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Abstract

In this paper, we investigate the asymptotic properties of the quasi-
maximum likelihood estimator (quasi-MLE) for GARCH(1,2) model un-
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1 Introduction

The autoregressive conditional heteroscedastic (ARCH) model introduced by
Engel (1982) has drawn much attention for its success in describing the volatil-
ity clustering, a phenomenon often happened to financial and other economic
data, especially high-frequency time series, by allowing the conditional vari-
ance of current observation to depend on past innovations, leaving the uncon-
ditional variance constant. Bollerslev (1986) extended it to GARCH (Gener-
alized ARCH), in which the conditional variance is also influenced by previous
conditional variances and more flexible lag structure than ARCH is available.
GARCH model has been the common tool for econometricians during the last
two decades. For discussion of applications of ARCH methodology and other
ARCH-type models, we refer to the paper of Bollerslev et al. (1992) and vast
references therein.

On the study of the asymptotic theory of ARCH or GARCH model, Weiss
(1986) firstly showed that the quasi-maximum likelihood estimator (quasi-
MLE) of the ARCH model is consistent and asymptotically normal. Lums-
daine (1991) studied the asymptotic theory of GARCH(1,1) and IGARCH(1,1)
(integrated GARCH) models. She initially imposed assumptions on the
rescaled variable (innovation scaled by its conditional variance). But she
needed a unimodal distribution and finite 32nd moment for independent and
identically distributed (i.i.d.) rescaled variables. Lee and Hansen (1994),
instead, assumed that the rescaled variable is dependent, namely, strictly sta-
tionary and ergodic, and provided the first consistency proof of the quasi-MLE
of GARCH (1,1) model. Concerning the local consistency, they also allowed
possibly integrated process or even mildly explosive GARCH processes, due
to the technical assumption based on the results of Nelson (1990). For more
recent theoretical results, readers are referred to the review by Li et al. (2002).

The objective of this paper is to extend the results of Lee and
Hansen (1994) and investigate the asymptotic properties of quasi-MLE for
GARCH(1,2) model, although they stated that their methods were valid only
for GARCH(1,1) model and might be difficult to generalize. We also assume
the stationarity and ergodicity of the rescaled variable zt. However, instead
of requiring uniform finiteness of the (2 + δ)th moment (δ > 0) as Lee and
Hansen (1994) did, we only need second moment condition of zt, as well as the
standard condition for second-order stationarity of GARCH model (Bollerslev,
1986), to get the consistency property of the global quasi-MLE. Asymptotic
normality of the local quasi-MLE is also obtained under analogous conditions
as Lee and Hansen’s, mainly the fourth moment finiteness of zt.

Section 2 will give our main results for the GARCH(1,2) model. Proofs
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and lemmas are given in Appendix. The motivation to this study and some
discussions will be presented in Section 3.

2 Consistency and asymptotic normality

Our focus on the GARCH model is the variance structure of some stochastic
process, and the mean structure is left as simple as possible. Now, suppose
that the observed sequence {yt} is

yt = γ0 + εt, t = 1, 2, . . . , n

with constant mean γ0, where E(εt|Ft−1) = 0 a.s. and Ft = σ(εt, εt−1, . . .) is
the increasing σ-field containing past information up to t. Define the condi-
tional variance h0t , E(ε2t |Ft−1), and assume that εt follows a GARCH(1,2)
process

h0t = ω0(1− β0) + α10ε
2
t−1 + α20ε

2
t−2 + β0h0t−1 a.s., (1)

which differs from the GARCH(1,1) model in the dependence of the condi-
tional variance h0t on the square innovation εt−2. Further extension to a
GARCH(1,q) model entails much more complex notations without essential
gains. We will focus on GARCH(1,2) here. The constant term of h0t process
is taken as ω0(1− β0) for convenience.

Iterate h0t−1 repeatedly, yielding

h0t = ω0 + α10ε
2
t−1 +

∞∑

k=0

(α20 + α10β0)βk
0 ε2t−2−k a.s. (2)

The true parameter vector is θ0 = [γ0, ω0, α10, α20, β0]′.
The model for the unknown parameters θ = [γ, ω, α1, α2, β]′ is

yt = γ + et, t = 1, 2, · · · , n.

The variance process is

h∗t (θ) = ω(1− β) + α1e
2
t−1 + α2e

2
t−2 + βh∗t−1(θ), t = 3, · · · , n

with the start-up conditions

h∗1(θ) = ω, and h∗2(θ) = ω + α1e
2
1 ,
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assuming ω and α1 positive. Hence, the variance process can be written as

h∗t (θ) = ω + α1e
2
t−1 +

t−3∑

k=0

(α2 + α1β)βke2
t−2−k. (3)

Define the compact parameter space

Θ = {θ : γl ≤ γ ≤ γu, 0 < ωl ≤ ω ≤ ωu, 0 < α1l ≤ α1 ≤ α1u,

0 < α2l ≤ α2 ≤ α2u, 0 < βl ≤ β ≤ βu < 1},

where γl, γu, ωl, ωu, α1l, α1u, α2l, α2u, βl and βu are constants; also assume
θ0 ∈ Θ, which ensures nonnegative conditional variance h∗t (θ) and a strict
GARCH(1,2) model.

Define the rescaled variable zt = εt/h
1
2
0t, then E(zt|Ft−1) = 0 a.s. and

E(z2
t |Ft−1) = 1 a.s.. Following the quasi-likelihood method, we assume that

zt is i.i.d. and standard Gaussian here to get the log quasi-likelihood function
(ignoring constants)

L∗n(θ) =
1
2n

n∑

t=1

l∗t (θ), where l∗t (θ) = −
(

ln h∗t (θ) +
e2
t

h∗t (θ)

)
.

Analogous to Lee and Hansen (1994), we can extend the unobserved vari-
ance into an infinite past

ht(θ) = ω + α1e
2
t−1 +

∞∑

k=0

(α2 + α1β)βke2
t−2−k

hε
t(θ) = ω + α1ε

2
t−1 +

∞∑

k=0

(α2 + α1β)βkε2t−2−k

and the unobserved log-likelihood is

Ln(θ) =
1
2n

n∑

t=1

lt(θ), where lt(θ) , −
(

ln ht(θ) +
e2
t

ht(θ)

)
.

Because of the start-up conditions, the variance process h∗t (θ) is not stationary.
However, it is easy to show that supθ∈Θ |Ln(θ) − L∗n(θ)| −→p 0 (Lemma 3).
Hence its likelihood is very close to that of stationary process ht(θ) and the
non-stationarity causes no trouble. hε

t(θ), which differs from ht(θ) only in a
constant scale (Lemma 1), will be instrumental in our proof.
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Now, it is ready to state our assumptions and results. All limits in our
paper are taken as the sample size n tends to positive infinity.

Assumption A1
(i) zt is strictly stationary, ergodic and z2

t is nondegenerate;
(ii) α10 + α20 + β0 < 1.

Define the global quasi-MLE

θ̂n = argmaxθ∈ΘL∗n(θ).

Its existence is guaranteed by compactness of the parameter space. Now the
consistency property is stated as follows.

Theorem 1 Under A1, θ̂n −→p θ0.

Remark 1. Assumption A1(i) is same as Lee and Hansen (1994). We don’t
need their assumption of uniform finiteness of the (2 + δ)th moment (δ > 0)
of zt for our consistency result; and A1(ii) is just the necessary and sufficient
condition for second-order stationarity of GARCH(1,2) model (Bollerslev,
1986), which rules out the IGARCH process. We believe that the consistency
of the global quasi-MLE of IGARCH(1,2) model can also be obtained along
the line of Lumsdaine (1996), but at the possible cost of stronger condition
such like the finite 32nd moment of zt used by Lumsdaine. Lee and Hansen
(1994) also used the assumption α0 + β0 < 1 to ensure global consistency in
their case. In this sense, our assumption for consistency is weaker than theirs.

Remark 2. Lee and Hansen (1994,Theorem 1) also created the consistency
result for local quasi-MLE. However, it is trivial in our case in that we can get
the consistency for any local quasi-MLE along the same line of our Theorem
1 due to the second order stationarity assumption on our GARCH model.

In order to obtain asymptotic normality of the local quasi-MLE, we need
additional assumptions and further restrict to some subsets of the parameter
space.

Assumption A2
(i) E(z4

t |Ft−1) ≤ κ < ∞ a.s.
(ii) θ0 is in the interior of Θ.
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Take Rl = R(K−1
l α1l), where R(ψ) = (2 + ψp)/(2 + ψ) < 1 (see Lemma

7) for ψ > 0, p = 1 − 1
4κ ∈ [0, 1) (κ ≥ 1

4 by Cauchy-inequality) and Kl =
ωu

ω0
+

α1u

α10
+

α2u + α1uβu

α2l + α1lβl
< ∞.

Pick positive constants ηl and ηu, which satisfy

ηl < β0(1−R
1
6
l ) and ηu < β0(1−R

1
6
0 ),

where R0 = R(α10) < 1. Define for 1 ≤ r ≤ 6 the constants

βrl = β0R
1
r
l + ηl < β0, βru =

β0 − ηu

R
1/r
0

> β0,

and the subspaces Θr
l = {θ ∈ Θ : βrl ≤ β ≤ β0}, Θr

u = {θ ∈ Θ : β0 ≤ β
≤ βru} and Θr = Θr

l ∪Θr
u. Note that Θr ⊂ Θr′ for r ≥ r′ and θ0 ∈ Θr.

Now the asymptotic normality for the local quasi-MLE θ∗n, defined by
argmaxθ∈Θ2

L∗n(θ), follows:

Theorem 2 Under A1 and A2,
√

n(θ∗n − θ0) −→D N(0, V 0),

where V 0 = B−1
0 A0B

−1
0 , B0 = B(θ0) = −E 52 lt(θ0), A0 = E(5lt(θ0)

5 lt(θ0)′), and 5lt(θ) is the vector of derivatives of lt with respect to θ.

Remark 3. The conditions we used for obtaining the asymptotic normality
of the local quasi-MLE are similar to those in Lee and Hansen (1994, Theorem
3) for GARCH(1,1).

3 Discussions

Our motivation for this study, in one aspect, came from the analysis that
we did on stocks from the Center for Research in Securities Prices (CRSP)
database. we selected all 367 stocks that are currently in the S&P 500 index
and that have been trading on the NYSE or NASDAQ for the entire period
between 1990-01-02 and 2000-12-29, and investigated their GARCH charac-
ters of monthly, weekly and daily return processes, mainly by using Akaike
information criterion (AIC). We found that there are some stocks whose re-
turn processes are more complicated so that we need a GARCH(1,2) model
instead of the better known GARCH(1,1). For more aggregated data such as
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S&P500 Index or weekly returns, GARCH(1,1) is still a better choice. It is
documented by Drost and Nijman (1993) that aggregation will simplify the
GARCH character of the original process. But also note that even for aggre-
gated data, GARCH(1,2) model may be necessary. For example, French et al.
(1987) used this model for monthly stock returns in the period 1928-1984, and
Pagan and Schwert (1990) for period 1835-1925.

Although Lee and Hansen (1994) stated that their methods are valid only
for the simple GARCH(1,1) model and may not easily be generalized to more
complicated cases, we put the results forward into GARCH(1,2) model success-
fully. Our main assumptions, i.e., the second moment condition for consistency
and the fourth moment condition for asymptotic normality, are comparable
to that of i.i.d. case (Li et al., 2002). For instance, in i.i.d. case of zt, for
the quasi-MLE of general GARCH model, consistency is obtained also under
(inter alia) second moment condition (Ling and McAleer, 2003), or (2 + δ)th
moment (δ > 0) (Berkes et al., 2003); and asymptotic normality under (in-
ter alia) the 6th moment condition (Ling and McAleer, 2003), or (4 + δ)th
moment (δ > 0) (Berkes et al., 2003).

Most theoretical studies of GARCH model so far focus on i.i.d zt, and to the
best of authors’ knowledge, there is no new result published in the stationary
case since Lee and Hansen (1994). The potential generalizations of our results
include the extension to GARCH(1, p) model. We don’t see essential difficulty
for this extension, but with more complicated denotations and we think that it
is not worth trying for the minor gain. Inclusion of IGARCH model is possible
if similar condition of assumption A1(iv) of Lee and Hansen (1994) is used. For
the general GARCH(p,q) model, the conditional variance cannot be written as
a analytic function of innovations like (2) or (3). Apparently, the problem is
the uniqueness of a presentation like (3) for the GARCH(p,q) model. Berkes
et al. (2003) obtained the uniqueness under i.i.d zt. If a similar result is
obtained under stationary zt, it is possible to prove the asymptotic properties
of GARCH(p,q) model analogous to Berkes et al. (2003). In addition, in
econometric literature and practice, GARCH models are usually assumed to
describe the error process, together with an AR or ARMA process as the
conditional mean. As Ling and Li (1998) and Li et al. (2002) noted, if the
density function (we need a probability density) of zt is symmetric, the MLE
for parameters in the mean and GARCH structures can be obtained through
a separate iteration procedure without loss of asymptotic efficiency for i.i.d.
zt. It is conjectured that this result still holds for stationary zt. We leave it
for the future.
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Appendix

We list all lemmas here and proofs of the theorems and some important
lemmas. All other proofs are available from the authors upon request. All
inequalities and equalities hold almost surely if applicable. In addition,
|A| = (tr(A′A))1/2 denotes the Euclidean norm of a matrix or vector and
‖A‖ = (E|A|r)1/r the Lr-norm of a random matrix or vector here.

Lemma 1
B−1hε

t(θ) ≤ ht(θ) ≤ Bhε
t(θ),

where

B = 1 + 2(γu − γl)max{α1u

ωl
, 1}+

(α2u + α1uβu)(γu − γl)2

ωl(1− βu)
+

α1u(γu − γl)2

ωl

+
2(γu − γl)
(1− βu)1/2

max{1,
α2u + α1uβu

ωl
}.

Proof of Lemma 1. See Lee and Hansen (1994, Lemma 1).

Lemma 2 Under A1, for all θ ∈ Θ

(a) ht(θ), lt(θ) and its first and second derivatives are strictly stationary
and ergodic;

(b) Eh0t =
ω0

1− α10 − α20 − β0
< ∞ and Eht(θ) ≤ h̄ < ∞ for some positive

constant h̄.

Proof of Lemma 2. (a) Since they are measurable functions of εt from
Billingsley (1968), stationarity and ergodicity follow from Stout (1974, Theo-
rem 3.5.8).

(b) See Lee and Hansen (1994, Theorem 2).

Lemma 3 Under A1,

sup
θ∈Θ

|Ln(θ)− L∗n(θ)| −→p 0.

Proof of Lemma 3. First, we have

L∗n(θ)− Ln(θ) =
1
2n

n∑

t=1

ln
ht(θ)
h∗t (θ)

− 1
2n

n∑

t=1

(
e2
t

h∗t (θ)
− e2

t

ht(θ)
). (4)
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For ht(θ) we have the following inequality,

ht(θ) = ω + α1e
2
t−1 + (α2 + α1β)

∞∑

k=0

βke2
t−2−k

= h∗t (θ) + (α2 + α1β)
∞∑

k=t−2

βke2
t−2−k

= h∗t (θ) + (α2 + α1β)βt−2
∞∑

k=0

βke2
−k

≤ h∗t (θ) + βt−2h2(θ).

The first part on the right hand side of (1) can be bounded as follows

0 ≤ 1
2n

n∑

t=1

ln[
ht(θ)
h∗t (θ)

] ≤ 1
2n

n∑

t=1

ln[1 +
βt−2h2(θ)

h∗t (θ)
] ≤ 1

2n

n∑

t=1

βt−2h2(θ)
h∗t (θ)

≤ 1
2n

n∑

t=1

βt−2h2(θ)
ωl

≤ h2(θ)
2nωlβl(1− βu)

≤ h2(θu)
2nωlβl(1− βu)

,

where the third inequality follows by the fact that ln(1 + x) ≤ x for x > −1,
and θu , [γu, ωu, α1u, α2u, βu]′. Thus by Lemma 2(b) and Markov inequality
it follows that

sup
θ∈Θ

1
2n

n∑

t=1

ln
ht(θ)
h∗t (θ)

−→p 0. (5)

Further, for the second part of the right hand side of (1) we have

0 ≤ 1
2n

n∑

t=1

(
e2
t

h∗t (θ)
− e2

t

ht(θ)
) =

1
2n

n∑

t=1

ht(θ)− h∗t (θ)
h∗t (θ)

· e2
t

ht(θ)

≤ 1
2n

n∑

t=1

βt−2h2(θ)
h∗t (θ)

· e2
t

ht(θ)
≤ 1

2n

h2(θ)
βω2

l

n∑

t=1

βt−1e2
t

≤ h2(θ)
∑∞

t=1 βt−1ht+1(θ)
2nβlω

2
l α1l

≤ h2(θu)
∑∞

t=1 βt−1ht+1(θu)
2nβlω

2
l α1l

, X2(θu)
2nβlω

2
l α1l

.

By Cauchy-Schwarz and Minkowski’s inequalities and Lemma 2(b) it follows
that

E | X2(θu) | 12≤ h̄

(1− βu)1/2
< ∞,

which, together with Markov inequality and (1)-(2), implies the lemma.
Remark. Note that in the proof of Lee and Hansen (1994, Lemma 3) the
bounds were depending on θ, which was not enough for uniform convergence.
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Lemma 4 (a) For β ≤ β0,
hε

t(θ)
h0t

≤ Kl , ωu

ω0
+

α1u

α10
+

α2u + α1uβu

α2l + α1lβl
< ∞;

(b) For β > β0,
h0t

hε
t(θ)

≤ Hu , ω0

ωl
+

α10

α1l
+

α20 + α10β0

α2l + α1lβl
< ∞.

Proof of Lemma 4. They are trivial and omitted.

Lemma 5 Under A1, for θ ∈ Θ

(a) E
e2
t

ht(θ)
≤ H1 , h̄

ωl
+

(γu − γl)2

ωl
< ∞;

(b) Ln(θ) −→p L(θ) = E
lt(θ)

2
.

Proof of Lemma 5. (a). From Lemma 2(b), we have

E
e2
t

ht(θ)
≤ Eε2t

ω
+

g2

ωl
=

1
ω

Eht(θ) +
g2

ωl
≤ h̄

ωl
+

(γu − γl)2

ωl
< ∞.

(b). By Jensen’s inequality, part (a) of this Lemma, and Lemma 2, we
obtain

E|lt(θ)| ≤ E| ln ht(θ)|+ E(
e2
t

ht(θ)
) ≤ ln Eht(θ) + H1 < ∞.

This allows the application of the SLLN for stationary and ergodic sequences
(see, e.g, Stout (1974, Theorem 3.5.7), which yields the desired result.

Lemma 6 Under A1, supθ∈Θ E| 5 lt(θ)| < ∞.

Proof of Lemma 6. We will only show supθ∈Θ E|∂lt(θ)/∂β| < ∞, which
is the most difficult part. For the rest, see, for example, Lumsdaine (1996)

and Lee and Hansen (1994,Lemma 8). First, define hβt(θ) = ∂ht(θ)
∂β · 1

ht(θ)
.

Differentiating with respect to β both sides of

ht(θ) = ω(1− β) + βht−1(θ) + α1e
2
t−1 + α2e

2
t−2

yields
∂ht(θ)

∂β
= −ω + ht−1(θ) + β

∂ht−1(θ)
∂β

.
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Hence, after iterations,

E|hβt(θ)| = E |
∞∑

k=0

βk ht−k−1(θ)− ω

ht(θ)
|

≤
∞∑

k=0

βkE
ω

ht(θ)
+

∞∑

k=0

βk E|ht−k−1(θ)|
ω

≤ h̄ + ωl

ωl(1− βu)
< ∞.

Now, we can more explicitly write

E|∂lt(θ)/∂β| = E|e
2
t

ht
hβt(θ)− hβt(θ)|

≤ E[E((εt + g)2|Ft−1)
|hβt(θ)|
ht(θ)

] + E|hβt(θ)|

≤ E| h0t

ht(θ)
hβt(θ)|+ E|hβt(θ)|(1 +

g2

ωl
).

For β > β0, from Lemma 1 and Lemma 4(b),

E| h0t

ht(θ)
hβt(θ)| ≤ B ·Hu · E|hβt(θ)| < ∞.

For β ≤ β0,

h0t

hε
t(θ)

≤ ω0 + α10ε
2
t−1 + (α20 + α10β0)

∑k−1
i=0 βi

0ε
2
t−2−i + βk

0h0t−k−1

hε
t(θ)

≤ ω0

ω
+

α10

α1
+

(α20 + α10β0)
α2 + α1β

k(
β0

β
)k + βk

0

h0t−k−1

ω,

which follows from (α2 + α1β)βiε2t−2−i ≤ hε
t(θ) and

∑k−1
i=0 (β0/β)i ≤ k(β0/β)k

as (β0/β) ≥ 1. Thus,

B−1E
h0t

ht(θ)
hβt(θ)

≤ E
h0t

hε
t(θ)

hβt(θ)

≤
∞∑

k=0

βkE
ht−k−1(θ)

ht(θ)

[
ω0

ω
+

α10

α1
+

α20 + α10β0

α2 + α1β
k(

β0

β
)k + βk

0

h0t−k−1

ω

]
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≤ (
ω0

ω
+

α10

α1
)

h̄

ω(1− βu)
+

α20 + α10β0

(α2 + α1β)ω

∞∑

k=0

kβk
0Eht−k−1(θ)

+
1
ω

∞∑

k=0

βk
0Eh0t−k−1

≤ (
ω0

ωl
+

α10

α1l
)

h̄

ωl(1− βu)
+

α20 + α10β0

(α2l + α1lβl)ωl
· β0h̄

(1− β0)2
+

Eh0t

(1− β0)ωl
,

since βkht−k−1(θ)/ht(θ) ≤ 1, which completes the proof.

Proof of Theorem 1. First, note that Θ is compact by assumption. Second,
in Lemma 5(b) we have shown that Ln(θ) converges to L(θ) in probability.
Further, Lemma 6 implies that Ln(θ) satisfies the weak Lipschitz condition
and the condition here is stronger than that in the Theorem 3 of Andrews
(1992). Thus Ln(θ) tends to L(θ) in probability uniformly in Θ and L(θ) is
continuous in Θ from there. Combined with Lemma 3, it yields that

sup
θ∈Θ

|L∗n(θ)− L(θ)| ≤ sup
θ∈Θ

|L∗n(θ)− Ln(θ)|+ sup
θ∈Θ

|Ln(θ)− L(θ)| −→p 0

Third, the proofs in Lumsdaine (1996, Lemma 5 and Theorem 1) can also
cover our case to show that the limiting likelihood L(θ) is uniquely maximized
at θ0.

Now, we have the standard conditions for consistency in nonlinear estima-
tion. That θ̂n −→p θ0 follows from, for example, Amemiya (1985, Theorem
4.1.1).

Lemma 7 Under A1 and A2,

(a) For all ψ > 0 and all r ≥ 1

βrE((β + ψz2
t )−r|Ft−1) < E((1 + ψz2

t )−1|Ft−1) ≤ R(ψ),

where R(ψ) = (2 + ψp)/(2 + ψ) < 1, and p = 1− 1
4κ ∈ (0, 1);

(b) For all finite r,

E((
h0t−k

h0t
)r|Ft−k−1) ≤ (

R0

βr
0

)k,

where R0 = R(α10) < 1;

Sketch of Proof of Lemma 7. Lee and Hansen (1994) used the condition

suptE(z2+δ
t |Ft−1) ≤ Sδ < ∞
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to get a quantity less than unity to uniformly bound the conditional probability
P (z2

t ≤ 1
2 |Ft−1), then, to bound the expectation E( 1

1+ψz2
t
|Ft−1), which was

said to be ’of major importance’. However, since we have now the uniform
finiteness of fourth moment of zt, simply replacing their Sδ by our κ(= S2),
our results follows analogous to Lee and Hansen (1994, Lemma 4(2) and 4(3)).

Lemma 8 Under A1 and A2, for 1 ≤ r ≤ 6

(a) βk ‖ hε
t−k(θ)
hε

t(θ)
‖r≤ (R1/r

l )k uniformly in θ ∈ Θr
l ;

(b) ‖ h0t

hε
t(θ)

‖r≤ Hc , ω0

ωl
+

α10

α1l
+

α20 + α10β

α2l + α1lβl
· 1
ηl

uniformly in θ ∈ Θr;

(c) ‖ hε
t(θ)
h0t

‖r≤ Ku , ωu

ω0
+

α1u

α10
+

α2u + α1uβu

(α20 + α10β0)ηu
uniformly in θ ∈ Θr

u;

(d) ‖ hε
t−k(θ)
hε

t(θ)
‖r≤ KuHu(

R
1/r
0

β0
)k uniformly in θ ∈ Θr

u;

(e) sup
θ∈Θr

‖ hβt(θ) ‖r≤ 1
1− βu

+B2max(R
1
r
l β−1

u (1−R
1
r
l )−1, R

1
r
0 β−1

0 HuKuη−1
u )

, Hβ < ∞.

Lemma 9 Under A1 and A2,

(a) For all θ ∈ Θ4, E| 5 lt(θ)5 lt(θ)′| < ∞;

(b)
1√
n

A
− 1

2
0

[nr]∑

t=1

5l∗t (θ0) =⇒ W (r), where A0 = E(5lt(θ0)5 lt(θ0)′), W (r)

denotes a Brownian motion with covariance matrix I4, I4 being the 4×4
identity matrix, and [.] is the integer part.

Lemma 10 Under A1 and A2, for 1 ≤ r ≤ 6

(a) supθ∈Θ2r
‖ hββt(θ) ‖r≤ 2H2

β < ∞, where hββt = ht(θ)−1∂2ht(θ)/∂β2;

(b) supθ∈Θ3r
‖ hβββt(θ) ‖r≤ 6H3

β < ∞, where hβββt = ht(θ)−1∂3ht(θ)/∂β3.

Lemma 11 Under A1 and A2,

(a) For all θ ∈ Θ4, E| 52 lt(θ)| < ∞;
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(b) For all θ ∈ Θ4 and 1 ≤ i ≤ 5, E| ∂
∂θi

52 lt(θ)| < ∞, where θi is the i-th
element of θ;

(c) supθ∈Θ4
|B̂n(θ) − B(θ)| −→p 0 and B(θ) is continuous in Θ4, where

B̂n(θ) = − 1
n

∑n
t=152l∗t (θ) and B(θ) = −E 52 lt(θ).

After close examinations, we find that Lemma 8-11 can be prove along
the same line as Lee and Hansen (1994, Lemma 5-6, Lemma 8-11) with some
modifications induced by the change in the conditional variance equation (1),
as shown in our lemmas. So proofs of Lemma 8-11 are omitted for sake of
space.

Proof of Theorem 2. First, as indicated in remark 3 after our Theorem
2, we can show that θ∗n is consistent; Next, from Lemma 9(b), we have

1√
n

n∑

i=1

5l∗t (θ0) →D N(0, A0).

By Lemma 11(c), we get that

− 1
n

n∑

t=1

52l∗t (θ) →p B(θ)

and B(θ) is continuous in Θ4. Finally, by the proof of identifiability in The-
orem 1, B0 > 0. Hence, from Amemiya (1985, Theorem 4.1.3), the theorem
follows.

References

Amemiya, T. (1985). Advanced Econometrics. Cambridge: Harvard University
Press.

Andrews, D.W.K. (1992). Generic uniform convergence. Econometric Theory
8, 241-257.

Berkes, I., Horvath, L. and Kokoszka, P. (2003). GARCH processes: structure
and estimation. Bernoulli 9, 201-227.

Billingsley, P. (1968). Convergence of Probability Measure. New York: Wiley.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedastic-
ity. Journal of Econometrics 31, 307-27.

13



Bollerslev, T., Chou, R.Y. and Kroner, K.F. (1992). ARCH modelling in fi-
nance: A review of the theory and empirical evidence. Journal of Econo-
metrics 52, 5-59.

Drost, F.C. and Nijman, T.E. (1993). Temporal aggregation of GARCH pro-
cesses. Econometrica 61, 909-927.

Engel, R.F. (1982). Autoregressive conditional heteroskedasticity with esti-
mates of the variance of United Kingdom inflation. Econometrica 50, 987-
1007.

French, K.R., Schwert, G.W. and Stambaugh, R.F. (1987). Expected stock
returns and volatility. Journal of Financial Economics 19, 3-29.

Lee, S.W. and Hansen, B.E. (1994). Asymptotic theory for the GARCH(1,1)
quasi-maximum likelihood estimator. Econometric Theory 10, 29-52.

Li, W.K., Ling, S. and Mcaleer, M. (2002). Recent theoretical results for time
series models with GARCH errors. Journal of Economic Surveys 16, 245-
269.

Ling, S. and Li, W.K. (1998). Limiting distributions of maximum likelihood es-
timators for unstable ARMA models with GARCH errors. Annals of Statis-
tics 26, 84-125.

Ling, S. and McAleer, M. (2003). Asymptotic theory for a vector ARMA-
GARCH model. Econometric Theory 19, 280-310.

Lumsdaine, R. L. (1991). Asymptotic Properties of the Quasi-Maximum Like-
lihood Estimator in GARCH(1,1) and IGARCH(1,1) Models. Dissertation,
Princeton University.

Lumsdaine, R.L. (1996). Consistency and asymptotic normality of the quasi-
maximum likelihood estimator in IGARCH(1,1) and covariance stationary
GARCH(1,1) models. Econometrica 64, 575-596.

Nelson, D.B. (1990). Stationary and persistence in the GARCH(1,1) model.
Econometric Theory 6, 318-334.

Pagan, A.R. and Schwert, G.W. (1990). Alternative models for conditional
stock volatility. Journal of Econometrics 45(1-2), 267-290.

Stout, W.R. (1974). Almost Sure Convergence. New York: Academic Press.

Weiss, A.A. (1986). Asymptotic theory for ARCH models: Estimation and
testing. Econometric Theory 2, 107-131.

14




