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Abstract

A triangular array of independent non-identically distributed random
variables is considered. The distribution functions of centered and rescaled
sums of the random variables are estimated by resampling from the lists of
their observed values. The estimators of distributions are called consistent
(in probability) if they are weakly approaching the estimated distributions
in probability, as the number of observations increases to in�nity. Under
some additional assumptions this type of consistency implies convergence
in several metrics, e.g. in the uniform metric. A necessary and su�cient
condition for consistency is given. In addition a new formulation of the
Central Limit Theorem for triangular arrays, related to the notion of weakly
approaching distribution functions, is stated. These results can be applied
to justify the possibility of using resampling (bootstrap) techniques in many
statistical applications, e.g. to justify the method of resampling from the list
of weighted residuals in the case of a linear heteroscedastic regression.
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1 Introduction

The following statistical problem will be considered. There is a process of
collecting statistical data {x1n, ..., xnn}, n→∞. The components {xhn} are
values of independent non-identically distributed random variables (r.v.s).
One can consider 1

ρn

∑n
h=1(xhn − uhn) as the observed value of the sum of

the r.v.s, centered by {uhn} and rescaled by ρn. In many applications, it is
useful to �nd estimators of the distributions of the centered and rescaled
sums of r.v.s. The estimators have to be in some sense consistent. We will
say that the estimators of distributions are (weakly) consistent if they are
weakly approaching in probability to the estimated distributions. This type
of consistency has been used in a paper by Belyaev (1995). An exact de�ni-
tion of this notion is given in the Appendix. Here, we say only that the notion
of weakly approaching distributions is a convenient extension of weak con-
vergence and that under some additional assumptions it implies convergence
in the uniform metric and some other metrics, see Belyaev and Sj�ostedt-de
Luna (2000). We will �nd appropriate estimators by using resampling from
the data {x1n, ..., xnn}. In this paper, we restrict ourselves to the case where
the centered and rescaled sums of r.v.s are weakly approaching to the family
of normal distributions. Our assumptions su�cient for consistency of consid-
ered estimators, are rather general, e.g. we avoid stating direct assumptions
on existence of moments of random variables.

Theorems 1, 2 and 3 are the main results of this paper. Assumptions
A1, A2(τ) and A3(τ) related to behavior of individual r.v.s, their sums,
and expectations, respectively, are stated in the next section. Theorem 1 is
an upgraded version of the well-known Central Limit Theorem where we use
rather general assumptionsA1 and A2(τ), which imply that the distributions
of centered and rescaled sums of r.v.s are weakly approaching the family of
normal distributions. Theorem 2 states that if assumptions A1 and A2(τ)
hold, then A3(τ) is a necessary and su�cient condition that distributions
of resampled, rescaled and centered sums based on the data {x1n, ..., xnn},
are weakly approaching in probability the distributions of related, centered
and rescaled sums of r.v.s. In short, Theorem 2 says that resampling is valid
for consistent estimation of the distribution of interest if and only if the
assumption A3(τ) holds. Theorem 3 contains rather general assumptions
which are su�cient for the usage of resampling in linear heteroscedastic
regression.

The validity of resampling in the case of independent and identically dis-
tributed (i.i.d.) r.v.s has been carefully and exhaustively considered in a
series of papers and books, for references see Hall (1992). In the case of i.i.d.
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r.v.s the necessary condition for consistency of resampling has been obtained
in Gin�e and Zinn (1989). The case of i.i.d. r.v.s with the in�nite variance is
quite di�erent. It has been considered in the pioneer paper Athreya (1987).
In the case of non-identically distributed independent r.v.s the situation is
more complex. The most interesting results have been obtained in a paper
by Mammen (1992) where the necessary and su�cient condition for validity
of resampling has been found, in the case of a triangular array of independent
real-valued r.v.s, and where the uniform distance between distributions has
been used. The proofs in Mammen (1992) are rather long and many special
results are used there. In our paper, quite di�erent methods are used in the
proofs related to the necessary and su�cient assumption A3(τ), which is
close to that obtained by Mammen (1992). Instead of distributions conver-
gent in the uniform metric we consider distributions weakly approaching in
probability. Convergence in the uniform metric is obtained as a special case
in Corollary 1 and Corollary 2. The methods suggested in this paper can
easily be extended to the case of vector-valued r.v.s. One can encounter sim-
ilar problems related to resampling if statistical data contain realisations of
random processes, see e.g. Belyaev and Seleznjev (2000). The methods are
rather simple because the notion used of weakly approaching distributions is
directly connected with the pointwise convergence of the corresponding char-
acteristic functions. Proofs of Theorems 1 and 2 are based on the analysis
of characteristics functions.

The paper is organised as follows: In the next section we introduce most
of the notation used and state the basic results. An application to het-
eroscedastic linear regression is given in Section 3. After that we present
proofs of the stated results. The proofs are split into a series of lemmas. Sev-
eral necessary de�nitions and propositions are presented in the Appendix.
They are referred to the text as De�nition 1, Proposition 1 etc. The notations
wa↔ and

wa(P)←→ are also explained in the Appendix.

2 Basic results

We use the following notation: Capital letters denote r.v.s, E and P are sym-
bols of expectation and probability, respectively, P→ means convergence in
probability, L(X) is the distribution law (d.l.) of an r.v. X. I(A) is the indi-
cator of an event A. By {ρn}n≥1 we denote a sequence of positive non-random
values which will be used to norm (rescale) r.v.s. Let X = {Xhn : {h, n} ∈ T}
be a triangular array of real r.v.s {Xhn} which are independent for each
n = 2, 3, ..., T = {{h, n} : n = 1, 2, ..., h = 1, 2, ..., n}, Xn = {X1n, ..., Xnn}.
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The r.v.s Xhn, h = 1, ..., n, can be non-identically distributed. We consider
the normed and shifted or centered r.v.s Yhn = Xhn/ρn.
Let Yhn(τ) = YhnI(| Yhn |≤ τ), Y 	

hn(τ) = Yhn − E[Yhn(τ)],
Y 	
·n(τ) =

∑n
h=1 Y 	

hn(τ), Y ◦hn(τ) = Yhn(τ)−E[Yhn(τ)], Y ◦·n(τ) =
∑n

h=1 Y ◦hn(τ),
σ2
·n(τ) = Var [Y ◦·n(τ)] =

∑n
h=1 E[(Y ◦hn(τ))2]. We will use notation Y ◦hn =

Yhn − E[Yhn], Y ◦·n =
∑n

h=1 Y ◦hn and σ2
·n =

∑n
h=1 E[(Y ◦hn)2] if E[Y 2

hn] <
∞, {h, n} ∈ T. We will also consider two lists of r.v.s

Y�
n = {Y1n − Ȳ·n, ..., Ynn − Ȳ·n},

and
Y�

n (τ) = {Y1n(τ)− Ȳ·n(τ), ..., Ynn(τ)− Ȳ·n(τ)},

where

Y·n =
n∑

h=1

Yhn, Ȳ·n = Y·n/n, Y·n(τ) =
n∑

h=1

Yhn(τ), Ȳ·n(τ) = Y·n(τ)/n, τ > 0.

Let J?
n = {J?

1n, ..., J?
nn}, be n i.i.d. r.v.s uniformly distributed on

{1, 2, ..., n}, i.e. P?[J?
in = h] = 1/n, h = 1, ..., n. We use the mark “?” to

show that r.v.s, probabilities and expectations are related to J?
n. Values of

r.v.s J?
in can be obtained by simulation. Resampling copies of lists Y�

n and
Y�

n (τ), obtained via simulation of the r.v.s J?
n, will be denoted as follows

Y?�
n = {Y ?�

1n , ..., Y ?�
nn }, Y?�

n (τ) = {Y ?�
1n (τ), ..., Y ?�

nn (τ), }

where Y ?�
hn = Y ?

hn − Ȳ·n, Y ?
hn = YJ?

hn,n, Y ?�
hn (τ) = Y ?

hn(τ)− Ȳ·n(τ),
Y ?

hn(τ) = YJ?
hn,n(τ).

Let N?
hn =

∑n
i=1 I(J?

in = h). Then, we can write the sums of components
in Y?�

n and Y?�
n (τ) as follows

Y ?�
·n =

n∑
h=1

(N?
hn − 1)Yhn, Y ?�

·n (τ) =
n∑

h=1

(N?
hn − 1)Yhn(τ). (1)

We introduce the following assumptions:
There exists a sequence {ρn}n≥1, where every ρn > 0 and, a τ > 0 such that

A1 : max1≤h≤n | Yhn |
P→ 0, n→∞;

A2(τ) : the sequence of d.l.s {L(Y 	
·n(τ))}n≥1 is tight;

A3(τ) :
∑n

h=1(E[Yhn(τ)])2 − 1
n

(∑n
h=1 E[Yhn(τ)]

)2

→ 0, n→∞.
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A1 holds if and only if for every ε > 0

n∑
h=1

P[| Yhn |> ε]→ 0, n→∞.

Theorem 1. (The Central Limit Theorem (CLT) for triangular array) Sup-
pose that A1 holds. Then

L(Y 	
·n(τ)) wa↔ N1(0, σ2

n), n→∞, (2)

where {σ2
n}n≥1 is a sequence of positive numbers, σ2

+ = supn σ2
n <∞, if and

only if A2(τ) holds.

Theorem 1 says that if A1 holds , then the d.l.s of the sums Y 	
·n(τ) are

weakly approaching (see De�nition 3) the family of normal d.l.s N0(σ2
+) =

{N1(0, σ2) : 0 ≤ σ2 ≤ σ2
+ <∞} if and only if A2(τ) holds, N1(0, 0) = L(0).

Theorem 2. (The Central Limit Resampling Theorem (CLRT) for triangu-
lar array). If A1 and A2(τ) hold, then A3(τ) is necessary and su�cient to
give an asymptotically consistent estimation of L(Y 	

·n(τ)), as n → ∞, based
on resampling, i.e.

L(Y ?�
·n | Xn)

wa(P)←→ L(Y 	
·n(τ)), n→∞. (3)

Theorem 2 states that the conditional d.l.s of the sums Y ?�
·n of r.v.s in

Y?�
n , obtained by resampling from the list Y�

n , are weakly approaching in
probability (see De�nition 4) to the conditional d.l.s of the sums Y 	

·n(τ) given
{Xn}n≥1 as n→∞.

Remark. We will prove Theorem 1 and Theorem 2 with σ2
n = σ2

·n(τ). It
will be shown that σ2

·n(τ) does not essentially depend on τ, as n→∞, if A1

holds. If both A2(τ1) and A2(τ2) hold, 0 < τ1 < τ2 <∞, then L(Y 	
·n(τ1))

wa↔
L(Y 	

·n(τ2)), n → ∞. If A1 holds and for a τ0 > 0,
∑n

h=1(E[Yhn(τ0)])2 →
0, n→∞, then A3(τ) holds for any τ > 0.

Let Fn(x) = P[Y 	
·n(τ) ≤ x] and F ?

n(x | Xn) = P[Y ?�
·n ≤ x | Xn] be the

distribution functions (d.f.s) of the r.v.s Y 	
·n(τ), and the conditional d.f.s of

Y ?�
·n given Xn, respectively, and Φ(x) = 1√

2π
e−x2/2.

Corollary 1. If A1 and A2(τ) hold and limn→∞σ2
n > 0, then

sup
x

∣∣∣∣Fn(x)− Φ
(

x

σn

)∣∣∣∣→ 0, n→∞.
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Corollary 2. If A1, A2(τ) and A3(τ) hold and limn→∞σ2
n > 0, then

sup
x

∣∣∣∣F ?
n(x | Xn)− Φ

(
x

σn

)∣∣∣∣ P→ 0, n→∞,

and correspondingly

sup
x
| F ?

n(x | Xn)− Fn(x) | P→ 0, n→∞.

The case, where all r.v.s have the �nite second moments is interesting in
many applications.

Corollary 3. Suppose that all second order moments E[Y 2
hn] <∞,

supn

∑n
h=1 E[Y 2

hn] = C2 < ∞, {h, n} ∈ T,
∑n

h=1(E[Yhn])2 → 0, n → ∞,
and for every τ > 0

n∑
h=1

E[(Yhn)2I(| Yhn |> τ)]→ 0, n→∞. (4)

Then
L(Y ◦·n) wa↔ N1(0, σ2

·n), n→∞, (5)

and
L(Y ?�

·n | Xn)
wa(P)←→ L(Y ◦·n), n→∞. (6)

Here, the Lindeberg assumption (4) is used in order to have σ2
·n in (5),

instead of a σ2
n as it stated in Theorem 1. In the general case, σ2

n can
essentially di�er from σ2

·n because, then we do not assume that the second
moments are �nite.

3 Application to heteroscedastic linear regression

Suppose that statistical data are the list of pairs {{Y1, {x̃11, ..., x̃r1}}, ...,
{Yn, {x̃1n, ..., x̃rn}}} with components satisfying the following relations of a
linear heteroscedastic regression:

Yh =
r∑

s=1

x̃shβs0 + Wh, h = 1, ..., n, (7)

where errors {Wh} are independent r.v.s, {x̃sh} are explanatory variables
(regressors), {βs0} are components of a parameter, and {Yh} are responses.
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The errors can be non-identically distributed. We can rewrite (7) by using
vector-matrix form

Yn = X̃nβ0 + Wn,

where Yn = {Y1, ..., Yn}T , X̃n = [xhs], xhs = x̃sh, X̃T
n = [x̃sh], s =

1, ..., r, h = 1, ..., n, β0 = {β10, ..., βr0}T , Wn = {W1, ...,Wn}T , “T ” denotes
transposition. The columns of the matrix X̃T

n = [x̃1, ..., x̃n], can be considered
as column-vectors x̃h = {x̃1h, ..., x̃rh}T . Let (X̃T

nX̃n)+ be the Moor-Penrose
inverse matrix of X̃T

nX̃n and tr(X̃T
nX̃n)+ be its trace. If rank(X̃T

nX̃n) = r,
then (X̃T

nX̃n)+ = (X̃T
nX̃n)−1. Let M(X̃T

n) ⊂ Rr be the linear space generated
by vectors x̃1, ..., x̃n, and ‖ a ‖2= aTa, a ∈ Rr.

Suppose that cT β0 is the parameter of interest and c ∈ M(X̃T
n). Note,

that
| aT

1 (X̃T
nX̃n)+a2 |≤‖ a1 ‖‖ a2 ‖ tr(X̃T

nX̃n)+, a1,a2 ∈ Rr. (8)

We introduce the following assumptions:

HR1 : All values of explanatory variables are uniformly bounded,
x+ = sups,h | x̃sh |<∞, and for every ε > 0 and a given c ∈M(X̃T

n) it holds:

(i) t(c, X̃n) =
tr(X̃T

nX̃n)+√
cT (X̃T

nX̃n)+c
→ 0, n→∞,

(ii)
n∑

h=1

E
[
t2(c, X̃n)W 2

h I(t(c, X̃n) |Wh |> ε)
]
→ 0, n→∞;

HR2 : There are two constants 0 < σ2
− ≤ σ2

+ <∞ such that

σ2
− ≤ σ2

h(x̃h) = E[W 2
h ] ≤ σ2

+, and E[Wh] = 0, h = 1, 2, ..., n;

HR3 : n(tr(X̃T
nX̃n)+)3

cT (X̃T
nX̃n)+c

→ 0, n→∞.

If cT (X̃T
nX̃n)+c → 0, n → ∞, and HR2 holds, then the ordinary least-

squares (OLS-)estimator (cT β0)∧n = cT (X̃T
nX̃n)+X̃T

nYn is unbiased and con-
sistent. It is essential to know how accurate this estimator is. The prob-
lem has been thoroughly discussed in a paper by Wu (1986). It is in-
teresting to estimate the d.l. of the OLS-estimator's deviations, e.g. the

d.l. L

(
(cT β0)∧n−cT β0√

cT (X̃T
n X̃n)+c

)
. Here, the theory of linear regression with i.i.d
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Wh, h = 1, 2, ... can not be used. However, the consistent estimation of the
d.l. can be realised by using the resampling (bootstrap) from weighted resid-
uals. Let Ŷh = x̃T

h(X̃T
nX̃n)+X̃T

nYn be the predicted value of Yh, h = 1, ..., n.

We can consider a resampling copy {{Ŷ ?
1 −Y ?

1 , x̃?
1}, ..., {Ŷ ?

n −Y ?
n , x̃?

n}} of the
list of residuals paired with vectors of explanatory variables
{{Ŷ1 − Y1, x̃1}, ..., {Ŷn − Yn, x̃n}} where Y ?

h = YJ?
hn
, Ŷ ?

h = ŶJ?
hn

, and,
x̃?

h = x̃J?
hn

, h = 1, ..., n. Let

U?
n(c,Yn, X̃n) =

n∑
h=1

(N?
hn − 1)

cT (X̃T
nXn)+x̃h

(cT (X̃T
nX̃n)+c)1/2

(Yh − Ŷh). (9)

The r.v. U?
n(c,Yn, X̃n) is the centered sum of resampled and weighted residu-

als. Here, we justify usage of L(U?
n(c,Yn, X̃n) | Yn) as a consistent estimator

of the d.l. of normed deviations (cT β0)∧n − cT β0.

Theorem 3. Suppose that errors {Wh}h≥1 are independent, and that as-
sumptions HR1 and HR2 hold. Then the normed d.l.s of deviations of the
unbiased estimators (cT β0)∧n are weakly approaching a tight family of normal
d.l.s

L

(cT β0)∧n − cT β0√
cT (X̃T

nX̃n)+c

 wa↔ N1(0, σ2
n(c, X̃n)), n→∞, (10)

where

σ2
n(c, X̃n) = E

(cT β0)∧n − cT β0√
cT (X̃T

nX̃n)+c

2 .

If in addition HR3 holds then

L(U?
n(c,Yn, X̃n) | Yn)

wa(P)←→ L

(cT β0)∧n − cT β0√
cT (X̃T

nX̃n)+c

 , n→∞. (11)

Relation (11) means that under the stated assumptions, the resampling
of weighted residuals gives consistency in asymptotic approximation of the
d.l. of normed deviations of the OLS-estimator (cT β0)∧n in the case of linear
heteroscedastic regression. The assumptions stated in Theorem 3 also imply
convergence in uniform metric.

Corollary 4. If errors {Wn}h≥1 are independent, and assumptions HR1,
HR2 and HR3 hold then

sup
z∈R1

∣∣∣∣FU?
n
(z | Yn)− Φ

(
z

σn(c, X̃n)

)∣∣∣∣ P→ 0, n→∞.
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4 Proofs

Lemma 1. If A1 holds, then for any τ > 0

(i) max
1≤h≤n

| Yhn(τ) | P→ 0, (ii) max
1≤h≤n

| E[Yhn(τ)] |→ 0,

(iii) max
1≤h≤n

| Y ◦hn(τ) | P→ 0, (iv) max
1≤h≤n

E[(Y ◦hn(τ))2]→ 0, n→∞.(12)

Proof. Relation (12)(i) is ful�lled because for any τ > 0
| Yhn(τ) |≤| Yhn | . For τ > 0 and any ε < τ

E[Yhn(τ)] = E[Yhn(ε)] + E[YhnI(ε <| Yhn |≤ τ)].

Therefore,
| max

1≤h≤n
E[Yhn(τ)] |≤ ε + τP[ max

1≤h≤n
| Yhn |> ε].

ByA1 for all su�ciently large n ≥ n(ε, τ), we obtain | max1≤h≤n E[Yhn(τ)] |≤
2ε. We can take an arbitrary small ε > 0. Hence, (12)(ii) is valid. Relations
(12) (iii) and (iv) can be proved similarly. �

Lemma 2. If A1 and A2(τ) hold, then the sequence of d.l.s {L(Y ◦·n(τ))}n≥1

is tight and
L(Y ◦·n(τ)) wa↔ L(Y 	

·n(τ)), n→∞.

Proof. We have

Y 	
·n(τ)− Y ◦·n(τ) =

n∑
h=1

YhnI(| Yhn |> τ),

and for the following events it holds that

{ max
1≤h≤n

| Yhn |≤ τ} ⊆

{
n∑

h=1

YhnI(| Yhn |> τ) = 0

}
. (13)

Therefore, we have

P

[
n∑

h=1

YhnI(| Yhn |> τ) = 0

]
≥ P[ max

1≤h≤n
| Yhn |≤ τ ]→ 1, n→∞.

It implies that Y ◦·n(τ) = Y 	
·n(τ) + op(1), n →∞. The desired result follows

from Propositions 6 and 9. �
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Lemma 3. If A1 and A2(τ) hold, then

sup
n

σ2
·n(τ) <∞. (14)

Proof. Suppose on the contrary that limn→∞σ2
·n(τ) = ∞, i.e. there

exists a subsequence {nk}k≥1 such that σ·nk
(τ) → ∞. For each {h, n} and

σ2
·n(τ) 6= 0, we consider the normed r.v.s Z◦hnk

(τ) = Y ◦hnk
(τ)/σ·nk

(τ). We
have from Lemma 1 that for all su�ciently large nk

max
1≤h≤nk

| Z◦hnk
(τ) |≤ max

1≤h≤nk

| Y ◦hnk
(τ) | P→ 0, k →∞.

It follows that

(i)
∑nk

h=1 P[| Z◦hnk
(τ) |> ε]→ 0, n→∞, for every ε > 0;

In addition, we have

(ii)
∑nk

h=1 E[Z◦hnk
(τ)] = 0; (iii)

∑nk
h=1 E[(Z◦hnk

(τ))2] = 1, k = 1, 2, ... .

Hence, by the Normal Convergence Criterion (Proposition 2) we have

L(Z◦hnk
(τ)) w→ N1(0, 1), k →∞,

and for any k such that σ2
nk

(τ) > 0, it follows that

P[| Y ◦hnk
(τ) |> σ·nk

(τ)] = P[| Z◦hnk
(τ) |> 1]→ 1− 1√

2π

∫ +1

−1
e−x2/2dx >

1
4
,

k →∞.
For any large m there exists k(m) such that for all k > k(m), σ·nk

(τ) > m.
Therefore, we have P[| Y ◦hnk

(τ) |> m] > 1/4 for all su�ciently large k and
thus {L(Y ◦hnk

(τ)}k≥1 is not tight. This contradicts the result of Lemma 2.
Hence, (14) holds. �

Lemma 4. Suppose that A1 and A2(τ0) hold, for some τ0 > 0. Then A2(τ)
holds for any τ > 0.

Proof. We have

Y 	
·n(τ) = Y 	

·n(τ0) +
n∑

h=1

(
E[YhnI(| Yhn |≤ τ0)]− E[YhnI(| Yhn |≤ τ)]

)
. (15)
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From A1 it follows that if τ < τ0, then∣∣∣∣∣
n∑

h=1

E[YhnI(τ <| Yhn |≤ τ0)]

∣∣∣∣∣ ≤ τ0

n∑
h=1

P[| Yhn |> τ ]→ 0 n→∞. (16)

If τ > τ0, then we need only to write τ instead of τ0 and τ0 instead of τ in
(16). Therefore, Y 	

·n(τ) = Y 	
·n(τ0) + o(1), n→∞, which implies A2(τ). �

Lemma 5. If A1 holds, then for any 0 < τ1 < τ2 <∞ it follows that

| σ2
·n(τ1)− σ2

·n(τ2) |→ 0, n→∞. (17)

Proof. We can write

σ2
·n(τ1)− σ2

·n(τ2)

=
n∑

h=1

(
E[(Y ◦hn(τ1))2]− E[(Y ◦hn(τ2))2]

)
=

n∑
h=1

E[Y 2
hnI(τ1 <| Yhn |≤ τ2)]

+
n∑

h=1

E[YhnI(τ1 <| Yhn |≤ τ2)]E[Yhn(I(| Yhn |≤ τ1) + I(| Yhn |≤ τ2))].

Here, we have∣∣∣∣∣
n∑

h=1

E[Y 2
hnI(τ1 <| Yhn |≤ τ2)]

∣∣∣∣∣ ≤ τ2
2

n∑
h=1

P[| Yhn |> τ1]→ 0,

∣∣∣∣∣
n∑

h=1

E[YhnI(τ1 <| Yhn |≤ τ2)]E[Yhn(I(| Yhn |≤ τ1) + I(| Yhn |≤ τ2))]

∣∣∣∣∣
≤ τ2(τ1 + τ2)

n∑
h=1

P[| Yhn |> τ1]→ 0, n→∞.

Hence, (17) holds. �
Proof of Theorem 1. (Su�ciency of A2(τ)). As follows from Lemma 2,

it is su�cient to prove that

L(Y ◦·n(τ)) wa↔ N1(0, σ2
·n(τ)), n→∞. (18)

Let f◦τ ·n(t) = E[eitY ◦·n(τ)]. From Lemma 2 we know that {L(Y ◦·n(τ)}n≥1 is
tight. Then, the Continuity Theorem (Proposition 7) states that it is su�-
cient to check that for each t ∈ R1

f◦τ ·n(t)− e−t2σ2
·n(τ)/2 → 0, n→∞. (19)
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We need the following elementary inequality∣∣∣∣eiz − 1− iz +
1
2
z2

∣∣∣∣ ≤| z |3, z ∈ R1. (20)

Note that (12) (iii) implies that for arbitrary small ε > 0

n∑
h=1

P[| Y ◦hn(τ) |> ε]→ 0, n→∞. (21)

From (21) it follows that there is a sequence ε(n)→ 0 such that∑n
h=1 P[| Yhn(τ) |> ε(n)]→ 0, n→∞. By applying the inequality

| Y ◦hn(τ) |≤ 2τ, we obtain

E[| Y ◦hn(τ) |3] ≤ E[(Y ◦hn(τ))2]ε(n) + (2τ)3E[I(| Y ◦hn(τ) |> ε(n))]

≤ σ2
hn(τ)ε(n) + (2τ)3P[| Y ◦hn(τ) |> ε(n)]. (22)

Therefore, from (14), (21) and (22) we have

n∑
h=1

E | Y ◦hn(τ) |3= o(1), n→∞. (23)

Then inequalities (20) and (23) imply that

f◦τhn(t) = E[eitY ◦hn(τ)] = 1− t2

2
E[(Y ◦hn(τ))2] + rτhn(t), (24)

where | rτhn(t) |≤ t3E[| Y ◦hn(τ) |3]. From (23), (24) and (14) for any t ∈ R1

we have

f◦τ ·n(t) =
n∏

h=1

f◦τhn(t) = e−t2σ2
·n(τ)/2 + o(1), n→∞. (25)

We do not exclude the case when σ2
·n(τ)→ 0, because then both f◦τ ·n(t)→ 1

and e−t2σ2
·n(τ)/2 → 1, n → ∞. Relation (19) follows from (25). Hence, (2)

holds. Su�ciency of A2(i) is proved.
(Necessity of A2(τ)). The family of normal d.l.s. {N1(0, σ2

n)}n≥1 is tight
because σ2

+ <∞. Hence, Proposition 6 and (2) imply that A2(τ) holds. �

Lemma 6. If A1 and A2(τ) hold then

n∑
h=1

Y ◦hn(τ)E[Yhn(τ)] P→ 0, n→∞. (26)

12



Proof. The r.v.s Z̃hn(τ) = Y ◦hn(τ)E[Yhn(τ)] satisfy the following assump-
tions of the Degenerate Convergence Criterion (Proposition 1):

(i) max1≤h≤n | Z̃hn(τ) |≤ τ max1≤h≤n | Y ◦hn(τ) | P→ 0, n→∞;

(ii)
∑n

h=1 E[Z̃hn(τ)] = 0;

(iv) Var
[∑n

h=1 Z̃hn(τ)
]

=
∑n

h=1 E[(Y ◦hn(τ))2](E[Yhn(τ)])2

≤ max1≤h≤n(E[Yhn(τ)])2σ2
·n(τ)→ 0, n→∞,

by Lemmas 1 and 3. Hence, (26) holds. �

Lemma 7. If A1 and A2(τ) hold, then as n→∞
n∑

h=1

(Yhn(τ)− Ȳ·n(τ))2 =
n∑

h=1

(Y ◦hn(τ))2 +
n∑

h=1

(E[Yhn(τ)])2

− 1
n

(
n∑

h=1

E[Yhn(τ)]

)2

+ oP(1). (27)

Proof. It is easy to check the following relation:
n∑

h=1

(Yhn(τ)− Ȳ·n(τ))2 =
n∑

h=1

(Y ◦hn(τ))2 +
n∑

h=1

(E[Yhn(τ)])2

− 1
n

(
E

[
n∑

h=1

Yhn(τ)

])2

− 1
n

(Y ◦·n(τ))2 − 2
n

Y ◦·n(τ)E[Y·n(τ)]

+ 2
n∑

h=1

Y ◦hn(τ)E[Yhn(τ)]. (28)

From the tightness of {L(Y ◦·n(τ)}n≥1 proved in Lemma 2, it follows that
1
n(Y ◦·n(τ))2 P→ 0, n→∞. From (12) (ii) we have that∣∣∣∣ 1nY ◦·n(τ)E[Y·n(τ)]

∣∣∣∣ ≤ 1
n
| Y ◦·n(τ) | n max

1≤h≤n
| E[Yhn(τ)] | P→ 0, n→∞.

The last term in (28) also converges to zero as was shown in Lemma 6. �

Lemma 8. If A1 and A2(τ) hold, then

n∑
h=1

(Y ◦hn(τ))2 −
n∑

h=1

E[(Y ◦hn(τ))2] P→ 0, n→∞. (29)
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Proof. We can consider {σ2
·n(τ)}n≥1 as a union of converging subse-

quences {σ2
·nk

(τ)}k≥1. We consider case 1 with a subsequence {nk}k≥1 such
that limk→∞ σ2

·nk
(τ) → 0, k → ∞, and case 2 with a subsequence {nk}k≥1

such that limk→∞ σ2
·nk

(τ) > 0. Recall that the set of all limit points {σ2
∞(τ) :

∃ {nk}k≥1, σ2
∞(τ) = limk→∞ σ2

·nk
(τ)} is bounded, σ2

∞(τ) ≤ σ2
+.

Case 1. We have E[
∑nk

h=1(Y
◦
hnk

(τ))2] = σ2
·nk

(τ) → 0, n → ∞. Hence,∑nk
h=1(Y

◦
hnk

(τ))2 P→ 0, nk →∞, and (29) holds with n = nk, k →∞.

Case 2. Here, from Proposition 2 we have L(Y ◦·nk
(τ)/σ·nk

) w→ N1(0, 1).

Therefore, by the Raikov theorem (Proposition 4) we have
∑nk

h=1

(
Y ◦hnk

(τ)

σ·nk
(τ)

)2

−

1 P→ 0, n→∞. Here, for a δ > 0 and all su�ciently large k, δ < σ2
·nk

(τ) ≤
σ2

+. Therefore this relation is equivalent to (29). Hence, (29) holds for every
limit point σ2

∞(τ). �

Lemma 9. If A1 and A2(τ) hold, then

L(Y ?�
·n | Xn)

wa(P)←→ L(Y ?�
·n (τ) | Xn), n→∞. (30)

Proof. From (1) we have

Y ?�
·n −Y ?�

·n (τ) =
n∑

h=1

(N?
hn−1)(Yhn−Yhn(τ)) =

n∑
h=1

(N?
hn−1)YhnI(| Yhn |> τ).

(31)
We can evaluate (31) as follows:

| Y ?�
·n − Y ?�

·n (τ) |≤ (n− 1)
n∑

h=1

| Yhn | I(| Yhn |> τ).

From (13) we obtain that

P[(n− 1)
n∑

h=1

| Yhn | I(| Yhn |> τ) = 0] ≥ P[ max
1≤h≤n

| Yhn |≤ τ ]→ 1, n→∞.

Hence, P[Y ?�
·n = Y ?�

·n (τ)] → 1, n → ∞. It implies that for every ε > 0 and
each continuous and bounded f(·), i.e. f(·) ∈ Cb(R1),

| E?[f(Y ?�
·n ) | Xn]−E?[f(Y ?�

·n (τ)) | Xn] |≤ 2 sup
z∈R1

| f(z) | P[Y ?�
·n 6= Y ?�

·n (τ)]→ 0,

n→∞. Therefore, (30) holds as corresponding to De�nition 4 of conditional
d.l.s weakly approaching in probability. �
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Proof of Theorem 2. (Su�ciency of A3(τ)). Suppose that A1,A2(τ)
and A3(τ) hold. From Theorem 1 and Lemma 2 we have that L(Y ◦·n(τ)) wa↔
N1(0, σ2

·n(τ)), n→∞. The main idea of the proof is to show that

L(Y ?�
·n (τ) | Xn)

wa(P)←→ N1(0, σ2
·n(τ)), n→∞. (32)

Then, due to the transitivity of d.l.s weakly approaching in probability, it
follows that

L(Y ?�
·n (τ) | Xn)

wa(P)←→ L(Y ◦·n(τ)), n→∞, (33)

and then (3) follows by Lemma 9. The sequences of d.l.s {L(Y ◦·n(τ)}n≥1

and {N1(0, σ2
·n(τ))}n≥1 are tight. Therefore, we can apply the Continuity

Theorem for sequences of random d.l.s weakly approaching in probability
(Proposition 8). We need to use the ch.f.s f?�

τ ·n(t | Xn) = E[eitY ?�
·n (τ) | Xn].

Each resampling copy of Y�
n (τ) is obtained by n independent samplings from

the components of the list Y�
n (τ), where each of the n components is selected

with probability 1/n. Therefore, we have

f?�
τ ·n(t | Xn) =

(
1
n

n∑
h=1

eit(Yhn(τ)−Ȳ·n(τ))

)n

=

(
1− t2

2n

n∑
h=1

(Yhn(τ)− Ȳ·n(τ))2 + Rn(t, τ)

)n

, (34)

where

Rn(t, τ) =
1
n

n∑
h=1

(
eit(Yhn(τ)−Ȳ·n(τ)) − 1− it(Yhn(τ)− Ȳ·n(τ))

+
t2

2
(Yhn(τ)− Ȳ·n(τ))2

)
. (35)

We evaluate Rn(t, τ) with the help of inequality (20)

| Rn(t, τ) | ≤ t3

n

n∑
h=1

| Yhn(τ)− Ȳ·n(τ) |3

≤ t3

n

n∑
h=1

(Yhn(τ)− Ȳ·n(τ))22 max
1≤h≤n

| Yhn(τ) | . (36)
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Therefore, by Lemma 1 | Rn(t, τ) |= op

(
t2

2n

∑n
h=1(Yhn(τ)− Ȳ·n(τ))2

)
, and

additionally from Lemmas 7 and 8 it follows that

n∑
h=1

(Yhn(τ)− Ȳ·n(τ))2 = σ2
·n(τ)

+
n∑

h=1

(E[Yhn(τ)])2 − 1
n

(
n∑

h=1

E[Yhn(τ)]

)2

+ op(1), n→∞. (37)

Recall that σ2
·n(τ) ≤ σ2

+ < ∞ and assume that A3(τ) holds. Hence, from
(34) - (37) we obtain

f?�
τ ·n(t | Xn)− e−t2σ2

·n(τ)/2 P→ 0, n→∞.

Proposition 8 implies (32). Then (33) holds. Therefore, A3(τ) is su�cient
for (3).

(Necessity of A3(τ)). Suppose that resampling gives us a consistent es-
timator of L(Y 	

·n(τ)), i.e. (3) holds. Then, from Lemmas 2 and 9 we have

L(Y ?�
·n (τ) | Xn)

wa(P)←→ L(Y ◦·n(τ)), n→∞. (38)

From (38), Theorem 1 and Lemma 2 we obtain

L(Y ?�
·n (τ) | Xn)

wa(P)←→ N1(0, σ2
·n(τ)), n→∞. (39)

We know that σ2
·n(τ) ≤ σ2

+ <∞. Hence, the sequence of d.l.s
{N1(0, σ2

·n(τ)}n≥1 is tight. Then from (39), and by the Continuity Theorem
for d.l.s weakly approaching in probability (Proposition 8), it follows that
for every t ∈ R2

f?�
τ ·n(t | Xn)− e−t2σ2

·n(τ)/2 P→ 0, n→∞. (40)

From Lemma 8 for every t ∈ R1, we have

e−t2σ2
·n(τ)/2 − e−t2

∑n
h=1(Y ◦hn(τ))2/2 P→ 0, n→∞. (41)

From (27), (34), and (35), which hold under assumptions A1 and A2(τ), it
follows that for every t ∈ R1

f?�
τ ·n(t | Xn) = exp

{
− t2

2

(
n∑

h=1

(Y ◦hn(τ))2 + Wn(τ)

)}
+ op(1), n→∞,
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where

Wn(τ) =
n∑

h=1

(E[Yhn(τ)])2 − 1
n

(
n∑

h=1

E[Yhn(τ)]

)2

≥ 0. (42)

From (29), (40), (41) and (42) we obtain

f?�
τ ·n(t | Xn)−e−t2σ2

·n(τ)/2 = e−t2
∑n

h=1(Y ◦hn(τ))2/2(e−t2Wn(τ)/2−1)+op(1) P→ 0,

n→∞. Hence, Wn(τ)→ 0, n→∞, i.e. A3(τ) holds. �
Proofs of Corollary 1 and Corollary 2. Proofs follow directly from Propo-

sition 10, because limn→∞σ2
·n(τ) > 0, together with uniform boundness

σ2
·n(τ) ≤ σ2

+ <∞, imply that all N1(0, σ2
·n(τ)) have uniformly bounded den-

sities 1√
2πσ·n(τ)

e−x2/(2σ2
·n(τ)). Hence, the family of normal d.f.s is uniformly

continuous and we can apply Proposition 10. �
Proof of Corollary 3. From the Chebyshev inequality and (4) it follows

that for every τ > 0
n∑

h=1

P[| Yhn |> τ ] ≤ 1
τ2

n∑
h=1

E[Y 2
hnI(| Yhn |> τ)]→ 0, n→∞.

Hence, A1 holds. We will use the following inequalities

τ I(| Yhn |> τ) ≤| Yhn |, (43)

| E[YhnI(| Yhn |≤ τ)]E[YhnI(| Yhn |> τ)] |≤ E[Y 2
hnI(| Yhn |> τ)]. (44)

From (4) and (43) we obtain∣∣∣∣∣
n∑

h=1

E[YhnI(| Yhn |> τ)]

∣∣∣∣∣ ≤ 1
τ

n∑
h=1

E[Y 2
hnI(| Yhn |> τ)]→ 0, n→∞. (45)

We have

σ2
·n − σ2

·n(τ) =
n∑

h=1

(
E[Y 2

hnI(| Yhn |> τ)]− (E[YhnI(| Yhn |> τ)])2

− 2E[YhnI(| Yhn |≤ τ)]E[YhnI(| Yhn |> τ)]
)

. (46)

The Jensen inequality, (4), (44) and (46) imply that

| σ2
·n − σ2

·n(τ) |≤ 3
n∑

h=1

E[Y 2
hnI(| Yhn |> τ)]→ 0, n→∞. (47)
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From (45) we have

Y ◦·n = Y 	
·n(τ)−

n∑
h=1

E[YhnI(| Yhn |> τ)] = Y ◦·n(τ) +
n∑

h=1

YhnI(| Yhn |> τ)

−
n∑

h=1

E[YhnI(| Yhn |> τ)] = Y ◦·n(τ) + oP(1), n→∞. (48)

From assumption
∑n

h=1 E[Y 2
hn] ≤ C2 and (48) we have that the sequences

of d.l.s {L(Y ◦·n)}n≥1, {L(Y 	
·n(τ))}n≥1, and {L(Y ◦·n(τ))}n≥1, are tight. Hence,

A2(τ) holds. From (48), Proposition 9, (18) and (47) we obtain (5).
For every τ > 0 we have

n∑
h=1

(E[Yhn(τ)])2 =
n∑

h=1

(E[Yhn]− E[YhnI(| Yhn |> τ)])2

≤ 2
n∑

h=1

(E[Yhn])2 + 2
n∑

h=1

E[Y 2
hn]P[ max

1≤h≤n
| Yhn |> τ ]

≤ 2
n∑

h=1

(E[Yhn])2 + 2C2P[ max
1≤h≤n

| Yhn |> τ ]→ 0, n→∞.

Therefore, we have that A2(τ) and A3(τ) hold for every τ.
Then (33) and (48) imply

L(Y ?�
·n (τ))

wa(P)←→ N(0, σ2
·n), n→∞. (49)

We can write the following identity

Y ?�
·n = Y ?�

·n (τ) +
n∑

h=1

(N?
hn − 1)YhnI(| Yhn |> τ). (50)

We can evaluate the second moment of the sum in (50) as follows

E

E?

( n∑
h=1

(N?
hn − 1)YhnI(| Yhn |> τ)

)2

| Xn



= E

[
n∑

h=1

(
1− 1

n

)
Y 2

hnI(| Yhn |> τ)
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− 1
n

n∑
h1=1

n∑
h2=1h1 6=h2

∏
i=1,2

YhinI(| Yhin |> τ)

]

= E

 n∑
h=1

Y 2
hnI(| Yhn |> τ)− 1

n

(
n∑

h=1

YhnI(| Yhn |> τ)

)2


≤ E

[
n∑

h=1

Y 2
hnI(| Yhn |> τ)

]
→ 0, n→∞.

Therefore, we have

Y ?�
·n = Y ?�

·n (τ) + oP(1), n→∞. (51)

The desired result (6) follow from (51), Proposition 9, (49) and (50). �
Proof of Theorem 3. We can consider the triangular array of r.v.s Xhn =

cT (X̃T
nX̃n)+x̃hWh, cT ∈ M(X̃T

n), where Wh, h = 1, ..., n, are (unobserved)
errors in (7). Let ρn = (cT (X̃T

nX̃n)+c)1/2 and Yhn = 1
ρn

Xhn, {h, n} ∈ T.
Then the normed deviations of OLS-estimators can be written as follows

Sn(c,Wn, X̃n) =
1
ρn

((cT β0)∧n − cT β0) =
n∑

h=1

Yhn. (52)

From HR2 it follows that E[Yhn] = 0, i.e. Y ◦hn = Yhn. Relation (4) follows
from HR1. Assumption HR2 and (8) imply that

σ2
n(c, X̃n) = E[(Sn(c,Wn, X̃n))2] =

n∑
h=1

E[Y 2
hn]

=
n∑

h=1

σ2
h(x̃h)cT (X̃T

nX̃n)+x̃hx̃T
h(X̃T

nX̃n)+c

cT (X̃T
nX̃n)+c

≤ σ2
+. (53)

Therefore, all assumptions, stated in Corollary 3, are ful�lled for the r.v.s
{Yhn}. Hence, (5) is valid and it is equivalent to (10).

In order to prove (11) we consider

S?
n(c,Wn, X̃n) =

n∑
h=1

(N?
hn − 1)

cT (X̃T
nX̃n)+x̃h√

cT (X̃T
nX̃n)+c

Wh. (54)

Relations (5) and (6) in Corollary 3 imply

L(S?
n(c,Wn, X̃n) |Wn)

wa(P)←→ N1(0, σ2
n(c, X̃n)), n→∞. (55)
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We are not able to use (54) and (55) because the errors W1, ...,Wn are not
observable.

We can realize resamplings from the list of residuals as written in (9).
We have

Yh − Ŷh = Wh − x̃T
h(X̃T

nX̃n)+X̃T
nWn. (56)

From (9) and (56) we obtain the following relation:

U?
n(c,Yn, X̃n) = S?

n(c,Wn, X̃n)− V ?
n (c,Wn, X̃n), (57)

where

V ?
n (c,Wn, X̃n) =

n∑
h=1

(N?
hn − 1)

cT (X̃T
nX̃n)+x̃hx̃T

h(X̃T
nX̃n)+X̃T

nWn√
cT (X̃T

nX̃n)+c
.

We will prove that V ?
n (c,Wn, X̃n) converges in probability to zero.

Note, that E?[(N?
hn − 1)2] = 1− 1/n, E?[(N?

h1n − 1)(N?
h2n − 1)] = −1/n

and x̃T
h(X̃T

nX̃n)+X̃T
nE[WnWT

n]Xn(X̃T
nX̃n)+x̃h ≤ σ2

+x̃T
h(X̃T

nX̃n)+x̃h.

We can evaluate the second moment of V ?
n (c,Wn, X̃n) in two steps. We

start evaluating the conditional expectation given Wn and after that we take
the expectation related to Wn, and then we use (8). We have

E?[(V ?
n (c,Wn, X̃n))2 |Wn]

=
n∑

h=1

E?[(N?
hn − 1)2]

cT (X̃T
nX̃n)+x̃hx̃T

h(X̃T
nX̃n)+X̃T

nWn√
cT (X̃T

nX̃n)+c

2

−
n∑

h1=1

n∑
h2=1, h1 6=h2

E?[(N?
h1n − 1)(N?

h2n − 1)]

·
∏

j=1,2

cT (X̃T
nX̃n)+x̃hj

x̃hj
(X̃T

nX̃n)+X̃T
nWn√

cT (X̃T
nX̃n)+c

=
n∑

h=1

cT (X̃T
nX̃n)+x̃hx̃T

h(X̃T
nX̃n)+X̃T

nWn√
cT (X̃T

nX̃n)+c

2

− 1
n

 n∑
h=1

cT (X̃T
nX̃n)+x̃hx̃T

h(X̃T
nX̃n)+X̃T

nWn√
cT (X̃T

nX̃n)+c

2

.
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From (8) and HR3 it follows that

E[E?[(V ?
n (c,Wn, X̃n))2 |Wn]]

≤
n∑

h=1

cT (X̃T
nX̃n)+x̃hx̃T

h(X̃T
nX̃n)+X̃T

nE[WnWT
n]X̃n(X̃T

nX̃n)+x̃hx̃T
h(X̃T

nX̃n)+c

cT (X̃T
nX̃n)+c

≤ σ2
+

n∑
h=1

(cT (X̃T
nX̃n)+x̃h)2x̃T

h(X̃T
nX̃n)+x̃h

cT (X̃T
nX̃n)+c

≤ r2σ2
+n
‖ c ‖2 x4

+(tr(X̃T
nX̃n)+)3

cT (X̃T
nX̃n)+c

→ 0, n→∞.

From Proposition 9 and (57) it follows

L(U?
n(c,Yn, X̃n))

wa(P)←→ L(S?
n(c,Wn, X̃n)), n→∞. (58)

Relations (55) and (58) imply (11). �
Proof of Corollary 4. From HR2 we obtain the result that σ2

n(c, X̃n) ≥
σ2
− > 0. The desired statement follows from Corollary 2. �

5 Appendix

Here, for reader's convenience we bring together de�nitions and theoretical
results related to weak convergence and weakly approaching sequences of
d.l.s.

Let X′ = {X ′
hn : {h, n} ∈ T} be a triangular array of independent r.v.s

for each n. The r.v.s can be non-identically distributed. Together with the
list of independent r.v.s X′

n = {X ′
1n, ..., X ′

nn}, we consider a real-valued r.v.
Tn. Both X′

n and Tn are de�ned on the same probability space. Let L(Tn)
and L(Tn | X′

n) be the d.l. of Tn and the conditional d.l. of Tn given X′
n. By

L(0), we de�ne the degenerate d.l. concentrated at 0. We consider regular
conditional d.l.s, Dudley (1998). The diversity of conditional d.l.s {L(Tn |
X′

n)} is rather rich. For example, if T ?
n = X

′?
1n where X

′?
1n = X ′

hn with
probability 1/n, h = 1, ..., n, then L(T ?

n | X′
n) is the empirical distribution

of X ′
·n. By Cb(R1) we denote the set of all continuous and bounded functions

f(·) : R1 → R1.

21



De�nition 1. A sequence of d.l.s {L(Tn)}n≥1 is called tight if for any ε > 0
there exists a constant Cε > 0 such that

sup
n

P[| Tn |> Cε] < ε.

De�nition 2. Let T0 be an r.v. such that for each f(·) ∈ Cb(R1)

E[f(Tn)]→ E[f(T0)], n→∞.

Then, the sequence of d.l.s {L(Tn)}n≥1 is called weakly converging to L(T0).
In short we write

L(Tn) w→ L(T0), n→∞.

Below we let X ′
hn(τ) = X ′

hnI(| X ′
hn |≤ τ).

Remark. The relations
∑n

h=1 P[| X ′
hn |> ε]→ 0, and

max1≤h≤n | X ′
hn |

P→ 0, n → ∞, are equivalent for the independent r.v.s
X ′

1n, ..., X ′
nn.

Proposition 1. (The Degenerate Convergence Criterion). For every ε > 0
max1≤h≤n P[| X ′

hn |> ε] → 0, n → ∞, and L(X ′
·n) w→ L(0), n → ∞, if and

only if for every ε > 0 and a τ > 0

(i)
∑n

h=1 P[| X ′
hn |> ε]→ 0, (ii)

∑n
h=1 E[X ′

hn(τ)]→ 0,

(iii)
∑n

h=1(E[X
′2
hn(τ)]− (E[X ′

hn(τ)])2)→ 0, as n→∞.

Proposition 2. (The Normal Convergence Criterion). For every ε > 0
max1≤h≤n P[| X ′

hn |> ε] → 0, n →∞, and L(X ′
·n) w→ N1(µ, σ2), n →∞, if

and only if for every ε > 0 and a τ

(i)
∑n

h=1 P[| X ′
hn |> ε]→ 0, (ii)

∑n
h=1 E[X ′

hn(τ)]→ µ,

(iii)
∑n

h=1(E[X
′2
hn(τ)]− (E[X ′

hn(τ)])2)→ σ2 as n→∞.

Proposition 3. Suppose that there is a limit d.l. L(X ′
0) of an r.v. X ′

0,
such that L(X ′

·n) w→ L(X ′
0), n→∞. Then L(X ′

0) = N1(µ, σ2) and for every
ε > 0 max1≤h≤n P[| X ′

hn |> ε]→ 0, n→∞, if and only if

max1≤h≤n | X ′
hn |

P→ 0, n→∞.

Proofs of Propositions 1, 2 and 3 are given in Lo�eve (1977), pp. 328-329.

Proposition 4. (The Raikov theorem). Let X′ = {X ′
hn : {h, n} ∈ T} be

a triangular array. If for every ε > 0 max1≤h≤n P[| X ′
hn |> ε] → 0 as

n→∞, then the following two statements are equivalent:

22



(i) there exists a sequence {un}n≥1 such that
L(X ′

·n − un) w→ N1(0, 1), n→∞;

(ii)
∑n

h=1(X
′	
hn(τ))2 P→ 1, n→∞,

where X
′	
hn = X ′

hn − E[X ′
hnI(| X ′

hn |≤ τ)].

Proof. See Theorem 5 on p. 143 in Gnedenko and Kolmogorov (1968).

Proposition 5. (The Prokhorov theorem). If a sequence of d.l.s {L(Tn)}n≥1

is tight, then there exists a subsequence {L(Tnk
)}k≥1 and an r.v. T0 such that

L(Tnk
) w→ L(T0), n→∞.

Proof is given in Shiryaev (1996).
The following de�nition eliminates the necessity to assume the existence

of a limit d.l.

De�nition 3. Let {L(T ′n)}n≥1 and {L(T ′′n )}n≥1 be two sequences of d.l.s.
They are said to be weakly approaching (each other) if for every f(·) ∈ Cb(R1)

E[f(T ′n)]− E[f(T ′′n )]→ 0, n→∞.

In short we write L(T ′n) wa↔ L(T ′′n ), n→∞.

Note that if T ′′n ≡ T0 then De�nition 3 is reduced to weak convergence.

Proposition 6. If L(T ′n) wa↔ L(T ′′n ), n→∞, and {L(T ′′n )}n≥1 is tight, then
{L(T ′n)}n≥1 is also tight.

Proof. See Lemma 5, pp. 817 - 818 in Belyaev and Sj�ostedt-de Luna
(2000).

De�nition 4. Let {T ′n, T ′′n}n≥1 be r.v.s de�ned for each n on the same prob-
ability space as X′

n. Then, the sequences {L(T ′n | X′
n)}n≥1 and {L(T ′′n |

X′
n)}n≥1 of conditional d.l.s, given X′

n, are said to be weakly approaching
(each other) in probability along X′

n if for every function f(·) ∈ Cb(R1)

E[f(T ′n) | X′
n]− E[f(T ′′n ) | X′

n] P→ 0, n→∞.

In short we write

L(T ′n | X′
n)

wa(P)←→ L(T ′′n | X′
n), n→∞. (59)
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In the case when, instead of L(T ′′n | X′
n) and E[f(T ′′n ) | X′

n], we have
L(T ′′n ) and E[f(T ′′n )], respectively, then instead of (59), we write

L(T ′n | X′
n)

wa(P)←→ L(T ′′n ), n→∞.

Let fn(t) = E[eitT ′
n ], fn(t | X′

n) = E[eitT ′
n | X′

n], and gn(t) := E[eitT ′′
n ] be the

characteristic functions of T ′n, T ′′n given X′
n, and T ′′n .

Proposition 7. (The Continuity Theorem for weakly approaching sequences
of d.l.s). Let {L(T ′n)}n≥1 and {L(T ′′n )}n≥1 be two sequences of d.l.s where
{L(T ′′n )}n≥1 is tight. Then

L(T ′n) wa↔ L(T ′′n ), n→∞

if and only if for each t ∈ R1

fn(t)− gn(t)→ 0, n→∞.

Proposition 8. (The Continuity theorem for weakly approaching random
d.l.s). Let {L(T ′n | X′

n)}n≥1 and {L(T ′′n )}n≥1 be two sequences of d.l.s and
{L(T ′′n )}n≥1 be tight. Then

L(T ′n | X′
n)

wa(P)←→ L(T ′′n ), n→∞,

if and only if for every t ∈ R1

fn(t | X′
n)− gn(t) P→ 0, n→∞.

Proof. See Theorems 1 and 2 in Belyaev and Sj�ostedt-de Luna (2000).

Proposition 9. (The Stability Theorem for weakly approaching d.l.s). Let
{T ′n, Un} be a sequence of pairs of r.v.s de�ned on the same probability space

as X′
n and let Un

P→ 0, n → ∞. If {T ′′n}n≥1 is a tight sequence of r.v.s and

L(T ′n) wa↔ L(T ′′n ) (L(T ′n | X′
n)

wa(P)←→ L(T ′′n )), n→∞, then also

L(T ′n + Un) wa↔ L(T ′′n ) (L(T ′n + Un | X′
n)

wa(P)←→ L(T ′′n )) as n→∞.

Proof. See Lemmas 7 and 8 in Belyaev and Sj�ostedt-de Luna (2000).

Proposition 10. Let {T ′n}n≥1 be a sequence of real-valued r.v.s de�ned on
the same probability space as X′

n, {T ′′n}n≥1 be a tight sequence of r.v.s and
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L(T ′n | X′
n)

wa(P)←→ L(T ′′n ), n → ∞. Suppose that the sequence of distribution
functions (d.f.s) {Gn(·)}n≥1 of r.v.s T ′′n is uniformly continuous. Then

sup
z∈R1

| Fn(z | X′
n)−Gn(x) | P→ 0 as n→∞,

where Fn(· | X′
n) is the conditional d.f. of T ′n given X′

n.

Proof. See Lemma 9 and Corollary 1 in Belyaev and Sj�ostedt-de Luna
(2000).
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