
                          
 
 
 
 
 

Recovering a Phylogenetic Tree Using 
Pairwise Closure Operations 

 
 

K. T. Huber, V. Moulton, C. Semple, and M. Steel 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Research Report 
Centre of Biostochastics 
 
Swedish University of                       Report 2003:4                    
Agricultural Sciences                     ISSN 1651-8543 



Recovering a Phylogenetic Tree Using Pairwise
Closure Operations1

K. T. Huber

Centre of Biostochastics
Swedish University of Agricultural Sciences, Box 7013, SE-75007, Uppsala, Sweden

and
The Linnaeus Centre for Bioinformatics

Uppsala University, Box 598, SE-75124, Uppsala, Sweden

V. Moulton2

The Linnaeus Centre for Bioinformatics
Uppsala University, Box 598, SE-75124, Uppsala, Sweden

C. Semple and M. Steel

Biomathematics Research Centre
Department of Mathematics and Statistics

University of Canterbury, Private Bag 4800, Christchurch, New Zealand

Abstract

A fundamental task in evolutionary biology is the amalgamation of a collection P of
leaf-labelled trees into a single parent tree. A desirable feature of any such amalgama-
tion is that the resulting tree preserves all of the relationships described by the trees
in P. For unrooted trees, deciding if there is such a tree is NP-complete. However,
two polynomial-time approaches that sometimes provide a solution to this problem
involve the computation of the semi-dyadic closure and split closure of a set of quar-
tets that underlies P. In this paper we show that if a leaf-labelled tree T can be
recovered from the semi-dyadic closure of some set Q of quartet subtrees of T , then
T can also be recovered from the split-closure of Q. Furthermore, we show that the
converse of this result does not hold, and resolve a closely related question posed in
Böcker et al. (2000).
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1 Introduction

A binary phylogenetic (X)-tree is an unrooted tree in which every interior vertex has
degree three and whose leaf set is X. In evolutionary biology, X is commonly a
set of species and a binary phylogenetic X-tree is used to represent the evolutionary
relationships between the species in X.

A natural and fundamental task in evolutionary biology is to amalgamate binary
phylogenetic trees that classify different, but overlapping, sets of species into a single
parent tree. This single parent tree is called a supertree and ways to perform such
tasks are called supertree methods. A desirable property of any supertree method is
that, if possible, the resulting supertree ‘displays’ all of the evolutionary relationships
of the input trees. More precisely, let T and T ′ be binary phylogenetic trees with leaf
sets X and X ′, respectively. Then T ′ displays T if X ⊆ X ′ and, up to suppressing
degree two vertices, T is the minimal subtree of T ′ that connects the elements of X.
In general, a binary phylogenetic tree T ′ displays a collection P of binary phylogenetic
trees if T ′ displays each tree in P. This desirable property of a supertree method leads
to the following algorithmic problem.

Problem: Tree Compatibility
Instance: A collection P of binary phylogenetic trees.
Question: Does there exist a binary phylogenetic tree that displays each of the trees in
P and, if so, can we construct such a binary phylogenetic tree?

In general, this problem is NP-complete (Steel, 1992). However, there are a number
of polynomial-time approaches to this problem that may provide a solution. Two of
these approaches are based on the closure operators ‘semi-dyadic closure’ and ‘split
closure’. The former is associated with a collection of quartets and the latter is
associated with a collection of splits.

A quartet is a binary phylogenetic tree with four leaves. The quartet with leaves
a, b, c, d is denoted ab|cd if the path from a to b does not intersect the path from c to
d. A split of X, also called an X-split, is a partition of X into two non-empty subsets.
Deleting any edge of a binary phylogenetic X-tree induces a split of X, namely the
bipartition of X whose parts are the vertex sets of the resulting components. For a
binary phylogenetic X-tree T , let Q(T ) denote the set of quartets displayed by T
and let Σ(T ) denote the set of splits of X induced by the interior edges of T . It is
well-known that T can be (efficiently) reconstructed from either Q(T ) or Σ(T ). This
means that possible solutions to Tree Compatibility can be sought by ‘encoding’
the input trees either as a set Q of quartets or as a set Σ of splits, and then using these
encodings either to construct an encoding of a binary phylogenetic tree that displays
each of the original trees or to determine that no such tree exists. Two possible
approaches in this regard are to compute the semi-dyadic closure of Q in case the
encoding is done in terms of quartets or the split closure of Σ in case the encoding
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is done in terms of splits (Semple and Steel, 2001, 2003). The precise definitions are
given in Section 2, but, roughly speaking, semi-dyadic closure and split closure are the
end result of repeatedly applying a pairwise inference rule to collections of quartets
or splits, respectively.

Quartets themselves can be encoded by splits—simply take the splits induced by
the interior edges of the quartets— and so it is natural to ask how the semi-dyadic
closure and split closure of a set Q of quartets are related. For the split closure of Q,
we view Q as a set of splits. In Section 3, we consider the relationship between the
semi-dyadic closure and split closure of Q when one or the other recovers a binary
phylogenetic tree. In particular, we prove the following theorem.

Theorem 1.1 Let T be a binary phylogenetic tree and let Q be a subset of Q(T ). If
the semi-dyadic closure of Q equals Q(T ), then the split-closure of Q equals Σ(T ).

Essentially, Theorem 1.1 states that if a binary phylogenetic tree T can be recovered
from a subset Q of Q(T ) using the semi-dyadic closure of Q, then T can also be re-
covered from Q using the split-closure of Q. Surprisingly, the converse of Theorem 1.1
is not true, a fact that we will also establish in Section 3.

The original motivation for Theorem 1.1 arose from an open question in Böcker
et al. (2000, Remark 4) which relates semi-dyadic closure to minimum-sized sets of
quartets that define a binary phylogenetic tree. In the last section, we resolve this
question.

We end this section by noting that, throughout this paper, X is a finite set, and
the notation and terminology follows (Semple and Steel, 2003).

2 Semi-Dyadic Closure and Split Closure

The semi-dyadic closure of an arbitrary collection Q of quartets, denoted scl2(Q),
is the minimal set of quartets that contains Q and that has the property that if
ab|cd, ac|de ∈ scl2(Q), then

ab|ce, ab|de, bc|de ∈ scl2(Q).

The significance of this pairwise inference rule is highlighted in Proposition 2.1 (Meacham,
1983).

Proposition 2.1 Let Q be a set of quartets and let T be a binary phylogenetic tree.
Then T displays Q if and only if T displays scl2(Q).
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To describe split closure, we first need some additional definitions. A partial split
of X or, more briefly, partial X-split is a partition of a subset of X into two non-empty
subsets. If these two subsets are A and B, we denote the partial X-split by A|B or,
equivalently, by B|A. A partial X-split A|B is a (full) X-split if A ∪ B = X. We
say that a partial X-split A′|B′ extends a partial X-split A|B if either A ⊆ A′ and
B ⊆ B′, or B ⊆ A′ and A ⊆ B′. In general, a collection Σ′ of partial X-splits extends
a collection Σ of partial X-splits if, for each σ ∈ Σ, there is an element σ′ ∈ Σ′ such
that σ′ extends σ. Furthermore, if, for all σ ∈ Σ, the set Σ contains no partial X-split
that extends σ, then we say that Σ is irreducible.

The split closure of an arbitrary collection Σ of partial X-splits, denoted spcl(Σ),
is the minimal irreducible set of partial X-splits that extends Σ and has the following
property:

If A1|B1 and A2|B2 are elements of Σ that satisfy

∅ /∈ {A1 ∩A2, A1 ∩B2, B1 ∩B2} and B1 ∩A2 = ∅, (1)

then there are elements of spcl(Σ) that extend (A1 ∪A2)|B1 and
A2|(B1 ∪B2).

The fact that there is a unique minimal irreducible set of partial X-splits that has
this property and extends Σ is shown in Semple and Steel (2001).

The next lemma and corollary will be used in the proof of Theorem 1.1. A binary
phylogenetic X-tree T displays a partial X-split σ if there is an X-split in Σ(T ) that
extends σ. In general, T displays a collection Σ of partial X-splits if T displays each
member of Σ. Furthermore, for a partial X-split A|B, let

Q(A|B) = {aa′|bb′ : a, a′ ∈ A; b, b′ ∈ B; a 6= a′; b 6= b′}
and, for a set Σ of partial X-splits, let Q(Σ) =

⋃
A|B∈ΣQ(A|B). Observe that, for

all binary phylogenetic trees T , we have Q(Σ(T )) = Q(T ). Part (i) of Lemma 2.2 is
due to Meacham (1983) and part (ii) is proved in Semple and Steel (2001).

Lemma 2.2 Let Σ be a set of partial X-splits. Then

(i) A binary phylogenetic tree T displays Σ if and only if T displays spcl(Σ).

(ii) If there exists a binary phylogenetic tree that displays Σ, then scl2(Q(Σ)) ⊆
Q(spcl(Σ)).

An immediate consequence of Lemma 2.2 is Corollary 2.3.
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Corollary 2.3 Let T be a phylogenetic tree and let Q ⊆ Q(T ). If scl2(Q) = Q(T ),
then Q(spcl(Q)) = Q(T ).

3 Proof of Theorem 1.1

Before proving Theorem 1.1, we require one further concept. Let T be a binary
phylogenetic tree and let e be an interior edge of T . A quartet q ∈ Q(T ) distinguishes
e if e is the unique interior edge of T for which the quartet q is extended by the X-split
in Σ(T ) induced by e. Furthermore, a partial X-split σ distinguishes e if there is a
quartet in Q(σ) that distinguishes e.

Proof of Theorem 1.1: Let T be a binary phylogenetic tree and let Q be a subset
of Q(T ), and suppose that scl2(Q) = Q(T ). Evidently, the theorem holds if T has
exactly one interior edge. Therefore we may assume that T has at least two interior
edges. Now assume that spcl(Q) 6= Σ(T ).

We first show that there exists a partial X-split in spcl(Q) that distinguishes an
interior edge and is not full. Let e be an interior edge of T and let q be a quartet
in Q(T ) that distinguishes e. Then, by Corollary 2.3, q ∈ Q(spcl(Q)) and so there
exists a partial X-split σ in spcl(Q) that extends q. This means that σ distinguishes
e and so it follows that, for all interior edges e of T , there is a partial X-split in
spcl(Q) that distinguishes e. Furthermore, not all of these partial X-splits are full,
for otherwise spcl(Q) = Σ(T ).

Let σ1 = A1|B1 be a partial X-split in spcl(Q) that is not full and distinguishes
the interior edge e1 of T . Since σ1 is not full, there exists an element x ∈ X with
x 6∈ A1 ∪ B1. By considering the interior edge(s) of T that are adjacent to e1 and
using Corollary 2.3, it is easily seen that there exists a quartet xb|cd in Q(spcl(Q))
that distinguishes an interior edge of T adjacent to e1 with b, c ∈ A1 and d ∈ B1.
Let σ2 = A2|B2 be a partial X-split in spcl(Q) that extends xb|cd. Clearly, σ1 6= σ2.
Without loss of generality, we may assume that x, b ∈ A2 and c, d ∈ B2. As T displays
σ1 and σ2, and ∅ 6∈ {A1 ∩ A2, A1 ∩ B2, B1 ∩ B2}, we must have B1 ∩ A2 = ∅ (this
is a well-known property of binary phylogenetic trees, see Semple and Steel (2003)).
By the definition of split closure, this means that there is an element of spcl(Q) that
extends (A1 ∪ A2)|B1. But then this element strictly extends σ1, contradicting the
irreducibility of spcl(Σ). This completes the proof of the theorem. 2

The converse of Theorem 1.1 holds if T has at most six leaves, but fails in general.
To see this, consider the binary phylogenetic tree T shown in Fig. 1 and the set
Q = {26|57, 16|47, 15|34, 15|23, 14|37} of quartets. Now Q ⊆ Q(T ), and it is easily
verified that spcl(Q) = Σ(T ). However,

scl2(Q) = Q∪ {16|37, 46|37, 16|34, 15|37, 45|37, 15|47} 6= Q(T ).
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Figure 1: A binary phylogenetic tree.

4 Tight Sets

Let P be a collection of binary phylogenetic trees. We say that P defines a binary
phylogenetic tree T if T displays P and T is the only such tree with this property.
Furthermore, the excess of P, denoted exc(P), is the quantity

exc(P) = |L(P)| − 3−
∑

T ∈P
i(T ),

where L(P) is the union of the leaf sets of trees in P and i(T ) is the number of interior
edges of T . For a binary phylogenetic tree T , we say that P is T -tight if P defines
T and exc(P) = 0. In particular, if a collection Q of quartets is T -tight, then Q has
size |L(T )|− 3, the smallest sized subset of Q(T ) that defines T . Loosely speaking, a
collection of binary phylogenetic trees is T -tight if it contains the absolute minimum
amount of information that is required to recover a binary phylogenetic tree T .

It is shown in Böcker et al. (2000, Theorem 3) that if P is a collection of binary
phylogenetic trees that defines a binary phylogenetic tree T and contains a T -tight
subset P ′, then

scl2

( ⋃

T ′∈P
Q(T ′)

)
= Q(T ).

Moreover, in the remark directly following this theorem, it is stated that the converse
of this result does not hold for arbitrary collections P of binary phylogenetic trees.
However, the authors also state that they do not know if this is the case when P
consists of quartets. In other words, the following question remained unanswered: if
T is a binary phylogenetic tree and Q ⊆ Q(T ) with scl2(Q) = Q(T ), does it follow
that Q(T ) contains a T -tight subset? Observe that Q satisfies the assumptions of
Theorem 1.1. We conclude this paper by providing an example which shows that this
is not necessarily the case.
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Figure 2: Two binary phylogenetic trees.

Let T be the binary phylogenetic tree shown in Fig. 2(a) and let

Q = {14|56, 15|36, 23|45, 12|36}.

Note that Q ⊆ Q(T ). It is straightforward to check that scl2(Q) = Q(T ). Now, each
quartet in Q − {15|36} distinguishes a distinct interior edge of T , while 15|36 does
not distinguish any interior edge of T . This means that the only possibility for a T -
tight subset of Q is Q−{15|36} as every interior edge of T needs to be distinguished
by a quartet in Q (see Semple and Steel (2003, Theorem 6.8.7)). But the binary
phylogenetic tree shown in Fig. 2(b) also displays Q − {15|36}. Thus Q − {15|36}
does not define T and so Q does not contain a T -tight subset.
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