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Abstract 
The Baltic species live on the edge of their tolerance limits. They face environmental 

challenges, such as temperature and salinity gradients, large hypoxic/anoxic regions, 

and also human induced eutrophication and high fishing pressure. In my PhD project 

I want to understand the predator-prey interactions between cod, herring and sprat in 

the Baltic Sea and how they are framed by a combination of processes: fishing ex-

ploitation, climate variability and density dependence. I will address this question 

with the help of multi-species modelling. Knowledge of study species and system is 

required to build a good model. This essay covers information on biology of cod, 

herring and sprat, interaction between them and environment challenges they face. 

Previous approaches used in studying predator-prey interactions in Baltic are re-

viewed and analysed.  

Keywords: predator-prey interactions, multi-species modelling, Baltic Sea, cod (Ga-

dus morhua), herring (Clupea harengus), sprat (Sprattus sprattus), fisheries. 
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Glossary 

Anoxia is a phenomenon, when oxygen concentration is ≤ 0 ml/l (negative 

concentration of oxygen, O2, is used to describe concentration of hydrogen 

sulfide, H2S) 

Batch spawner – same individual has multiple spawning in one spawning 

season. 

Brackish water – water with salinity less than 24.7 psu, but more than 0.5 

psu. 

Demersal organisms live close to the bottom. 

Equilibrium is a point where the population size is not changing. It might be 

stable, when after perturbation system return to equilibrium; or unstable, if 

after perturbation system moves away from equilibrium (population size de-

crease or increase even more). 

Eutrophic environment is rich in nutrients, which promote growth of phyto-

plankton. As a result organisms in lower layers of a lake or another water 

body have little access to the oxygen from the surface.  

Halocline – cline that separate two water layers with different salinities. 

Hypoxia when oxygen concentration is ≤ 2 ml/l. 

Normoxia normal oxygen conditions in water. 

Oligotrophic environments have very little nutrients. 

Otolith – is a hard structure in the inner ear of a fish, used for perception of 

acceleration including gravity and hearing. Otoliths frequently show daily, 

seasonal or annual checks, rings or layers which can be used to determine 

ages. 

Pelagic organisms are those that live in a water column. 

Pycnocline – cline that separate two water layers of different density 

Regime shift is an abrupt reorganization in a food web. 

Residence time – time required for the entire water volume to be renewed. 

Stock is a group of individuals of the same species, inhabiting the same area 

and having the same parameters (body growth, recruitment, mortality, etc.) 

Thermocline – cline caused by difference in temperature of two water layers. 

Whitebait -- immature fry of fish, typically between 25 and 50 mm long. 
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Abbreviations 
  

BB 

GB 

GD 

HELCOM 

ICES 

NCE 

psu 

 

SD 

SST 

Bornholm Basin  

Gotland Basin  

Gdansk Deep  

Helsinki Commission  

The International Council for the Exploration of the Sea 

non-consumptive effect 

stands for Practical Salinity Unit, here it is equal to 1 particle of salt 

per 1000 particles of water (‰) 

Subdivision; management area unit used by ICES 

sea surface temperature. 
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1 Introduction 

The Baltic species live on the edge of their tolerance limits. They face several envi-

ronmental challenges, such as temperature and salinity gradients, large hypoxic/an-

oxic regions, as well as human induced eutrophication and high fishing pressure. 

Cod (Gadus morhua), herring (Clupea harengus) and sprat (Sprattus sprattus) 

are key species of the Baltic Sea ecosystem but also a bulk of commercial fisheries 

catches. The overarching goal of my PhD project is to understand how predator-

prey interactions between cod, herring and sprat in the Baltic Sea are framed by a 

combination of different processes:  fishing exploitation, climate variability and 

density dependence. I will address this question with the help of multi-species mod-

elling. 

In order to build a good model, it is important to have a good knowledge about 

both the study system and the interacting species. For that, I searched in the litera-

ture for background information on: 

 Environment: 

  general characteristics of the Baltic Sea environment; 

 environmental challenges that cod, sprat and herring have to cope with in 

the Baltic Sea. 

 Biology: 

 specific adaptations required by the cod, herring and sprat to live in the 

Baltic; 

 dynamics of cod, herring and sprat populations in the Baltic; 

 interactions between cod, herring and sprat. 

The aim of this essay is twofold, first to briefly introduce the topic of predator-

prey interactions, which is my main scientific interest as well as the core of my PhD 

project; second to review the research approaches used to study predator-prey inter-

actions between cod, herring and sprat in Baltic. 
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2 Predator-prey interactions and basics of 
ecosystem theory 

Ecosystems can be regarded as either being bottom-up or top-down driven 

(McQueen et al., 1986). In the first case changes in the lower links of food web 

influence changes in all upper links. For example, an increase in the vegetation will 

cause an increase in the herbivore abundance, which in its turn will increase the 

predator and the top predator abundances. In the second case, also called a trophic 

cascade, changes in upper links impact lower links. For example, decrease in the top 

predator abundance, will release pressure on the predator of the next trophic level 

and increase its abundance, which will decrease the abundance of the herbivore and 

increase the vegetation. Many ecosystems (both terrestrial and marine) belong to the 

first type, however due to strong perturbations, for instance as a result of hunting or 

overfishing, those ecosystems may turn into top-down driven. This effect is even 

stronger in ecosystems with low species diversity and strong trophic interactions 

(Frank et al., 2007), since changes in one trophic level in such systems will affect 

the whole food web. The Baltic Sea is an example of an ecosystem with few trophic 

links. That is why, after the crash of some top-predator populations (seals and har-

bour porpoises) and a decline of others (cod), all trophic levels of the Baltic Sea 

ecosystem experienced large changes. The biggest consequence of that was a regime 

shift1 from a cod-dominated to a sprat-dominated system which occurred in late 

1980s - early 1990s (Alheit et al., 2005; Möllmann et al., 2004; Casini, 2013). 

All ecosystems are affected by gradual changes in environmental conditions, to 

which they smoothly respond. However recent studies had shown that this smooth 

response nowadays has been interrupted more often by an abrupt shift to an alterna-

tive state. An ecosystem may have several alternative stable states, which are sepa-

rated by an unstable equilibrium, for the same environmental conditions. A shift 

between those two states cannot happen smoothly, instead, when a sufficient change 

happens in the conditions, a “catastrophic” transition to a second state occur. It is 

not enough to restore the conditions that were prior to the shift, to switch the system 

back to the first state, but rather the conditions that existed further back in time. This 

phenomenon, when different critical conditions are required to switch the system 

from one state to another and then back, is called hysteresis (Scheffer et al., 2001). 

Four mechanisms that promote alternative stable states have been suggested by 

Fauchald (2010): 

1. reversal of predator-prey roles (Fauchald, 2010; Walters and Kitchell, 

2001). This is a variant of the cultivation-depensation mechanism in Walters 

and Kitchell (2001) and Gårdmark et al. (2015). 

                                                      
1 Here and on, words in italic can be found in glossary. 
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2. recruitment competition (Casini et al., 2009; Walters and Kitchell, 2001), 

also called cultivation-depensation (Walters and Kitchell, 2001; Gårdmark 

et al., 2015). 

3. size selective predation and food dependent growth (De Roos and Persson, 

2002), also called overcompensation (Gårdmark et al., 2015). 

4. risk effects (Willis, 2007). 

 

Reversal of predator-prey roles is when a prey itself predates on its predator eggs 

and/or larvae. In this way a predator will promote its recruitment success by keeping 

the prey population low and blocking the system in predator-dominated state. If the 

prey population becomes more abundant, it will decrease recruitment of the predator 

and block the system in a prey-dominated state. When this mechanism is in act se-

lective harvesting may push the system from one state to another by switching target 

species (Fauchald, 2010). 

The main principle of the cultivation-depensation mechanism is that young stages 

of the predator compete with the prey species over food. By controlling the prey 

abundance the predator creates (“cultivate”) an environment for its offspring with 

low competition with the prey species. Then, if the predator is unable to control its 

prey, competition of predator juveniles and prey species increases, the population 

of the predator is not growing, which may prevent the predator from recovery. An-

other variant of this mechanism is when the prey itself is a predator on its predator's 

eggs and/or larvae (called predatory cultivation-depensation or reversal of predator-

prey roles) (Walters and Kitchell, 2001; Gårdmark et al., 2015). 

Since predation in fishes is often size-dependent (a certain length group of fish 

eats prey of specific length ranges), by eating smaller prey, predators decrease in-

traspecific competition for remaining larger individuals. Then they have higher fe-

cundity and their population grow (“overcompensation”, since recruitment is then 

even higher than the loss due to predation). Moreover recruitment then includes 

suitable sizes of prey again. If a predator is unable to control a prey population, 

intraspecific competition of the prey increase, fecundity decrease and as a result 

there is little amount of the prey of suitable sizes for the predator. A variant of this 

mechanism is when a predator affect condition of a prey rather than its abundance 

(De Roos and Persson, 2002; Gårdmark et al., 2015). 

Risk effects. A predator creates risk zones for prey. The area where the predator 

is present constitutes a high-risk zone, and reversed; if the predator is absent the risk 

is low. If the predator is removed then the zone, that formerly was high-risk, be-

comes low-risk. If new predators arrive to the former low-risk zone this area will 

now become a high risk. If the prey now choose the new low-risk area (which might 

be of lower quality), to avoid predators from the new high-risk zone, it become less 
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abundant (growth and fecundity decrease) despite the fact that the main predator 

was removed (Willis, 2007). 

The listed mechanisms and their variants are not all strictly exclusive and they 

may act simultaneously (Fauchald, 2010). 

Researchers studying predator-prey interactions should also keep in mind non-

consumptive effects (NCE) of predators, which are important part of predator-prey 

interactions (Peckarsky et al., 2008). Prey may develop anti-predator techniques, 

alter their behaviour in order to not be seen, caught or eaten (Lima, 1998). For ex-

ample prey that can move try to avoid predators and escape from them, not to be 

eaten (Rose and Leggett, 1990). It is not only the behaviour that might change, but 

also the development or growth of prey can be alternated by the presence of preda-

tors. NCE can act in the same or opposite direction as effect of consumption so 

ignoring them can result in underestimating the effect of predator on prey or lead to 

the wrong conclusions about this effect. NCE can also be misinterpreted as bottom-

up effects (Peckarsky et al., 2008). 

Another important aspect, when interpreting species interactions, is the scales. 

Rose and Leggett (1990) provided a good example of that. Their study species cod 

and its prey capelin (Mallotus villosus) differ in thermal preferences. This allows 

capelin to use areas which are outside of cod preference zone as refugees. Positive 

spatial correlation (prey and predator in the same place) between cod and capelin 

occur only on scales greater than prey refuges and also greater than aggregation 

sizes of both the predator and the prey. Negative correlation (avoidance of predator 

by prey) occurs, when scales are smaller than predator and prey aggregations (Rose 

and Leggett, 1990). By choosing one or the other scale we would come to totally 

different conclusions. 
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3 The Baltic Sea  

3.1 General overview 

 
Figure 1. The Baltic Sea and its basins, including ICES Sub-Divisions. Modified after Fonselius, 1995. 
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The Baltic Sea (Figure 1.) differs a lot from other seas in the World Ocean. It con-

sists of a series of basins, which are connected to the Atlantic Ocean via the Danish 

Straits. The Baltic Sea is small, shallow and with brackish water. Besides the Baltic 

Sea, there are only three other major brackish basins in the world: the Black Sea, 

Gulf of Ob and Chesapeake Bay (Leppäranta and Myrberg, 2009). 

The average depth of the Bal-

tic Sea is 54 meters (Figure 

2.) and its fundamental fea-

ture is the permanent salinity 

stratification (Figure 3.). This 

is the reason for limited verti-

cal convection and weak oxy-

genation of deep waters. Sa-

linity is decreasing from areas 

near the North Sea boundary 

to areas near river mouths. 

The renewal of water is slow 

(i.e. long residence time). It 

takes about 50 years before 

all water is renewed accord-

ing to Leppäranta and 

Myrberg (2009). According 

to other sources (Matthäus 

and Schinke, 1999), resi-

dence time in the Baltic is 25-

35 years. 

 

Figure 2. Bathymetry of the Baltic Sea. From MareFrame Baltic Sea D5.1 General description of the 

ecosystem. 

The Baltic Sea is among the most actively and systematically investigated seas in 

the world. It has been known for a long time that the Baltic Sea is a very fragile 

environment. That was the reason for a close co-operation between coastal countries 

to monitor the state of it in order to protect it. In 1902 The International Council for 

the Exploration of the Sea (ICES) was founded. Baltic countries played an important 

role in its foundation. Then, in 1974, coastal countries of the Baltic Sea signed the 

Baltic Sea Protection Agreement, according to which each country is responsible 

for carrying national monitoring program, loading data into a common database and 

strengthening the protection of the Baltic Sea. As a consequence of that agreement, 
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the Baltic Marine Environment Protection Commission or Helsinki Commission 

(HELCOM) was founded in the same year (Leppäranta and Myrberg, 2009). 

 
Figure 3. Water stratification in the Baltic Sea. From Leppäranta and Myberg, 2009. 

3.2 Brackish water 

Brackish water has salinity level between those of fresh and oceanic waters. Mean 

salinity of the Baltic Sea is 7.5 psu. Often 24.7 psu is used as salinity of inflow water 

into the Baltic Sea (Brogmus, 1952). Physical properties of brackish waters differ 

from those of fresh and ocean waters. The difference in electromagnetic properties 

is quite large (Apel, 1987), while mechanical and thermal properties differ within a 

few percent (Dietrich et al., 1963). However, in stratified waters even small differ-

ences in density is critical for horizontal and vertical motion (Leppäranta and 

Myrberg, 2009). 

The osmotic pressure of sea water depends on salinity. Freshwater and marine 

species cope with differences between osmotic pressure in their cells and in the wa-

ter, but brackish water is much more difficult to adapt to and many species are not 

able to do that (Leppäranta and Myrberg, 2009). 

3.3 Oceanic water inflows 

The origin of deep waters in the Baltic Sea is the North Sea, but they are more 

diluted further from Kattegat. Inflows of water from the North Sea renew lower 

layers of water, keep salinity stratification and are extremely important for the oxy-

gen amount in the bottom layer. Inflows are repeated and have moderate salinity. 
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However, from time to time, inflows are strong and bring water with high salinity. 

Then they are called Major Baltic Inflows. These inflows are crucial for the Baltic 

Sea ecosystem, since they influence conditions in the Baltic Sea by being the only 

force that can renew water in the bottom layer. Time intervals between major in-

flows are called stagnation periods and are characterized by low oxygen amount in 

bottom water (Leppäranta and Myrberg, 2009). 

Major inflows 

Recently, major inflows happen on average every 10th year and bring dense and 

salty water with high amount of oxygen. As a result, oxygen conditions improve 

and anoxic areas decrease or disappear. Major inflows do not happen very often, 

since specific conditions are required for them, which are rare to occur. Sea level 

and water density should differ between Kattegat and Arkona Basin. The water den-

sities in these two basins differ nearly always, but in order to cause differences in 

sea water levels, specific wind conditions are needed. Major inflows always hap-

pened in September-April, with 60% of the cases in November-January (Matthäus 

et al., 1994). Winter inflows bring cold waters into the Baltic Sea (Leppäranta and 

Myrberg, 2009). 

The major inflows differ in strength. They can be very strong (e.g. one in 1951, 

1922, 1993), strong (e.g. 1965, 1976, 2003) and moderate (e.g. 1964, 1925, 1948). 

Two recent inflows happened in 1993 and 2003. They are very well studied and 

documented. In 1993, for example, salinity in the bottom waters of the Bornholm 

Basin changed from 15 psu to 20 psu and the oxygen concentration from 1 ml/l to 

7.5 ml/l in October 1992 and March 1993 respectively. That year it took about 4.5 

months before the inflow water renewed the water column between 200 m and the 

bottom in the Gotland deep (Leppäranta and Myrberg, 2009). 

The most recent major inflow happened in December 2014 and has been  ranked 

as the third largest inflow in modern time It brought about 320 km3 of water into the 

Baltic, of which 198 km3 had high salinity. The total amount of salt transported is 

estimated to be 4x109 t and oxygen about 2.04x106 t. It is predicted that the inflow 

of 2014 will finish the stagnation period, which has lasted for 10 years, and turn the 

entire deep waters of the Baltic into oxic conditions (Mohrholz et al., 2015). There 

is an ongoing research on the effects of this inflow. 

Other inflows. 

Except for major inflows, there are also inflows of warm water and small- or me-

dium size inflows. 

Warm water inflows happen regularly in late summer and early autumn. They 

bring saline, warm, but usually oxygen-deficient water. They can improve or worsen 

oxygen conditions in the Baltic. From one side, they bring water with a low amount 
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of oxygen and high temperature (which increases the rate of oxygen consumption 

and hydrogen sulfide formation, Matthäus, 2006). On the other hand, they may ven-

tilate the intermediate water layer, so the oxygen will arrive from the surface layer. 

Inflows in 2002 and 2003 were exceptionally warm. The effects of those inflows 

lasted until 2005. Temperature and salinity of water increased to the highest of a 

period from the 1970s and high concentration of hydrogen sulfide turned into high 

oxygen concentrations (Feistel et al., 2006). For example  the temperature became 

7.2°C and the salinity 13.2 psu in near-bottom water of the Gotland Deep in Febru-

ary 2004 compare to less than 4°C and 12.5 psu prior to the effect of the inflow in 

2003 (Feistel et al., 2006; Leppäranta and Myrberg, 2009). 

Small- and medium-size inflows occur a few times per year. They ventilate a part 

of the intermediate layer water, increase oxygen amount there, but are not sufficient 

to renew the water in the bottom layer (contrary to major inflows) (Leppäranta and 

Myrberg, 2009). The effect of inflows on the central Baltic deep water depends on 

the volume and density of the saline water. Water from small- and medium-size 

inflows, but also some major inflows, fills only the Bornholm Basin and does not 

reach the Gotland Basin (Matthäus et al., 2008). 

3.4 Environmental factors 

3.4.1 Light 

As a measurement of water transparency, Secchi depth is used. That is the depth 

at which a white disk with a diameter of 30 cm can be seen from the surface. At 

present, the Secchi depth is about 5-10 m in the Baltic Sea, with some spatiotem-

poral differences (Laanemets et al., 2004). In coastal areas, the Secchi depth is lower 

compare to the central basins. Mean Secchi depth of the Baltic has decreased over 

the last 100 years, which can be explained by decreased water transparency due to 

eutrophication (Leppäranta and Myrberg, 2009).  

3.4.2 Temperature 

The Baltic Sea has colder and warmer phases. The first warming phase in last 100 

years started in about 1920-1930 and reached maximum in the 1940s (Tinz, 2000). 

It was followed by a cold phase until the 1970s, when the new warming phase 

started. That warm phase last until today (with some breaks in the early 1980s). 

Since the 1990s, the warming seems to progress. In the period 1990-2005 the seven 

warmest summers for the past 60 years were registered (Siegel et al., 2008). 

Water temperatures reach minimum values in February-March and maximum in 

August. The northern Baltic usually has lower temperature than the southern, espe-

cially in May-June and September-October due to slower warming in spring and 
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faster cooling in autumn there. However, in the past years this difference has de-

creased (Siegel et al., 2008). 

Due to the salinity stratification (Figure 3), the temperature in the Baltic Sea has 

a two-layered structure. The summer thermocline is at about 15-30 m depth in all 

basins of the Baltic Sea (Leppäranta and Myrberg, 2009). The ice cover in the north-

ern part lasts for 6 months, and the productive period is 4-5 months. In the South 

the ice cover is only present during the coldest winters, while the productive period 

is 8-9 months (Elmgren, 1984). 

3.4.3 Salinity 

The Baltic Sea salinity decreases the further you move from the Danish Straits 

(Leppäranta and Myrberg, 2009). It also differs between water layers. Salinity has 

values from 2-3 psu at the surface (Bothnian Bay) up to about 20 psu in bottom 

waters (Danish Sounds and Kiel Bight). Most of the Baltic surface has salinity of 5-

8 psu. The halocline is at about 50-70 m and below it the water is a little warmer 

and more saline (Elmgren, 1984). 

As an example we may look at the Gotland basin. It contains about half of the 

Baltic Sea water. A permanent halocline is at a depth of 60-80 m. Salinity in the 

upper layer is 6.5-8 psu. Below the halocline it linearly increases to 9-12 psu at 100 

m depth and 11.5-13 psu at 200 m. Only Major Baltic inflows ventilate water in the 

deepest basins. 

3.4.4 Oxygen 

Oxygen condition of water has three states: normoxia, hypoxia (Diaz and Rosen-

berg, 1995, 2008), and anoxia (Diaz and Rosenberg, 1995). In the areas where the 

oxygen level is low due to natural processes, benthic biota is able to adapt even to 

0.1 ml/l of O2, however in anthropogenic influenced habitats a usual consequence 

of hypoxia is an increase in mortality of benthic organisms. Oxygen decline is time-

lagged by about 10 years from the enrichment of water by fertilizers. Most often 

hypoxia occurs once a year from summer to autumn after spring algal blooms (Diaz 

and Rosenberg, 2008). An increase in temperature decreases the solubility of oxy-

gen in water as well as it increases the respiration of organic matter. The current 

increase in temperature has caused about 0.5mg/l decrease in oxygen saturation over 

past 115 years. However, in the Baltic Sea the main driver of deoxygenation is an-

thropogenic nutrient discharges (Carstensen et al., 2014). Because of persistent 

stratification of the Baltic Sea, hypoxia is also persistent there. The Baltic Sea be-

came the largest dead zone in the world (Diaz and Rosenberg, 2008). Over the past 

115 years hypoxic areas (Figure 4.) in Bornholm and Gotland Basins increased from 

5 000 km2 to 60 000 km2 (Carstensen et al., 2014). This 10-fold increase in hypoxic 
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areas corresponds to about 1.7x106 t of macrofauna biomass, which would inhabit 

the Baltic otherwise (Karlson et al., 2002). 

 
Figure 4. Change in Baltic hypoxic (red) and anoxic (black) areas over a 100 years. From Carstensen 

et al. 2014. 

3.4.5 Eutrophication 

Discharges of nutrients into the Baltic Sea increased a lot during the 20th century: 

N increased from 9 600 t/year to 77 700 t/year and P from 300 000 t/year to 

1 189 700 t/year. As a result, the Baltic Sea turned from oligotrophic into eutrophic 

(Larsson et al., 1985). Consequently, blue-green algae blooms explode, some of 

which produce toxins (Larsson et al., 1985; Jansson, 1980; Hansson and Rudstam, 

1990; Karlson et al., 2002). Another drawback of eutrophication is that geochemical 

cycles, which include P and N, consume a lot of O2 creating or increasing hypoxic 

regions near the bottom (Larsson et al., 1985; Hansson and Rudstam, 1990). 
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4 The Baltic fauna 
In order to stay brackish, the Baltic Sea needs a stable balance between fresh and 

marine water inflows. However, the probability that this balance can be maintained 

for long periods is low, which is why there is not enough time in evolutionary terms 

for large amount of species to adapt to brackish waters (Elmgren, 1984). According 

to Elmgren (1984) there were 4 groups of animals that naturally immigrated into the 

Baltic: 

 euryhaline marine and brackish-water organisms, that are native to northwest 

European estuaries; 

 freshwater fauna from continental Europe; 

 glacial relicts, that migrated via the ice-dammed lakes from Siberia; 

 glacial organisms that migrated from the west via the sea (cannot survive in 

fresh water). 

The first two groups are poorly adapted to cold waters (it's the reason of low 

benthic diversity in deep waters of the Baltic), while the last two groups are typical 

cold water organisms. 

4.1 European sprat 

European sprat, Sprattus sprattus (Linnaeus, 1758), belongs to the family Clupei-

dae. Sprat has a quite wide geographic distribution (Baltic Sea, northeastern North 

Sea, northern Mediterranean Sea and Black Sea), which shows its high adaptivity 

(Parmanne et al., 1994). It is a small fish with a maximum length of about 14-20 cm 

(Havs- och vattenmyndigheten, 2012). Sprat is a pelagic fish. Sprat matures at an 

age of 2-3 years, but with some individuals maturing at 1 or 4 years (Veldre, 1974; 

Havs - och vattenmyndigheten, 2012). The maximum age of sprat in the northern 

Baltic is 18 years, but 9 years in the southern (Ojaveer, 1981). Sprat form wintering 

shoals, which winter below the halocline, in waters with temperature ≥ 4 °C and 

sufficient oxygen content (Parmanne et al., 1994). After wintering, sprat migrates 

to spawning grounds for spawning (Parmanne et al., 1994). Sprat is a warm-water 

species (Ojaveer and Kalejs, 2010). 

Stocks and their dynamics 

Sprat from different regions of the Baltic Sea differ in morphology, growth rate, and 

other biological parameters (Lindquist, 1971), which might indicate local popula-

tions. However, they mix in spawning and wintering grounds (Rechlin, 1986), mak-

ing it difficult or even impossible to separate them into different stocks. Therefore, 

the Baltic sprat is managed as one stock. Big part of sprat catches comes from mixed 
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spratherring fishery with large spatiotemporal fluctuations in species composition 

(ICES, 2013). 

The sprat stock is the largest stock assessed in the Baltic. SSB was low in the 

1980s, then it rapidly increased, reaching maximum SSB of 1.7  106 tons. This is 

explained by strong recruitment, caused by mild spring temperatures (MacKenzie 

and Köster, 2004), and declining natural mortality, caused by a decline in the cod 

population. Then the stock declined as a result of increased fishing mortality and a 

recovery in the cod population. 

Reproduction and development 

Sprat is a batch spawner (Parmanne et al., 1994). It spawns 8-10 times in a season 

in the Southern Baltic and 6-9 in the Northern, with intervals of about 8-10 days 

(Veldre, 1974). Spawning starts in deep waters of about 90-110 m, and then contin-

ues in warmer surface waters (Parmanne et al., 1994; Ojaveer and Kalejs, 2010). 

Sprat spawns in salinity of at least 5 psu and temperature of 4-14°C. In the southern 

part of the sea spawning last from March-April to July-August, in the northern -- in 

June- August. Larvae hatch in about 3-4 days at a length of 2-3.6 mm. Sprat meta-

morphoses in 6-8 weeks after hatching at a length of about 30-40 mm (Ojaveer, 

1981). Difference in time intervals of spawning in the southern and the northern 

parts may be due to different environmental conditions there: spring temperature 

gets higher earlier in the south. 

Food 

Sprat larvae feed on algae (diatoms and flagellates) and eggs and young stages of 

copepods (Ojaveer, 1981). Whitebait feed mainly on molluscs and young copepods 

(Veldre, 1974). Clupeoids have two types of feeding: biting or capturing (particu-

late-feeding) or filtering food from water (Blaxter, 1982). Sprat prefers the oldest 

stages of copepods, even if there are other stages available, which indicates that 

sprat is a more particulate feeder (Möllmann et al., 2004). Adult sprat feeds mainly 

on larger copepods (Temora, Acartia, Pseudocalanus etc.) (Ojaveer, 1981). Sprat 

actively selects its prey, since the abundance of prey in the sea and stomachs of sprat 

differ. (Casini et al., 2004). It preys on cod eggs and larvae (Köster and Schnack, 

1994; Köster and Möllmann, 2000), but cases of cannibalism on sprat eggs and lar-

vae have also been reported (Karaseva et al., 2013). Sprat feeding decreases a lot 

during spawning and is the most intensive after spawning (Ojaveer, 1981). 
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4.2 Atlantic herring 

Atlantic herring, Clupea harrengus (Linnaeus, 1758), also belongs to the Clupeidae 

family. It is a pelagic fish which is in the Least Concern (LC) category of the HEL-

COM Red List (HELCOM, 2013a). Two groups of herring occur in the Baltic: 

spring and autumn spawners (Parmanne et al., 1994; Ojaveer, 1981). It is possible 

to distinguish between them by the otoliths (Ojaveer, 1981), and also by vertebrae 

number and timing of gonads development (Parmanne et al., 1994). Sometimes, in 

the northern part of the Baltic Sea, spawning of spring spawners is prolonged. Then, 

there may be some spatial and temporal overlap of spawning of autumn- and spring-

spawners. In that case, even their hybrids may appear, however, survival probability 

of them is low (Ojaveer, 1981). Herring perform diurnal feeding migrations, spend-

ing the daytime mainly near the bottom, but raises up to the surface during the night 

(HELCOM, 2013a). Herring in the Baltic Sea is generally smaller than in other parts 

of its distribution (Ojaveer, 1981). It is usually 23-30 cm in Skagerrak and Kattegat 

and 15-24 cm in the Baltic Sea. Body weight is usually 40-200 g, but can be smaller. 

Herring might reach the age of 25 years, but it is rarely above 10 years (Havs- och 

vattenmyndigheten, 2012). The maximum age of herring differs between different 

areas of the Baltic, but generally it increases towards the north. The maximum age 

of the spring spawning herring in the north is 20 years, in the south 12 years, while 

for the autumn spawning herring it is 15 and 12 years respectively (Ojaveer, 1981). 

Herring matures earlier in the Baltic Sea (at 2-3 years old), than in Skagerrak and 

Kattegat (at 3-4 years old) (Havs- och vattenmyndigheten, 2012), but some spring 

spawners may mature even at the age of 1 year (Ojaveer, 1981). Central and South-

ern Baltic proper is a mixing zone where different stocks migrate for feeding. There 

herring form shoals, when migrating northward for wintering. Next spring they sep-

arately migrate to different spawning sites. Western Baltic spring-spawning herring 

migrate to the North Sea for feeding in summer and then in autumn or winter they 

migrate back to the Baltic for spawning (Parmanne et al., 1994). Both salinity and 

sprat abundance influence the herring growth, i.e. condition and biomass, but sprat 

abundance affects the growth to a higher degree (Casini et al., 2010). Herring has a 

high ability to adapt (Rönkkönen et al., 2004), therefore it was able to form five 

local populations in the Baltic (Ojaveer and Kalejs, 2010) 

Stocks and their dynamics 

Herring in the Baltic Sea is managed as five stocks: Central Baltic herring (SD 

25-29 and 32, Figure 1), Gulf of Riga herring, herring in SD 30, herring in SD 31 

(ICES, 2013, ICES, 2014a) and Western Baltic herring (SD 22-24). 

Central Baltic herring is one of the largest herring stocks. It was large in 1970s, 

but then declined (ICES, 2013). This was caused by a combination of different fac-
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tors. First of all, fishing pressure was too high (above safe reference points). Sec-

ondly, spawning grounds degraded because of eutrophication of coastal areas 

(Casini, 2013). Finally, competition with sprat over main herring prey, Pseudo-

calanus acuspes (whose abundance decreased because of low salinity), increased 

(Casini et al., 2010). The stock consists of a number of spawning components. 

Southern component, which includes relatively larger fishes, has declined in recent 

years, while northern component (herring, which is up to 18-20 cm) is dominant in 

landings nowadays. There is a decreasing trend in SSB since the 1990s (ICES, 2013, 

2014) (ICES, 2013, ICES, 2014a). 

Gulf of Riga herring is a stable stock. Its year-class abundance is highly influ-

enced by environmental conditions (for ex. winter temperatures) (ICES, 2013). 

SSB of herring in SD 30 was relatively low until 1980, followed by a three-fold 

increase until 1994. Then it declined by 40%, increased again and is stable now. The 

highest values were reached in 2012 (ICES, 2013). 

Herring in SD 31 is one of the smallest assessed stocks in the Baltic. Stock dy-

namics is highly determined by environmental conditions (ICES, 2013). 

In the Western Baltic herring both stock size and recruitment decreased in the 

2000s, however, there might be some signs of recovery (Ices, 2014). 

Reproduction and development 

Spring spawning herring spawns in March-June (there is variability in spawning 

time between stocks) (Ojaveer, 1981). They spawn in coastal waters with relatively 

low salinity (Parmanne et al., 1994; Ojaveer, 1981). Spawning starts in shallow wa-

ters with about 2-4°C and ends in waters of 6-20 m depth. Older and larger herring 

spawn earlier. Embryo development depends on temperature. Hatchlings are 5.5-8 

mm long. Herring larvae live close to the surface. They metamorphose after 2-2.5 

months, at a length of about 25-30 mm. At the whitebait stage herring lives close to 

the coast above or in the thermocline (Ojaveer, 1981). 

Autumn spawning herring spawns offshore (Ojaveer, 1981; Parmanne et al., 

1994) at depths of about 3-25 m. Contrary to spring spawners, spawning begins in 

deeper grounds and shifts to shallower. Older fish spawn later. Size at hatching is 

the same as in spring spawners, about 5.5-8 mm. Eggs of autumn spawning herring 

can develop parthenogenitically (without sperm) and give viable offspring. Larvae 

of autumn spawning herring develop at bigger depth than spring herring (up to 62 

m). Metamorphosis takes place in shallow waters, in about 8-9 month after hatching 

and at a length of 40-44 mm (Ojaveer, 1981). 
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Food 

During the first year, herring feeds mainly on plankton (Popiel, 1951). Later the 

proportion of large crustaceans (e.g. Mysidae, Amphipoda), fish eggs and larvae in-

creases in the diet (Ojaveer, 1981). The main prey of adult herring is copepods 

(Temora, Pseudocalanus, Acartia, etc.) (Ojaveer, 1981; Möllmann et al., 2004; 

Casini et al., 2004), but larger herring feed on nektobenthos, like Mysis mixta, am-

phipods and polychaetes (Casini et al., 2004). Even though herring prefers older 

stages of prey, it might switch to filtering if the availability of older and bigger co-

pepods is low (Möllmann et al., 2004). Herring also predates on eggs and larvae of 

sprat and cod, as well as on herring larvae (Köster and Schnack, 1994; Köster and 

Möllmann, 2000; Karaseva et al., 2013). Medium and large herring select mysids, 

which are larger and have higher nutrition value than copepods, in autumn and win-

ter (Möllmann et al., 2004). Herring, like sprat, actively selects their prey, since the 

abundance of prey in the sea and stomachs of both herring and sprat differ (Casini 

et al., 2004), however herring has a higher ability to change their prey composition 

than sprat does (Popiel, 1951). 

4.3 Atlantic cod 

Atlantic cod, Gadus morhua (Linnaeus, 1758), belongs to the Gadidae family. In 

the red list of both HELCOM and IUCN cod is listed as vulnerable (HELCOM, 

2013; Sobel, 1996). Cod is a demersal marine coastal fish (HELCOM, 2013). It is 

a cold-water species (Ojaveer and Kalejs, 2010) with a generation length of about 

13.5 years (HELCOM, 2013). The maximum age of a caught Baltic cod was about 

40 years, weight -- 50 kg and length -- 150 cm (Havs- och vattenmyndigheten, 2012, 

Figure 5.), nevertheless, after 1980’s few individuals older than 10 years old were 

caught (Bagge, 1981). Cod reach maturity at 2-6 years old (Havs- och vattenmyn-

digheten, 2012, HELCOM, 2013) and at length about 31-74 cm (HELCOM, 2013). 

Eastern Baltic cod usually reaches maturity earlier, at about 2-3 years old, while 

western Baltic cod matures at 3-4 years (Bagge et al., 1994). Although cod is dis-

tributed in the whole Baltic, the reproduction is limited to the zones with highest 

salinity (HELCOM, 2013). After spawning cod migrates to feeding grounds and the 

following spring they return to spawning grounds (Bagge, 1981). The biggest indi-

viduals perform migrations most frequently (Bagge, 1981). 
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Figure 5. Large cod in late 1980s. Photo of Eero Aro from HELCOM, 2013. 

Age reading problems. 

Age reading on otolith from eastern cod older than 3 years is difficult. The contrast 

of seasonal growth zones is low, probably due to the fact that some cod stay most 

of the time below the pycnoline, where the temperature is stable (Bagge et al., 1994). 

Also, the results of otolith readings differ between different countries, some consist-

ently tend to age cod as older, while others as younger (ICES, 2013, 2014) 

Stocks and their dynamics 

Three cod stocks are managed in the Baltic: eastern stock (ICES subdivision 25-32, 

Figure 1), western (SD 22-24) and Kattegat (SD 21) (HELCOM, 2013, ICES, 2013). 

Despite the fact that there is not much of a spatial overlap between them (Bagge et 

al., 1994), there is some migration of cod between eastern and western stocks (ICES, 

2013). 

Eastern Baltic cod is the biggest stock. The cod stock in the Baltic was quite small 

until the 1970s, but due to low fishing pressure and favourable environmental con-

ditions for egg and larvae survival (high salinity, oxygen amount and abundance of 

prey copepods), it rapidly grew (Eero et al., 2011). In the late 1980s, stock size de-

clined again (Casini, 2013; ICES, 2013). The reasons for that was a combination of 

overfishing and degradation of spawning areas (decreased oxygen amount in the 

deeper zones of the Eastern Baltic, HELCOM, 2013). In addition to that, the condi-

tion of cod become extremely bad (Figure 6.), which may indicate that cod stock in 
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SD 25 reached carrying capacity (Eero et al., 2012). However more causes of low 

cod condition, like parasites, low prey availability, size-selective fisheries etc., have 

been suggested (see Eero et al., 2015 for more details). Lately, the eastern cod stock 

has increased, as a result of managed fishing from 2007 (HELCOM, 2013, ICES, 

2013). Even though the stock is assessed in SD 25-32, catches in recent years (ICES, 

2013, 2014) are mainly in SD 25-26, which indicate that cod is concentrated mainly 

there. 

 
Figure 6. Difference in cod condition. Courtesy of: Bastian Huwer, DTU Aqua 

Western Baltic cod is biologically different from eastern Baltic cod. It is a highly 

reproductive stock, which maintained itself despite the high fishing pressure. The 

stock size is highly determined by the strength of incoming year-classes (ICES, 

2013). Western stock has been decreasing but levelled out after management of fish-

ing from 2007 (HELCOM, 2013). 

The Kattegat stock is declining heavily: from 15 000 ton of reported catches in 

the 1970s, it first decreased to less than 7-8 000 ton in the 1990s and then to less 

than 500 tons in recent years (ICES, 2013). A drastic decrease of SSB, together with 

reduction of spawning areas and overfishing, has caused a critical situation in the 

stock. A management plan was adapted one year later than in other stocks, in 2008. 

Sweden ban fishing during the spawning period (1st of January--31st of March). In 
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2010 an MPA was established for protection and recovery of Kattegat cod. Fishing 

is prohibited in central part of this area (HELCOM, 2013). 

Food 

Prey species and their proportions in the diet slightly differ between subdivisions. 

But in general, small young cod (15-24 cm) eats mainly invertebrates: crustaceans 

(Mysis sp and Pontoporeia sp.) and polychaete (Antinoella sarsi); middle size cod 

prefers the isopod  Saduria entomon, but predates also on small sprat and herring; 

larger cod feeds mainly 

on sprat and herring, but 

also S. entomon (Bagge 

et al., 1994; Rudstam et 

al., 1994). Eastern Baltic 

cod eats more sprat than 

herring, probably be-

cause some herring mi-

grate to Kattegat and 

Skagerak. Invertebrates 

also comprise part of 

cod's diet (Bagge et al., 

1994), as well as cod 

eggs, larvae and juve-

niles (Jensen and Spar-

holt, 1992). Sprat and 

herring comprise 80% of 

bigger (>30 cm) cod 

stomach content (Røjbek 

et al., 2014). Before 

1980, S. entomon was 

more frequent in the cod 

diet than afterwards 

(Uzars, 1994). Cod feeds 

during the whole year, 

except for very severe 

winters (Bagge, 1981). 

 

Figure 7. Spawning grounds of Eastern and Western Baltic cod stocks before (a) and after (b) mid 

1980s. From Cardinale and Svedäng (2011), a) redrawn from Bagge (1994) 
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Reproduction and development 

There were 3 major spawning grounds for the Eastern Baltic cod: Bornholm Basin, 

Gotland Basin and the Gdansk deep (Figure 7 a), and of minor importance Slupsk 

Furrow (Bagge et al., 1994). But since the 1980s the Bornholm Basin is the only 

spawning ground (Figure 7 b) for the Eastern Baltic cod (Hinrichsen et al., 2003). 

For the western Baltic cod the major spawning grounds are Kiel Bay and Fehmerh 

Bay, minor -- Arkona Basin (Bagge et al., 1994). The western Baltic cod spawns 

during spring, the eastern -- during summer and cod in the Kattegat-- in late winter-

early spring (Bagge et al., 1994, HELCOM, 2013). Main threats to recruitment suc-

cess are egg mortality caused by low oxygen concentration in water (minimum re-

quired is 2.3 ml/l) (Bagge et al., 1994), low salinity (the eggs require at least 10.5-

11 psu for oating) (Bagge et al., 1994, HELCOM, 2013) and egg predation by sprat 

and herring (Köster and Möllmann, 2000). Cod spawning in water with lower salin-

ity produce larger eggs than those spawning in ‘ordinary’ sea water (Bagge, 1981). 

Both cod eggs and larvae are pelagic (HELCOM, 2013). Eggs hatch after 18 days 

at +5°C (Bagge, 1981). After hatching, cod larvae start vertical migration for feed-

ing (Hinrichsen et al., 2003; Bagge et al., 1994). They stay at about 30--40 m depth 

(Gronkjær et al., 1997), close to the pycnocline (Bagge et al., 1994). Their survival 

is highly dependent on size and species composition of available prey. Retention 

and dispersion from spawning grounds into optimal feeding grounds is also crucial. 

If Pseudocalanus elongatus is abundant, it is better for larvae to stay in deep waters, 

while if it's not, it is more beneficial to disperse into shallower regions with high 

abundance of other copepods (Hinrichsen et al., 2003). There is still a knowledge 

gap about biology and dynamics of 0-1 year old cod. However, the smallest juvenile 

cod is observed in deep waters of spawning grounds, mainly in the 4th quarter. Set-

tled juvenile cod don't form schools. The highest concentration of them is close to 

the pycnocline. Vertical distribution seem to follow the one of the prey (mysids) 

(Nielsen et al., 2013). Juvenile cod live in shallow waters at a depth of 10-70m, for 

the first 2 years before they join the spawning stock (Bagge, 1981). 

4.4 Species interactions and influence on each other's population 
dynamics 

To summarize the interactions between the three study species (Figure 8): 

 Baltic herring and sprat compete over food resources (Möllmann et al., 

2004); 

 cod is a main predator of both herring and sprat (Rudstam et al., 1994); 

 both herring and sprat may predate on cod eggs and larvae. At the same 

time, there is cannibalism in cod, herring and sprat, as it is known that they 
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can predate on their own eggs and larvae. Herring may also predate on sprat 

larvae and eggs. 

 
Figure 8. Schematic view of the interactions between herring, sprat and cod in the Baltic Sea. 

However interactions between cod, herring and sprat is only possible, when 

there is spatiotemporal overlap between their populations (Neuenfeldt, 2002), but it 

is small now (ICES, 2013; Eero et al., 2012; Casini et al., 2011). Most of the adults 

of the cod stock are in SD 25, but only about 10-15 % of herring and sprat are in the 

same SD. The highest abundances of sprat and herring are in SDs 28-32, where there 

is none or very few cod nowadays (Eero et al., 2012). 

Ecosystem shifts in the Baltic have a trend: cod dominates, when water salinity 

is high; when salinity is low, sprat dominates (Ojaveer and Kalejs, 2010). Following 

the collapse of cod population in the late 1980s, sprat abundance increased (Figure 

9). As a consequence zooplankton abundance decreased (esp. cladocerans), which 

is an evidence for top-down control. Cod-dominated and sprat-dominated regimes 

can be separated by a threshold abundance of sprat, which is 171010 individuals. 

After a regime shift favourable conditions for cod didn't translate into it is reproduc-

tive success which is an evidence for system hysteresis (Casini et al., 2009). 
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Figure 9. Population dynamics of Baltic herring, sprat and cod. Data from WGBFAS report 

(ICES,2014a) 
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5 Different approaches to study interactions 
between cod, herring and sprat in Baltic 

A number of different multispecies and ecosystem models have been used to inves-

tigate the interaction between cod, herring and sprat. However, because each of 

them was built to answer certain specific question, they are lacking some important 

aspects in order to be more realistic or to describe more facets of predator-prey in-

teractions. 

Mass-balanced ecosystem model (Ecopath with Ecosim; EwE) 

The Ecopath model is a mass-balanced model that estimates allocations of produc-

tion, consumption and fishing into food-web. These estimates are used to initialize 

the Ecosim, which simulates dynamics of each biomass pool, which is a species or 

a group of species that represents an ecological guild, based on different processes 

(i.e. fishing, recruitment, predator-prey interactions, abiotic factors, etc.). EwE al-

lows to investigate responses of the food-web to various perturbations, but also feed-

backs between different trophic levels, impact of bottom-up control and effect of 

fishery on non-target species (Harvey et al., 2003). 

Österblom et al. (2007) built a EwE model, which constitutes of 15 functional 

groups (from primary producers to top predators). Fishes are represented there by 

sprat, herring and cod, each separated into juvenile and adult groups. 

A model by Tomczak et al. (2012) includes 22 functional groups of the Baltic 

Proper (SD 25-29, without Gulf of Riga). Fishes are represented there by sprat, her-

ring and cod. Herring and sprat constitutes of two groups each (i.e., juveniles and 

adults), whereas cod consists of four groups (i.e., larvae, juvenile, small adult, big 

adult). Groups were designed to describe differences between diet compositions of 

ontogenetic stages. 

Pros: 

 the species are in an ecosystem context; 

 takes diet differences between ontogenetic stages into account; 

 includes several environmental drivers (SST, reproductive volume, hypoxia, etc.) 

 

Cons: 

 does not take into account spatial or seasonal variations; 

 predator-prey interactions are described only by the proportion of functional 

group in the diet of a predator known from literature; 

 population demography is neglected. 

Multivariate autoregressive model (BALMAR) 
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Lindegren et al. (2010) modelled a food-web that consists of cod, herring and sprat. 

For each species a separate linear regression is run, however they are solved simul-

taneously in order to get the most parsimonious estimates for the total model. A 

matrix of interactions between species as well as a matrix of effect of fisheries, cli-

mate (salinity for cod, SST for sprat) and zooplankton availability on each species 

are parts of the model. 

Benefits of the model is that it is able to accurately capture the existing interaction 

between species (predation of cod on sprat and herring, density-dependence for cod, 

herring and sprat, etc.), as well as it includes impact of fisheries and climate on the 

species. However, interactions between species are represented by an index, the sign 

of which represent a direction (negative or positive effect) and the value -- strength 

of interactions. In my opinion, this is a too simplistic representation of interactions. 

The model also doesn't take into account differences between ontogenetic stages of 

fishes, spatial variation of distribution of populations and seasonal variability (only 

annual variability is included), it lacks demographic structure and it is a purely sta-

tistical model (it is not based on a process approach). 

Dynamic model 

The model by Heikinheimo (2011) includes separate submodels of sprat, herring 

and cod linked together through predation. Dynamic of each species is simulated 

with 0.0156 years’ time step. Recruits are added to a system at the specific time 

point by pulse function and at the beginning of each year fishes are moved to the 

next age class. Clupeoids had Age 0, Age 1 and Adult group, while cod had Age 0-

3, and 3+ group. 

Pros: 

 using small time step allows for studying seasonal variation; 

 populations include different age groups; 

 effect of environment (salinity) is used for cod recruitment estimation; 

 population dynamics is taken into account. 

Cons: 

 spatial variability is not included; 

 except for age differences individuals are biologically identical; 

 sprat and herring are combined in one group as a prey for cod; 

 effect of fishing is represented only as a part of total mortality. 

Physiologically structured model 

Van Leeuwen et al. (2008) studied the dynamics and equilibrium biomass densities 

of cod and sprat, by building stage-structured predator-prey-resource model. Both 

species had juveniles, small and large adult stages. Impact of fisheries was investi-

gated via modelling fisheries mortalities. 
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Benefits of the model are the division of fishes into ontogenetic groups, which 

has shared as well as alternative resources; biomass production and maturation are 

weight specific. However the spatial variation is not included, interactions between 

species are represented by a fraction of time spent foraging on a specific resource 

and a maximum ingestion rate, which is a big simplification. 

Spatially disaggregated statistical food-web model 

Lindegren et al. (2014) modelled a spatially disaggregated food web of the Baltic. 

This model, based on a multivariate autoregressive platform, included interactions 

between cod, herring and sprat in SD 25 (Bornholm Basin), 26 (Gdansk Deep) and 

28 (Gotland Basin) with the effect of fisheries and climate change on them. Like in 

previous version described above (Lindegren et al., 2010), the model includes a ma-

trix of interactions between species, but is now basin-specific. 

Pros: 

 spatial variability is included; 

 data used in the model is abundance indices from surveys; 

 effects of fisheries and climate (temperature, salinity, O2) are included. Moreover 

it's on basin-scale. 

Cons: 

 no seasonal variability (only annual; mismatch in seasonal scales of data: indices 

of abundance of cod are from spring survey, whereas clupeoids are from autumn 

survey); 

 no ontogenetic stages; 

 interactions between species are simplified, they are represented only by direction 

and strength of effect and spatial overlap between species (possibility of interac-

tions instead of interactions). 

My models of cod (Eastern Baltic), herring (Central Baltic) and sprat will be built 

in Gadget (Globally applicable Area Disaggregated General Ecosystem Toolbox). 

It is a modelling platform that allows to model marine ecosystems including inter-

actions between species but also the impact of fisheries and environmental variabil-

ity on the species. Gadget offers a process-oriented framework to model a number 

of ecological processes that regulate population dynamics including maturation, 

growth, reproduction, recruitment, predation, and more (Begley and Howell, 2004). 

Typical implementation of a complex multispecies Gadget model starts with the 

development of a simple single species models. Accordingly, I will start with the 

implementation of simple independent models for each population considered in my 

research project and based on these initial runs I will add complexity. My models 

will be built separately for each species on a subdivision-scale (or some close ap-

proximation of SD) and linked together by cod predation and for herring and sprat 
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by a common fishery. Models will include mature and immature fish as distinct 

stocks. The models will be fitted to multiple datasets which include information 

from biological sampling of both commercial fisheries and research surveys, catch 

statistics of the fisheries and cod stomach data. 
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6 Research questions 
To fulfil the overarching goal of my research project “understand how predator-prey 

interactions in the Baltic Sea are framed by a combination of processes: fishing ex-

ploitation, climate variability and density dependence” I have decomposed the prob-

lem into the following questions which I would like to answer during my PhD stud-

ies: 

 Effects of predator on prey: 

 how is dynamics of prey (demography and abundance) is affected by pre-

dation? 

 how does variability in the demographic composition and spatial distribu-

tion of study species affect interaction between them? 

 Effect of prey on predator: 

 how does condition (size) of cod relate to the availability of prey and 

amount of prey eaten (and/or frequency of prey species in the stomachs)? 

 extent of the spatio-temporal overlap between herring, cod and sprat 

 how does spatial overlap between species relates to prey eaten by cod? 

 switch from benthic to pelagic prey (and vice versa) as a function of ontog-

eny, prey availability, hypoxia/anoxia 

 Ecosystem effects of predator-prey interactions: 

 how can we identify different regimes (i.e. cod-dominated vs. sprat-domi-

nated regime)? 

 is ecosystem shift back to cod-dominated system possible? What does it 

require? When can this shift happen? 

 is there an equilibrium state (specific for each regime) between herring, 

sprat and cod populations? How and when can it be reached? 

 what is the trade-off between herring and sprat as a food source for cod and 

a resource for fisheries? 

 what is the trade-off between clupeoids and cod as a resource for fisheries? 
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