approach (Ramezani et al. 2010). This study shows the

potential of LIS for estimating a contagion metric. The main

advantage is that the method can readily be implemented

where there is no need to delineate patch borders (i.e.,

mapping), since the survey is only conducted along line

transects. In such a procedure, the result is more reliable, in

terms of time needed, than the traditional wall-to-wall

mapping approach, as demonstrated by Corona et al. (2004)

and Ramezani and Holm (2011). LIS also has potential for

estimating other landscape metrics like Shannon’s diversity

and edge density (Ramezani and Holm 2011). Thus, in

sample-based landscape pattern analysis where a set of

metrics is often needed, LIS is a potential sampling method

in estimating several metrics simultaneously.

Our results show that, in all cases, the systematic sampling

design is more precise than simple random sampling. The

efficiency of systematic design has also been demonstrated by

Ramezani and Holm (2011) for estimating Shannon’s diversity.

The reason is that the systematic sample is spread more evenly

over the study area, and thus there may be less variability

among sampling units (line transects). The results also show

that, for a given sampling design and given transect line length,

straight line transects are more efficient than the other four

configurations. The reason is that with straight line transect,

data can be captured from father away.

The efficiency of the contagion estimator, in terms of

RMSE and bias, is related to the degree of landscape frag-

mentation. In the classification system with seven classes

and with a given sample size, the estimator is more efficient

than in the system with 20 classes. This is because with the

20 classification system, a large class is broken into small

classes and thus the landscape seems more fragmented.

Hence, a larger sample size is needed in order to achieve an

acceptable precision. As our results show, L and Y shapes

Table 3 continued

Sampling

designa
Sample

size

Conf.b Length

(m)

RMSE

(%)

Bias

(%)

1 (2) 100 4 37.5 21 (23) 20 (21)

1 (2) 100 4 75 12 (14) 10 (13)

1 (2) 100 4 150 5 (9) 4 (7)

1 (2) 16 5 37.5 56 (57) 54 (56)

1 (2) 16 5 75 44 (46) 42 (44)

1 (2) 16 5 150 29 (32) 27 (29)

1 (2) 25 5 37.5 49 (50) 47 (48)

1 (2) 25 5 75 34 (37) 32 (35)

1 (2) 25 5 150 20 (23) 18 (21)

1 (2) 49 5 37.5 35 (37) 33 (35)

1 (2) 49 5 75 21 (24) 19 (22)

1 (2) 49 5 150 11 (14) 9 (13)

1 (2) 100 5 37.5 21 (23) 19 (21)

1 (2) 100 5 75 11 (14) 10 (12)

1 (2) 100 5 150 5 (8) 4 (7)

a Sampling design; systematic 1, random 2
b Configuration; straight line 1, L shape 2, Y shape 3, triangle 4,

square 5
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sample size 49 and systematic
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show the same behavior, whereas triangle and square shapes

show the same behavior. Gregoire and Valentine (2008)

classified the line transects into three categories: (1) straight

line; (2) radial transects (L and Y shapes); and (3) polygon

transects (triangle and square shapes).

In related studies, statistical properties of the contagion

estimator were assessed using (hexagon) plot (Hunsaker

et al. 1994) and point sampling methods (Ramezani and

Holm 2013), but a direct comparison of results is difficult,

because different definitions of the contagion metric were

used. A common finding was that the contagion estimator

wass biased, regardless of the sampling method. In this

study, although both Lij and L can be unbiasedly estimated,

the contagion estimator shows bias. This bias can be

explained by the ratio estimator pij and the non-linear

expression in the numerator function of contagion defini-

tion. The latter source of bias is independent of sampling

procedure, and has also been found in point sampling
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Fig. 3 Comparison of RMSE

(top) and bias (bottom) of

contagion estimator in two

classification systems (seven

and 20) with a sample size of

16, systematic sampling design

and straight line configuration

(left) and square shape (right)

Fig. 4 Example of two

landscapes (A and B) in the

seven classification system with

minimum (left) and maximum

(right) absolute RMSE

Table 4 Absolute maximum and minimum RMSE of the contagion

estimator and corresponding total edge length within a landscape

Landscape Absolute RMSE Total edge within

landscape (m)

A 0.064 (0.772) 67

B 0.287 (0.270) 160

True contagion value is given in parenthesis
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(Ramezani and Holm 2013) and plot sampling (Hunsaker

et al. 1994) methods.

The results presented here have been the average of rel-

ative RMSEs and bias of 48 (for the seven class system) and

50 (for the 20 class system) landscapes. However, extreme

RMSE of the contagion estimator is related to the degree of

landscape fragmentation in terms of total amount of edge

within the landscape. A minimum RMSE has been found in

landscapes with a small amount of edge, whereas a maxi-

mum RMSE was found in landscapes with a large amount of

edge. The maximum extreme case can be explained by a

large variation between sampling line transects in terms of

the number of intersections. Examples of landscapes with

extreme RMSEs and their corresponding total edge lengths

and true contagion are provided in Fig. 4 and Table 4.

The method proposed in this study break downs in

landscapes with two classes (see Fig. 5). In such land-

scapes, both true and estimated values are the maximum

possible value (i.e., 1) since Lij ¼ L.

Finally, in practice, it is recommended to use a combi-

nation of systematic sampling design, straight line transects

and long transects. Furthermore, in order to achieve an

acceptable level of accuracy, the sample size has to be

adjusted correspondingly. The method is applicable in field-

based inventory such as ongoing national forest inventories

(NFI), where a virtual line between plots or sub-plots (in

cluster design) can be treated as a line transect.
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Appendix

See Tables 5 and 6.

Fig. 5 An example of a landscape with two classes. Both true and

estimated values of contagion are possible maximum (i.e., 1) whereas

the landscape is fragmented with several small patches

Table 5 Estimated range and

mean of RMSE for the

contagion estimator over 48.1-

km2 NILS plots for some

sampling combinations and for

a system with seven classes

a Sampling design; systematic 1,
random 2
b Configuration; straight line 1, Y
shape 3, square 5
c Transect length; 37.5 = 1,
75 = 2, 150 = 3

Parameter set Sample replication Range Mean

Sampling designa Sample size Conf.b Length (m)c

1 16 1 1 1000 0.063–0.337 0.188

1 16 5 2 800 0.069–0.309 0.212

1 16 3 2 800 0.071–0.328 0.204

1 25 1 2 800 0.053–0.351 0.166

1 25 3 1 1000 0.040–0.303 0.174

1 25 5 3 600 0.047–0.433 0.179

1 49 1 3 300 0.026–0.602 0.120

1 49 5 2 600 0.044–0.403 0.185

1 49 3 1 800 0.040–0.459 0.166

1 100 1 3 300 0.013–0.478 0.069

1 100 3 2 300 0.032–0.540 0.124

1 100 5 1 600 0.074–0.406 0.192

2 16 1 1 1000 0.035–0.292 0.178

2 16 5 2 800 0.048–0.324 0.214

2 16 3 2 800 0.062–0.337 0.198

2 25 1 2 800 0.066–0.363 0.178

2 25 3 1 1000 0.057–0.335 0.172

2 25 5 3 600 0.083–0.413 0.210

2 49 1 3 300 0.055–0.414 0.188

2 49 5 2 600 0.071–0.426 0.201

2 49 3 1 800 0.069–0.364 0.172

2 100 5 1 600 0.026–0.376 0.139

2 100 3 3 300 0.032–0.517 0.133

2 100 1 2 300 0.037–0.563 0.171
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Ramezani H, Holm S, Allard A, Ståhl G (2010) Monitoring landscape

metrics by point sampling: accuracy in estimating Shannon’s

diversity and edge density. Environ Monit Assess 164:403–421.

doi:10.1007/s10661-009-0902-0

Ramezani H, Holm S, Allard A, Ståhl G (2013) A review of sampling
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