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Abstract

The forest growth model with measurement errors is introduced. The maximum
likelihood estimates (MLE) of the parameters of this model are proven to be
consistent and asymptotically normally distributed. The model is applied to
the real data from Swedish National Forest Inventory and the MLE of the
parameters are obtained.
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1 Introduction

This study was motivated by the need for accurate and applicable single-tree
growth functions, that exists in modern forestry. The growth of the tree ap-
parently depends on the condition of the tree itself, but also on the tree’s
competitive situation and on the conditions of the site. Such functions have
been developed in many countries at least during the past thirty years (Stage
(1974), Ek and Monserud (1974), Siitoen (1995)). In practice, methods of re-
gression analysis are often used to predict the forest growth (see, for example,
Candy (1997) and Elfving (2000)). The dependent variable in the regression
is usually the increase in volume or basal area, which are calculated based on
measurements on two occasions. It is clear that this value is highly influenced
by measurement errors. Therefore we have introduced a model that takes into
account the measurement errors, producing more accurate estimates of the pa-
rameters. The model is described in Section 2. The properties of the maximum
likelihood estimates of the parameters can be established using the results by
Hoadley (1971). We derive the asymptotic properties of the maximum likeli-
hood estimates (MLE) of the parameters of the model in Section 3, and, finally,
in Section 4 we apply our model to the real data taken from the Swedish Na-
tional Forest Inventory. We compare the results to those obtained by means of
a standard model, and draw final conclusions in favor of the model proposed
in the current paper.

2 Model

The well-known forest growth linear regression model is

ln Yk = βT xk + Uk, (1)

where Yk is the increase in squared diameter (or basal area) and xk is a vector of
size p of explanatory variables associated with a tree at location k, β is a vector
of regression coefficients (including the intercept) and Uk is the deviation from
the regression function. The Yk are assumed to be independent and possessing
the same variance.

Unfortunately, it often happens that because of the measurement errors,
the measured increase in basal area becomes negative. It is also true that the
measurement errors differ from tree to tree, increasing with the diameter. In
order to cope with the mentioned complications, in Elfving (2000) the model
(1) was substituted by the non-linear weighted variant:

Yk = eβT xk + Vk, (2)

where Vk is the normal deviation from the regression function. For details of
the weighting procedure, we refer to the original paper. Comparing models (1)
and (2), the following discrepancy becomes evident - the variation of growth
is expected to have a log-normal distribution, whereas the distribution of the
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measurement error is expected to be normal. Model (2) oversimplifies this
issue by assuming the normal residual distribution, and therefore, should be
considered inappropriate.

As an alternative to (2) and a natural extension of (1), we suggest the
following model:

Yk = eβT xk+Uk + Wk, (3)

where Wk is a normally distributed measurement error, whose variance depends
through the known positive function g upon vector xk:

Wk ∼ N(0, τ2g(xk)). (4)

The proportion coefficient τ2 in (4) is to be estimated.
Suppose that the distribution of the deviation Uk does not depend on k and

is Gaussian N(µ, σ2). Without loss of generality we may adjust the intercept
in the model and demand that the parameters obey the following condition of
unbiasedness:

EeβTxk+Uk = eβT xk .

From this relation we obtain µ = −σ2/2, which reduces by one the number
of unknown parameters. Therefore, the total number of parameters to be
estimated is m = p + 2.

It is clear that (3) is a non-linear regression model with an error term dis-
tributed according to the convolution of the lognormal and normal distributions
(LNN).

The density function of the LNN can be seen to be

fk(yk) =
∫ ∞

−∞
Ak(t)dt, (5)

where

Ak(t) =
1

2πσ
√

g(xk)τ
e
− 1

2

(
(t−∑

j βjxkj+ σ2
2 )2

σ2 +
(yk−et)2

g(xk)τ2

)

.

Although the density function of LNN takes form of a non-standard integral,
some attractive properties of this distribution can be easily established. The
density function of LNN has no singularities, is infinitely differentiable with
respect to all its parameters, and, finally, the LNN distribution possesses all
moments (see, for example, Hawkins (1991)).

We suppose that the parameter space is compact, and σ and τ are bounded
away from zero, e.g. σ ≥ δ > 0, τ ≥ δ > 0. We also assume that the values of
xk are bounded (this is always true in applications).

Let us denote the vector of the parameters by θ={θ1, θ2, · · · , θm}. For a
sequence of independent random variables Yk, k = 1, 2, . . . which take values in
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some measurable space and possess densities fk(yk,θ), where θ ∈ Θ ⊂ Rm, the
likelihood function takes form

Ln(θ) =
n∏

k=1

fk(yk, θ).

The MLE of the true parameter value θ0 is denoted by θ̂n and is defined to be
any point in Θ such that

Ln(θ̂n) ≥ Ln(θ) for all θ ∈ Θ.

3 Properties of MLE

In order to establish the consistency and the asymptotic normality of the MLE
for model (3), we will use two theorems due to Hoadley (1971).

For convenience let us define the following variables:

Rk(θ) = log
fk(yk, θ)
fk(yk, θ0)

,

Rk(θ, ρ) = sup
‖t−θ‖≤ρ

Rk(t),

Vk(r) = sup
‖θ‖≥r

Rk(θ).

For any random variable X, let

X(B) = X if X ≥ −B
= −B otherwise,

where B ≥ 0. Let the positive constants K and δ be generic, e.g. a bound in-
volving them must hold for k = 1, 2, . . . . Finally, define Φk(Yk, θ) = log fk(Yk, θ).

Theorem 1 below is from Hoadley (1971) and is essentially an extension to
the independent non-identically distributed case of a result from Wald (1949).

3.1 Consistency

Theorem 1. Consider the following assumptions:

I Θ is a closed subset of Rm.

II fk(yk, θ) is an upper semi-continuous function of θ, uniformly in k, a.s.
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III There exist ρ∗ = ρ∗(θ) > 0 and r > 0 for which

i E[Rk(θ, ρ)]1+δ ≤ K, 0 ≤ ρ ≤ ρ∗;

ii E[Vk(r)]1+δ ≤ K.

IV There exists B > 0 for which

i lim supn−→∞
1
n

∑
Eθ0R

(B)
k (θ) < 0,θ 6= θ0;

ii lim supn−→∞
1
n

∑
Eθ0V

(B)
k (r) < 0.

V Rk(θ, ρ) and Vk(r) are measurable functions of yk.

If Assumptions I-V are satisfied, then, if θ̂n represents an MLE for θ and θ0

is the true value of θ,
θ̂n

P→ θ0.

Apparently, Assumption I holds. Assumptions II and V are then also obviously
satisfied.

To verify Assumption III we first obtain the following bound for fk(yk):

fk(yk) = C1(θ,xk)e
− y2

k
2g(xk)τ2

∫ ∞

−∞
e−

(t−∑
j βjxkj+ σ2

2 )2

2σ2 e
yket

g(xk)τ2 e
− e2t

2g(xk)τ2 dt

= C1(θ,xk)e
− y2

k
2g(xk)τ2

∫ ∞

−∞
e−

(−t−∑
j βjxkj+ σ2

2 )2

2σ2 e
yke−t

g(xk)τ2 e
− e−2t

2g(xk)τ2 dt

≥ C1(θ,xk)e
− y2

k
2g(xk)τ2

∫ ∞

t

e−
(−t−∑

j βjxkj+ σ2
2 )2

2σ2 min(1, e
yk

g(xk)τ2 )e
− 1

2g(xk)τ2 dt

= C2(θ,xk)e
− y2

k
2g(xk)τ2 min(1, e

yk
g(xk)τ2 ),

where Ci(θ,xk), i = 1, 2, are positive continuous functions.
On the other hand, fk is obviously bounded from above. Therefore, taking

into account that the LNN distribution possesses all moments, it can be inferred
that Assumption III holds for some K (if we choose δ = 1, existence of moments
of order 4 is sufficient).

From Jensen’s inequality it follows that if θ 6= θ0, then Eθ0Rk(θ) < 0. In
our case, Eθ0Rk(θ) is a negative continuous bounded function of xk. Taking

into account that the values of xk are bounded, it follows that Eθ0R
(B)
k (θ) <

−r < 0 for some r,B > 0 and for all k. The same considerations are valid for
Eθ0V

(B)
k (r). We conclude that Assumption IV holds.
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3.2 Asymptotic normality

Now, when we have established the consistency of the MLE, we will verify the
assumptions sufficient to establish the asymptotic normality of the MLE. We
use Theorem 2 from Hoadley (1971) which is an extension of the result obtained
in Roussas (1968).

Theorem 2. Consider the following assumptions:

I Θ is an open subset of Rm.

II θ̂n converges in probability to θ0.

III Φ̇k(Yk,θ) and Φ̈k(Yk, θ) exist, a.s.

IV Φ̈k(Yk, θ) is a continuous function of θ, uniformly in k, a.s., and is a
measurable function of Yk.

V E[Φ̇k(Yk, θ)|θ] = 0, k = 1, 2, · · ·.
VI Γk(θ) = E[Φ̇k(Yk, θ)Φ̇k(Yk,θ)′|θ] = −E[Φ̈k(Yk, θ)|θ].

VII limn−→∞ 1
n

∑n
k=1 Γk(θ) = Γ̄(θ).

VIII For some δ > 0,
∑

k E|λ′Φ̇k(Yk, θ0)|2+δ/n(2+δ)/2 → 0 for all λ ∈ Rm.

IX There exist ε > 0 and random variables Bk,ij(Yk) such that

i sup{|Φ̈k,ij(Yk, t)| : ||t− θ0|| ≤ ε} ≤ Bk,ij(Yk);

ii E|Bk,ij(Yk)|1+δ ≤ K.

Given Assumptions I-IX,
√

n(θ̂n − θ0) L→ N(0, Γ̄−1(θ0)).

For Assumption I we note that since the consistency is established, now it
suffices to consider an open neighborhood of the true parameter value. As-
sumptions II-VI are standard, and are obviously satisfied. We will first verify
Assumptions VIII and IX, and then comment on Assumption VII.

Using the generalized first mean value theorem, we note that for every i

Φ̇k,i(Yk,θ) =

∫∞
−∞ P2(Yk, t, et)Ak(t)dt∫∞

−∞Ak(t)dt
=

=

∫∞
−∞ P2(Yk, t, et)e−te−

(t−∑
j βjxkj+ σ2

2 )2

2σ2 ete
− (Yk−et)2

2g(xk)τ2 dt

∫∞
−∞ e−te−

(t−∑
j βjxkj+ σ2

2 )2

2σ2 ete
− (yk−et)2

2g(xk)τ2 dt

= P ∗2 (Yk, θ),
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Table 1
Initial values and MLE of the parameters

Explanatory variable Estimates
Parameter description Initial MLE

β0 Constant -0.501 -0.643
β1 Log(Diameter) 1.091 0.981
β2 Inverse basal area 10.894 10.437
β3 Basal area of larger trees -0.028 -0.027
β4 Vegetation type (indicator) 0.552 0.304
β5 Recently thinned (indicator) 0.167 0.352
β6 Ditch nearby (indicator) 0.132 0.207
β7 Soil type (indicator) -0.524 -0.106
β8 Shallow soil layer (indicator) -0.215 -0.403
β9 Divided plot (indicator) 0.103 0.326
β10 Temperature sum 0.620 1.009
β11 Proportion of other species 0.302 0.382

β12 Log
basal area on the plot

basal area of the surrounding stand
0.428 0.543

σ2 Variance of the growth model 1 0.628
τ2 Proportion coefficient of 0 5.193

variance of measurement error

where P2 and P ∗2 are some polynomials of order two, both depending on θ.
Taking into the account that LNN distribution possesses all moments, it imme-
diately follows that Assumption VIII holds. Similar transformations applied
to Φ̈k(Yk, θ) yield

Φ̈k(Yk, θ) = P ∗4 (Yk, θ),

which implies Assumption IX. We have listed the necessary derivatives of the
LNN likelihood function in the Appendix.

Assumption VII is not so straightforward to verify. Indeed, it is possible
to show that the positive definite limit does not have to exist for arbitrary
set of values of explanatory variables. However, such examples will necessarily
be artificial. Therefore, we will have to assume the existence of the positive
definite limiting matrix, which is a modest assumption.

4 Real data application

We have used the same data as in Elfving (2000), where the model (2) was
used. Taking into the account the large amount of data, it was of interest for
us to calculate the MLE of the parameters of the new model and to compare
the results with those obtained from the simpler model.

The data used by Elfving consisted of 2333 remeasured trees on permanent
plots in the Swedish National Forest Inventory. Together with the diameter,
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numerous additional variables describing both the stand and the site were reg-
istered. Among them were the basal area of larger trees, field vegetation type,
soil depth, texture, moisture, etc. Since our objective was to improve the
simpler model - the one without measurement errors, we included the same
set of explanatory variables as in the original paper. The number of the pa-
rameters in the vector β is 13, thus bringing the total number of parameters
to be estimated to 15. The list of the parameters together with the descrip-
tions of the corresponding explanatory variables can be seen in Table 1. The
function g(d) relating the measurement error for growth in basal area to the
diameter (see (4)), was taken from the paper by Elfving. There the relation
g(d) = 0.026(d + 5)2 was obtained. The quadratic shape of this relation is due
to the known linear shape of the relation between the measurement error for
the diameter and the diameter. The latter was estimated using the repeated
independent measurements made on a subset of plots within a week.

4.1 Random optimization

The density function of the LNN does not take form of any standard well-known
integral. Therefore we opted for a numerical approach to the estimation of the
parameters of the regression model (3). The likelihood function of the sample
was maximized with respect to β, σ, τ by means of random optimization (see,
for example, Lee and Rhinehart (1998)). This method operates as follows.
The value of the likelihood is calculated in a reasonably chosen starting point
P0 = (β0, σ0, τ0). This starting point may obtained from the simpler model
such as (2). Then a random step in the parameter space is made, producing
another point P1 = (β1, σ1, τ1). The value of the likelihood is calculated in P1

and compared to that in P0. If it is larger, P1 is established as a current MLE of
the parameters. The algorithm continues until some sort of stability is obtained.
Although, there is no guarantee that the obtained maximum is global, this and
similar approaches are often used in applications. The random optimization is
rather demanding in terms of computer resources. Our computations required
approximately 300 hours of CPU time on a Pentium II PC.

In order for the random optimization procedure to converge in finite time,
it is necessary to impose some inequality-type restrictions (e.g. bounds) on the
parameters. Since it was the practical application that motivated our study,
we were able to do that by utilizing the prior knowledge about the values of
the parameters.

As a starting point for the parameters of regression we utilized the estimates
derived from model (2) by means of the weighted least squares.

Apparently, there is certain vagueness in the choice of the random steps.
The first random steps in the parameter space were chosen to be one-dimensional
Gaussian for each parameter. The variance was chosen to be approximately
30% of the current value of the parameter estimate. After several thousands
Gaussian steps the value of the MLE stabilized. One could suppose that the
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obtained MLE was close to the real one. Then the uniform distribution was
employed to search in the m-dimensional cubic neighborhood of the current
MLE. The range of the uniform distribution was gradually narrowed, until the
the required accuracy was achieved. Note that since we based our inference
on the imprecise sample data, it was pointless to strive for an extremely high
accuracy of the estimates. In fact, adding or removing a small fraction of ob-
servations changed the estimates already in third digit, making it unreasonable
to try to achieve higher precision. Moreover, taking into account the accuracy
of the numerical evaluation of the integrals in the likelihood function, we were
able to obtain three accurate digits in the estimates.

4.2 Results and conclusion

Both the initial values of the parameters (those obtained in Elfving (2000)
from model (2)) and the obtained values of the MLE can be found in Table 1.
We note that none of the coefficients of the regression function have changed
the sign. This fact is encouraging, since the opposite would mean that the
effects of the corresponding variables are reversed, which should not happen.
As expected, the model supports our prior knowledge of the role of predictors.
Since, as we have mentioned in Section 2, model (2) is somewhat incongruous
with the data, it was of most interest for us to compare our model (3) with
the original model (1). The answer to the question whether the new model
helps to explain the data better, is affirmative for the following reason. The
new model incorporates the original model (1), since it extends the model
(1) by taking into consideration the measurement errors (i.e. accounting for
cases with negative recorded growth). Clearly, if the measurement errors were
small (e.g. τ ≈ 0), (3) would transform into (1). Therefore, we can compare
the two models directly by means of the likelihood ratio test. To do so, we
have to restrict ourselves to the subset of data with positive recorded growth,
e.g. where model (1) is applicable. The likelihood ratio test statistic χ2 =
−2 log supθ L0

n

supθ L1
n
, where L0

n and L1
n are the likelihood functions of models (1) and

(3), respectively, is approximately Chi-square distributed, should model (1) be
correct. We obtained χ2 ≈ −2 log 0.0001 ≈ 18.42, which is larger than 99.99%
percentile of Chi-square distribution with one degree of freedom. This proves
the necessity to include measurement errors in forest growth models.
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Appendix
Derivatives of LNN density function

The first and the second derivatives of the LNN density function in forest
growth model with measurement errors taken with respect to the parameters
take the following form (Ak(t) is the same as in section “Model”):

∂fk

∂βj

=

∫ ∞

−∞

xkj

σ2


t−

∑

j

βjxkj +
σ2

2


 Ak(t)dt

∂fk

∂σ2
=

∫ ∞

−∞

1

σ4


(t−

∑

j

βjxkj)
2 − σ4

4
− σ

2


 Ak(t)dt

∂fk

∂τ2
=

∫ ∞

−∞

1

2g(xk)τ4

(
(e

t − Yk)
2 − g(xk)τ

2
)

Ak(t)dt

∂2fk

∂βj∂βl

=

∫ ∞

−∞

xkjxkl

σ4


(t−

∑

j

βjxkj +
σ2

2
)
2 − xkjxkl

σ2


 Ak(t)dt
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∂2fk

∂βj∂σ2
=

∫ ∞

−∞

xkj

σ4


−(t−

∑

j

βjxkj)−
1

2
(t−

∑

j

βjxkj +
σ2

2
) +

+
1

2σ2
(t−

∑

j

βjxkj +
σ2

2
)
2
(t−

∑

j

βjxkj −
σ2

2
)


 Ak(t)dt

∂2fk

∂(σ2)2
=

∫ ∞

−∞

1

4σ6


3σ

2 − 3(t−
∑

j

βjxkj +
σ2

2
)(t−

∑

j

βjxkj −
σ2

2
) +

+
1

σ2
(t−

∑

j

βjxkj +
σ2

2
)
2
(t−

∑

j

βjxkj −
σ2

2
)
2 −

−σ
4 − 3(t−

∑

j

βjxkj +
σ2

2
)
2

+ 3σ
2
(t−

∑

j

βjxkj +
σ2

2
)


 Ak(t)dt

∂2fk

∂βj∂τ2
=

∫ ∞

−∞

xkj

2σ2g(xk)τ4
((e

t − Yk)
2 − g(xk)τ

2
)(t−

∑

j

βjxkj +
σ2

2
)Ak(t)dt

∂2fk

∂σ2∂τ2
=

∫ ∞

−∞

1

4σ4g(xk)τ4
((e

t − Yk)
2 − g(xk)τ

2
)×

×((t−
∑

j

βjxkj +
σ2

2
)(t−

∑

j

βjxkj −
σ2

2
)− σ

2
)Ak(t)dt

∂2fk

∂(τ2)2
=

∫ ∞

−∞

1

4g2(xk)τ8

(
(e

t − Yk)
4 − 6g(xk)τ

2
(e

t − Yk)
2

+ 3g
2
(xk)τ

4
)

Ak(t)dt
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