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* What are dynamic and steady-state models?
* Results of a steady-state modelling exercise - ANC

 Recap: the ThousandLakes show an unexpected
increase in Ca (and ANC)

 Dynamic modelling with Magic of the unexpected
changes in Ca

* Lessons learned, which questions remain?
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* Steady-state refers to a single point when the system is at
equilibrium while dynamic refers to a trajectory where
history matters

e Steady state modelling of chemical recovery: you can describe the
STATE, but you don’t know how long it takes before you get there

* Such models are usually simpler to run and require less data, but leave
some_kexs questions open (when the target ANC is reached, interannual
variation

* Dynamic modelling of chemical recovery: taking into account
processes that delay and affect chemical recovery

e Such models are more complicated to run and require more information,
and considerable effort to calibrate

e Such models can answer when the target ANC may be reached
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* Variation in deposition

. Welt years, more S and N deposition than in dry years, all else being
equa

e Seasalt deposition (acidifying)
» Deposition of Saharan sand (counteracts acidification)
 Catchment processes

* Depletion of soil base cation stores because of decades of enhanced
mobilization and leaching by acid deposition

. ISulfate adsorption in soils, sulfate retention in wetlands, and their
release

* Increases in DOC S’browning’), which add weak acids and thereby
compensate (a little) for reduction in strong acids

* Weathering
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Steady-state modelling of chemical
recovery with ICP Waters sites (GP reV|ew)

* Projected deposition from
EMEP for 2030 and 2050

e Steady-state modelling (SSWC)
of water chemistry

EMEP deposition
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e Comparison between data and model output:

* Long-term trends in recovery are described quite well, but not the
interannual variation

 Further reduction of S and N deposition leads to chemical
recovery, but not to pre-acidification water chemistry

* Climate change and interannual variability in weather will
have greater effects on ANC as acid deposition declines, with
unknown consequences for biological recovery

* Actual chemical recovery may take longer than predicted by
steady state models
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ThousandLake survey:
Expected and unexpected change
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" Expected change (difference 1995-2019)

Strong decrease in sulfate
(40%) especially in
southern Norway

e Decrease in S deposition
60 to 70%

« What is the ‘baseline
SO,’?
Strong recovery

 Decrease in labile Al,
increase in ANC,
alkalinity, pH
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Unexpected positive trends in calcium
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* Magic - widely applied dynamic model to describe and
predict acidification and recovery of surface waters
from acid deposition (Cosby et al. 1995)

 Dynamic model that includes description of soil
chemistry, hydrology, weathering, and leaching.

* A (simplified) representation of state of the art knowledge of
catchment processes that drive surface water acidification and

recovery

e See Kaste et al. 2022 (NIVA report 7799-2022)
NIVA-




 Use deposition from EMEP

* Calibrate Magic
e Using only 1995 data; describe 1995 and 2019
e Using only 2019 data; describe 1995 and 2019
* Using both years

e Compare model output with 1995 and 2019 data
* Identify sensitive model parameters
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Note: EMEP estimates of time series of deposition change with time (are re-assessed regularly)

SOx meq/m?/yr

Estimates of S deposition used to calibrate MAGIC by Larssen et al. (2008), Austnes et al. (2016)
and this study (2022). Estimates for lake Lille Hovvatn, located in southernmost Norway
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 Magic calibrated using
1995 dataset

. 1995 ANC is described

well

. Simulated ANC <

observed ANC in 2019

. Simulated Ca <
observed Ca in 2019

. Mg is ‘ok’

Acid-sensitive lakes only
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. Magic is good at describing chemical recovery, especially in acid-sensitive,
acidified lakes

. But the success of the model is dependent on choices made during model calibration

. Magic doest not capture upward change in Ca (mostly appearing in slightly less
acidified lakes)

* Reminder: nobody knows for sure what drives the unexpected increase in Ca!
. How important is this for prediction of chemical recovery?
* simulation of ANC depends on good simulation of Ca

* Background concentrations of Ca and SO4 (in non-acidified conditions) are difficult to
quantify but important when S deposition becomes lower and lower

. ‘New’ questions:

* Are weathering rates increasing (perhaps under climate change)? Is chemical recovery more
rapid than we thought?

* Are changes in weak acids (organic acids) properly described in dynamic models?
* Are we missing some key processes in the dynamic models?
* How do dynamic models perform compared with state-state models?
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* Colleagues @yvind Kaste, Magnus Norling, Kari
Austnes, Dick Wright (Magic modelling)

 Norwegian Environment Agency for funding
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Modelling Streamwater &
Nitrogen at the Gardsjon IM |
site




,eé\‘(ezLTERp
BI&WATER




People to Thank

e [an Butterfield
o Jill Grossman

e Dolly Kathawala
* Halmar Laudon
o Ahti Lepisto

* Nkos Nkolaidis
* Katn Rankinen
* Ryan Sponseller
 Paul hitehead




Does the world really need yet
another catchment-scale
nitrogen model ?

Nitrate Trends
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Does the world really need yet
another catchment-scale
nitrogen model ?

DON, Ammonium and Nitrate
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Project Goals

» Model Sdlid and Cissolved Organic Ntrogen Mass Balances

e [ncorporate full hydrological nodel

e Inproved AET and PET representation

e Couple snowdynamicsto sal tenperature
 Smulate weather-dependent plant Nuptake
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“Too much complexity is the route to
premature failure”

“... as simple as possible but no
simpler”
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SLU  « Ewironmental behavior of DONis clase enough to DOC
that we can trandfer insights fromnodelling the latter

e DOMconcentrations have a maxinumvalue




Is climate the noise in the
recovery signal? §#

Is recovery the noise in the
climate signal?
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Or is recovery the noise in the
climate signal ....

Annual Average Runoff
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Or is recovery the noise in the
climate signal ....
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Terrestrial Aquatic
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Preliminary Results

Flow

== Modelled == Observed
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Preliminary Results

Observed Streamwater DON and Modelled Soilwater DON
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Conclusions

e |t is possible to model arganic nitrogen at a catchment scale
* Hwever, nore work is heeded

 Longtermdata collected by IMate staff and managers offer
a unique possibility totest process understanding
 Headwater gtes are typically harder to model than larger nver
Systens
» Models may give us ingights into possible future conditions
J  But there will always be surprises
SLU
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