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1 Introduction

Bayesian network (BN) models have an increasing number of applications in
decision analysis and artificial intelligence (Korb & Nicholson, 2003) as well
as in statistics (see e.g. Cowell et al., 1999). A BN model M = 〈G,FG〉
for a set of random variables x = {x1, . . . , xp} is a set of joint probability
distributions, specified via two components: a structure G and a set of local
distribution families FG. The structure G for x is a directed acyclic graph
having for every variable xi in x a node labeled by xi with parents labeled
by PaMi . The structure G represents the set of conditional independence
assertions which are implied by a factorization of a joint distribution for x
given by F (x) =

∏p
i=1 F (xi|PaMi ). The local distributions F (xi|PaMi ) are

the p conditional and marginal probability distributions that constitute the
factorization of F (x). Each such distribution belongs to the specific family of
allowable probability distributions FG.

We assume that x consists of continuous random variables and each local
probability distribution is selected from a family FG which depends on a finite
set of parameters θ ∈ Θ. The parameters for a local distribution are a set of
real numbers that completely determine the functional form of Fκ(xi|PaMi ),
given the network structure. Consequently, the joint probability density for a
BN model is given by

f(x1, . . . , xp; θ) =
p∏

i=1

f(xi; θi|PaMi ),

where θ1, . . . , θp are subsets of θ and f(x; θ) = F ′(x; θ). Whereas in a general
formulation of BN models, the subsets {θi}p

i=1 could overlap allowing several
local distributions to have common parameters, here we shall exclude this
possibility (see subsection 2.1).

In the current study, BN models will be considered in the classification
framework where the outcome of interests, C, falls into ν unordered classes,
which for convenience we denote by the set {1, 2, . . . , ν}. The goal is to build a
rule for assessing the class membership of an item based on p feature variables
x ∈ Rp, whose joint conditional probability density in each class is represented
by a BN model, M, having its own set of parameters, but sharing a common
structure. Using Bayes’ theorem and flipping the densities into class posterior
probabilities Pr(C|x) we construct the classification rule

C = j if Pr(C = j|x) = max
k

Pr(C = k|x), (1.1)
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where Pr(C = j|x) ∝ πjf(x; θj), Pr(C = j) = πj are class prior probabilities,
j = 1, . . . , ν and ∝ denotes proportionality. This is in fact the definition of
a general Bayesian network classifier (BN classifier) commonly found in the
literature; see e.g. Cowell et al. (1999). A well known example of BN classifiers
is the naive Bayesian classifier which is represented by the network structure G
requiring for the set {x1, . . . , xp, C} that the class variable C is the only parent
for each node variable xi, i.e. PaMi = C for all i = 1, . . . , p, and no other
connection is allowed. This implies that the feature variables are independent
given the class variable and G induces the following factorization of each class
probability density f(x, θj) =

∏p
i=1 f(xi, θ

j
i ). Using Bayes theorem we get

the classifier of the form Pr(C = j|x) ∝ πj
∏p

i=1 f(xi; θ
j
i ). Despite its naive

assumption, a variety of empirical results shows surprisingly that the naive
BN classifier outperformed many sophisticated classifiers even in the domains
where clear feature dependence exists; see for instance Barash & Friedman
(2002). Theoretical analysis is provided by e.g. Friedman (1997) and Zang &
Ling (2001).

We examine approaches that maintain the basic structure of the naive
BN classifier, however allowing its augmenting by adding arcs between fea-
ture nodes, when needed, thus dispensing with its strong assumptions about
independence. Among these we single out a model of the form f(x; θj) =∏κ

i=1 fi(xi; θ
j
i ) where x1, . . . ,xκ are pairwise disjoint subsets of feature vari-

ables and the correspondent augmented nodes in G are connected via κ fully
connected subnetworks, assuming however no arcs between the subnetworks.

The focus of this paper is on the technique for evaluating a feature sep-
aration properties that uses the weighting of the augmented BN model as a
means to improving the classification accuracy. We emphasize that the ap-
proach described herein is carried out jointly and discriminatively together
with the estimation of the specific classifier and is an extension of the results
by Pavlenko & von Rosen (2001) for augmented BN models.

Classification performance is analyzed in a high-dimensional framework,
i.e. assuming that the size of the training sample is comparable to the number
of feature nodes, which can severely hurt a BN classifier. The degradation ef-
fect is known as “curse of dimensionality” and an important goal of this study
is to evaluate this effect when using a weighted form of the augmented BN
model. In order to tackle this problem effectively, we employ a growing di-
mension asymptotic approach (see Girko, 1995), meaning that the relationship
between dimensionality, p, and size of the data set for learning the network,
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n, satisfies the condition: limn→∞ λ(p, n) < ∞, where λ(p, n) is a positive
function increasing along p and decreasing along n. Herein we assume that p
and n grow somehow simultaneously so that the asymptotics we are going to
exploit can be based on the ratio

lim
n→∞

p

n
= c, (1.2)

where 0 < c < ∞ is a certain constant.

The contributions of this paper are as follows: a unified methodology that
combines the technique for scoring a set of features for their separation strength
and evaluating the high dimensionality effects (Section 2); weighted form of
the augmented BN classifier and analysis of its performance accuracy using
growing dimension asymptotics; a formula that computes the optimal in a
sense of minimum misclassification probability type of the weight-function for
different a priori assumptions about the feature separation strength (Section
3).

2 Passage to the augmented BN model via binary
classification

In what follows we restrict ourselves to binary classification, the special (but
common) case in which ν = 2. Although most of the concepts generalize to the
case ν ≥ 3, the derivations and underlying intuition are more straightforward
for this special “two-class” case. Hastie et al. (2001) suggested the follow-
ing pairwise coupling technique for the multi-class setting: Solve each of the
two-class problems, and then for a test observation, combine all the pairwise
decisions to form a ν-class decision. Observe that pairwise coupling combi-
nation rule is quite intuitive: Assign to the class that wins the most pairwise
comparisons. For convenience in what follows, we will make use of the decision
boundaries that are expressed in terms of a logarithmic difference between two
densities, i.e. the discriminant score,

D(x; θ1, θ2) = `(x; θ1)− `(x; θ2),

where `(x; θj) := ln f(x; θj). To motivate why this representation of the clas-
sifier is attractive, note that discriminant preserves the ordering of the class
posterior probabilities leading to the decision rule:

C(x) =
{

1 whenever D(x; θ1, θ2) > ln π2
π1

,

2 otherwise.
(2.1)
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The main advantage of using the discriminative formulation is that the perfor-
mance accuracy of D(x; θ1, θ2) can be measured by misclassification probabili-
ties defined as follows:

E1 = Pr(D(x; θ1, θ2) ≤ ln
π2

π1
|C(x) = 1),

E2 = Pr(D(x; θ1, θ2) > ln
π2

π1
|C(x) = 2). (2.2)

These can then form the Bayes risk, RD(x;θ1,θ2) = π1E1 + π2E2, which in turn
gives a straightforward way of judging the classification accuracy. Note also
that in the symmetric case with equal prior probabilities both class-wise error
rates are equal, and the minimum attainable Bayes risk is RD(x;θ1,θ2) = 1

2(E1 +
E2).

2.1 κ-blocking (augmenting) and estimation procedure

In our approach, the strong independence assumption of the naive BN model
is relaxed by merging highly dependent feature variables together to subset
of variables (blocks), or equivalently, by connecting the correspondent feature
nodes in the network via a fully connected subnetworks, assuming no arcs
between the subnetworks.

In the present study, we fix the subset size to some constant, m, and require
the subsets to be non-overlapping, in which case the network structure forms
a decomposition of both x and θj into κ pairwise disjoint, independent, m-
dimensional subsets, so that p = κm and x = (x1, . . . ,xκ), θj = (θj

1, . . . , θ
j
κ)

where xi = (xi1, . . . , xim), θj
i = (θj

i1, . . . , θ
j
im) i = 1, . . . , κ, j = 1, 2. We call

these structures augmented naive Bayesian networks (augmented BN) and the
subsets blocks.

It is important to note that finding and adding the best set of augment-
ing arcs is generally an intractable problem, since it is equivalent to learning
the best BN model among those in which C is the class variable. However,
by restricting the network complexity first, it is possible to explore the best
partitioning that can approximate the data set. For algorithms discovering
the appropriate feature nodes decompositions in high dimensional classifica-
tion problems see, e.g. Kusiak (2000) and Maimon & Rockach (2001) and
references therein.

Augmenting the network followed by the block independence assertions
implies that the true joint probability density of x for each class can be repre-
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sented as a product of local interaction models, i.e. f(x; θj) =
∏κ

i=1 fi(xi; θ
j
i ),

where the local m-dimensional density fi(xi; θ
j
i ) belongs to a family Fθj which

depends on a finite set of parameters θj
i ∈ Θ, i = 1, . . . , κ, j = 1, 2. We assume

that the family Fθj satisfies the following regularity conditions: for each xi,
the function `i(xi; θ

j
i ) := ln fi(xi; θ

j
i ) is three times differentiable in the com-

ponents of θj
i and all first-, second- and third- order derivatives with respect

to θj
i of `(xi; θ

j
i ) are integrable with respect to f(x; θj) dx, j = 1, 2. Conse-

quently for an augmented BN model the problem of learning the classifier (2.1)
reduces to computing the appropriate estimates of the unknown parameter θj

from the training set of data. To completely specify the learning method in a
high-dimensional framework, we define the asymptotic properties of estimates
θ̂j
i of the ith local model given data xj

1, . . . ,x
j
n, a random sample from f(x; θj),

j = 1, 2 and assuming the same rate of growing for both sample sizes so that
n1 = n2 = n. We introduce the statistics T j

i = n1/2(θ̂j
i − θj

i )
′I1/2(θj

i ), which
for each i describes the standardized bias of the estimate θ̂j

i , where

Ij = I(θj)ik =
∫

∂`(x, θj)

∂θj
i

∂`(x, θj)

∂θj
k

f(x, θj) dx

is the Fisher information matrix which is positively definite for all θj ∈ Θj .
By the network structure, the matrices are of block-diagonal form with blocks
Ij
i = I(θj

i ) of dimension m ×m, j = 1, 2. We assume that the estimate θ̂j
i is

such that for each j uniformly in i:

1. limn→∞maxi |E[T j
i ]| = 0, where E[·] is the expectation operator.

2. All eigenvalues of the matrices nE[(θ̂j
i − θj

i )(θ̂
j
i − θj

i )
′] are bounded from

above so that

lim
n→∞max

i
|nE[(θ̂j

i−θj
i )
′I(θj

i )(θ̂
ν
i −θj

i )]−m| = lim
n→∞max

i
|E[〈T j

i , T j
i 〉]−m| = 0,

(2.3)
where 〈•, •〉 denotes the scalar product.

3. maxi E[|T j
i |3] = O( 1

n3/2 ).

4. The asymptotic distribution of T j
i converges to Nm(0, I) as n approaches

infinity.

These assumptions form the standard set of “good” asymptotic properties, of
which the first three reflect unbiasedness, efficiency and boundness of the third
absolute moment of θ̂j

i , uniformly in i as n →∞, i = 1, . . . , κ.
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Let us now in this framework have a look at the structure of the classifier
D(x; θ̂1, θ̂2). By the network structure the block size is fixed to the constant
m, which implies that the total number of blocks κ, must grow together with
n according to (1.2) in such a way that

lim
n→∞

κ

n
= ρ, where 0 < ρ < ∞ (2.4)

and c = mρ. This assumption being designed for the special dependence
structure among the feature nodes, is just a particular case of (1.2). Further,
the classifier induced by augmenting the network is log additive in each block,
i.e.

D(x; θ̂1, θ̂2) =
κ∑

i=1

Di(xi; θ̂1
i , θ̂

2
i ), (2.5)

where Di(xi; θ̂1
i , θ̂

2
i ) = `i(xi; θ̂1

i )−`i(xi; θ̂2
i ) and the corresponding classification

procedure thus is within the frame of Generalized Additive Models; see Hastie
et al. (2001). Observe that the naive BN model can be viewed as a particular
case of the augmented one: if we assume that m = 1, (and so κ = p), then the
resulting classifier D(x; θ̂1, θ̂2) =

∑p
i=1Di(xi; θ̂1

i , θ̂
2
i ) is additive in each of the

features and corresponds to the usual naive BN.

The main advantage of the additive structure of the augmented classifier
is that in the asymptotic framework specified by (2.4), D(x; θ̂1, θ̂2) can be
viewed as a sum of a growing numbers (κ grows together with n) of independent
random variables and, under the regularity conditions imposed on the family of
local densities Fθ, we may state the convergence of this sum towards a Gaussian
distribution. This methodology has been studied in details in Pavlenko & von
Rosen (2001), where the asymptotic distribution of D(x; θ̂1, θ̂2) was used to
establish the minimum misclassification risk

RD(x;θ̂1,θ̂2) = Φ
(
−
√J
2

1√
1 + 2mρ

J

)
, (2.6)

where J denotes the cross-entropy distance between the classes defined by

J =
∫

ln
f1(x; θ1)
f2(x; θ2)

(
f1(x; θ1)− f2(x; θ2)

)
dx. (2.7)

2.2 Blocks separation strength

In this section, we propose a distance-based measure by which a separation
strength of a feature node, or a block of nodes, can be assessed. Since the
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performance accuracy of a BN classifier is measured by the misclassification
risk, R, the latter seems to be a most appealing function for this assessment.
However, as it is proved by (2.6), the misclassification risk is a monotone
decreasing function of the cross-entropy distance between classes, which means
that distance-based scoring measure induce over the set of all potential blocks,
the same ranking as the one induced by R. Details of this equivalence are
given in Pavlenko (2003).

The product form of class densities implies that the cross-entropy distance
J := J (κ) defined by (2.7) is additive and decomposable as J (κ) =

∑κ
i=1 Ji,

where

Ji =
∫

ln
fi(xi; θ1

i )
fi(xi; θ2

i )
(f(x; θ1)− f(x; θ2))dx (2.8)

is the input of ith block into the distance J (κ). We define the separation score
of the ith block by the value nJi

2 , which is a normalized input of ith block
towards the distance J (κ) and its sample based analogue nĴi

2 . Normalization
by n is to ensure that 0 < nJi

2 < ∞ as n →∞ according to (2.4).

In the asymptoitc framework specified by (2.4) it is worthwhile introducing
a distribution function of the block scores as

Hκ(u) =
1
κ

κ∑

i=1

1{nJi
2

,∞}(u),

where 1{A} is the indicator function of the set A. We suppose also that the
convergence limκ→∞Hκ(u) = H(u) takes place uniformly in u and H(u) is a
known distribution.

By the construction of Ĵi it is clear that the sample based separation
strength is affected by the high dimensionality. To give an impression about
this effect we establish the asymptotic distribution of nĴi

2 and find the explicit
expression of the bias induced by the sample based scoring technique. We start
with the following auxiliary

Lemma 2.1 Let γ2
i = 〈γi, γi〉 = n

2 (θ1
i − θ2

i )
′I(θi)(θ1

i − θ2
i ), where I(θi) is the

ith block’s information matrix, and θi = θ1
i +θ2

i
2 . Then the true separation score

admits the representation

nJi

2
= γ2

i +O(n−1/2),
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and the values nĴi
2 are uniformly bounded with respect to i = 1, . . . , κ as n →

∞.

A proof of this lemma is based on standard Taylor-expansion arguments and
the regularity conditions imposed on the family Fθj . Details of the proof can
be found in Pavlenko (2001).

Theorem 2.1 Let g(u;m, γ2) be the probability density of a non-central χ2

distribution G(u; m, γ2) with m degrees of freedom and non-centrality parameter
γ2. Let also H(u; γ2

i ) be a distribution function of nĴi(n)
2 , where γ2

i is specified
in Lemma 2.1. Then, uniformly in i |G(u;m, γ2)−H(u; γ2

i )| −→ 0 as n →∞,
i = 1, . . . , κ.

Proof: Observe that Ĵi(n) admits the representation

Ĵi(n) = (θ̂1
i − θ̂2

i )
′I(θi)(θ̂1

i − θ̂2
i ) +O(n−3/2), (2.9)

where I(θi) is the ith block’s information matrix, and θi = θ1
i +θ2

i
2 . Furthermore,

(θ̂2
i − θ̂1

i )
′I(θi)(θ̂2

i − θ̂1
i ) = n−1〈(ωi + T 2

i − T 1
i ), (ωi + T 2

i − T 1
i )〉 (2.10)

where ωi =
√

n[I1/2(θi)]′(θ1
i − θ2

i ), i = 1, . . . , κ, ν = 1, 2. These results are
proved in Pavlenko (2001). The distribution function of the random variable
T 2

i −T 1
i√

2
also approaches Nm(0, I) uniformly with respect to i = 1, . . . , κ since

T 2
i and T 1

i are independent random vectors, whose distributions are, by as-
sumptions (2.3), asymptotically Gaussian uniformly in i as n →∞. Therefore
the distribution of 〈ωi + T 2

i − T 1
i , ωi + T 2

i − T 1
i 〉, as well as nĴi(n)

2 , approaches
G(u; m, γ2

i ), where γi = ωi/
√

2, i = 1, . . . , κ. 2

Now, using properties of a χ2 distribution (see Johnson et al. 1995, p.442),
Lemma 2.1 and Theorem 2.1, we can under mild regularity conditions conclude
that

E
[nĴi

2

]
=

nJi

2
+ m +O(n−3/2),

which shows the effect of estimation: the true separation strength is overes-
timated and the bias term of each block- estimator is of order m, the block
size. The accumulation of the bias over the increasing number of blocks in
growing dimension asymptotics leads to that bias of the classifier (2.5) is of
order O(κ/n) (curse of dimensionality factor). We collect these results in the
following proposal:
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(i) to utilize the block separation strength, thereby counteracting the equal-
izing of impacts of low- and highly- relevant blocks inherent in standard
augmented BN classifier;

(ii) to account for (and bring down) the effect of a bias induced by high
dimensionality when using estimates. This is the case where the results
of Theorem 2.1 will be relevant.

3 Weighted BN classifier

We now elaborate the augmented BN classifier by a weighting procedure which
takes into account the block separation strength. We specify the weight-
function of the ith block by wi := w(nĴi

2 ) where wi(u) is nonnegative and
bounded for u > 0 and define the weighted BN classifier as

Dw(x; θ̂1, θ̂2) =
κ∑

i=1

wiDi(xi; θ̂1
i , θ̂

2
i ), (3.1)

which provides us with the natural extension of the augmented BN model: each
local classifier Di(xi; θ̂1

i , θ̂
2
i ) is weighted by the correspondent block separation

score nĴi
2 . One advantage of this approach is immediately clear: Applying such

a weighting scheme gives the modified classifier of an additive form and we can,
using the methodology proposed in Pavlenko & von Rosen (2001), prove that
its distribution is asymptotically Gaussian. This in turn makes it possible to
optimize the weight-function in a sense of minimum misclassification risk.

3.1 Asymptotic moments of the weighted BN classifier

To prove that the distribution of Dw(x; θ̂1, θ̂2) is asymptotically Gaussian we
need to specify the first three moments of wiD(xi; θ̂1

i , θ̂
2
i ) and show that Li-

apunov conditions (see, e.g. Rao, 1973, p. 127) are applicable to the sum
(3.1). To facilitate calculations we turn to integrated local classifier and use
the following representations:

∫
Di(xi; θ̂1

i , θ̂
2
i )f(x; θ1)dx =

1
2n
〈(
√

2γi + T 2
i ), (

√
2γi + T 2

i )〉 − 1
2n
〈T 1

i , T 1
i 〉

+O(n−1/2), (3.2)
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∫
[Di(xi; θ̂1

i , θ̂
2
i )]

2f(x; θ1)dx =
1
n
〈
√

2γi + T 2
i − T 1

i ,
√

2γi + T 2
i − T 1

i 〉

+O(n−1/2), (3.3)∫
[Di(xi; θ̂1

i , θ̂
2
i )]

3f(x; θ1)dx = O(n−1/2), (3.4)

where T ν
i , ν = 1, 2 is defined in subsection 2.1, i = 1, . . . , κ. These represen-

tations have been obtained in Pavlenko (2003) using asymptotic expansions
of ith local densities about θj

i . The advantage of considering the integrated
Di(xi; θ̂1

i , θ̂
2
i ) is that we can use asymptotic properties of T ν

i (see (2.3)) when
specifying the moments of the weighted BN classifier.

Lemma 3.1 Under the regularity conditions for the family of the local den-
sities, Fθj , and assuming that (2.3)-(2.4) hold, the moments of Dw(x; θ̂1, θ̂2)
have the limits

E[Dw(x; θ̂1, θ̂2)] → E(w), Var[Dw(x; θ̂1, θ̂2)] → V (w),

as n →∞, where

E(w) = ρ

∫
γ2[

∫
w(u)g(u;m + 2, γ2)du]dH(γ2), (3.5)

V (w) = 2ρ
∫

[
∫

uw2(u)g(u; m, γ2)du]dH(γ2). (3.6)

Proof: See Appendix.

The results of Lemma 3.1 give us means to specify the asymptotic distribu-
tion of the weighted BN classifier. By (3.5)-(3.6) the sum

∑κ
i=1 wiDi(xi, θ̂

1
i , θ̂

2
i )

satisfies the Liapunov conditions and consequently the distribution of the
Dw(x; θ̂1, θ̂2) converges to the normal one as n →∞.

3.2 Misclassification risk and optimal choice of weight-function

Having established the asymptotic distribution of the weighted BN classifier
we are now ready to compute the limiting error probabilities and analyze the
classification performance.

Theorem 3.1 Let Dw(x; θ̂1, θ̂2) be a weighted BN classifier, where the weight-
ing is governed by the factor w(nĴi

2 ), i = 1, . . . , κ. Then the misclassification

10



probabilities of Dw(x; θ̂1, θ̂2) given by

E1(w) = Pr
(
Dw(x; θ̂1, θ̂2) ≤ π0|C(x) = 1

)
,

E2(w) = Pr
(
Dw(x; θ̂1, θ̂2) > π0|C(x) = 2

)
, (3.7)

where π0 = ln π2
π1
, have the limits

E1(w) −→ Φ
(
− E(w)− π0√

V (w)

)
, E2(w) −→ Φ

(
− E(w) + π0√

V (w)

)
, (3.8)

as n →∞. Further, let W be a class of functions such that for all w(u) ∈ W
both E(w) and V (w) do not equal to zero, then assuming that π1 = π2, and
denoting w0(u) := arg minw(u)∈W R(w), we get

w0(u) =
∫

γ2g(u; m + 2, γ2)dH(γ2)
u

∫
g(u; m, γ2)dH(γ2)

, (3.9)

where g(u; m, γ2) is the probability density of the non-central χ2 distribution
with m degrees of freedom and non-centrality parameter γ2.

Proof: The proof of assertion (3.8) follows straightforwardly by using the
asymptotic normality of Dw(x, θ̂1, θ̂2) and taking into account the limiting
results from Lemma 3.1.

In order to prove (3.8) we notice that minimization of R = R(w) is equiv-
alent to maximization of∫

γ2[
∫

w(u)g(u; m + 2, γ2)du]dH(γ2)]2∫
[
∫

uw2(u)g(u; m, γ2)du]dH(γ2)
(3.10)

with respect to w(u). By changing the order of integration in both numerator
and denominator of (3.10) and then using the Cauchy-Schwartz inequality we
obtain

[
∫

w(u)
∫

γ2g(u; m + 2, γ2)dH(γ2)du]2 (3.11)

≤
∫

uw2(u)[
∫

g(u;m, γ2)dH(γ2)]du

∫
[γ2g(u; m + 2, γ2)dH(γ2)]2

u
∫

g(u; m, γ2)dH(γ2)
du,

with equality being attained if and only if

w(u)

√
u

∫
g(u; m, γ2)dH(γ2) ∝

∫
γ2g(u; m + 2, γ2)dH(γ2)√
u

∫
g(u;m, γ2)dH(γ2)

,
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from which (3.9) immediately follows. 2

It is not difficult to show that w0(u) is bounded, continuous for u > 0 and
w0(u) ∈ W . The corresponding minimum value of R is

R0 = Φ
(
− 1

2

√
2ρ

∫
[
∫

γ2g(u; m + 2, γ2)dH(γ2)]2

u
∫

g(u; m, γ2)dH(γ2)
du

)
. (3.12)

The practical implementation of the proposed weighting technique requires
specification of the distribution H(γ2) of the block separation strength. To
give an impression of how the weighting by w0(u) works, we consider one
simple choice of H(γ2).

Example: Distributions that can describe the a priori knowledge about the
block separation strength include e.g. a point mass distribution, dH(γ2) = 1
concentrated in a certain point, γ2. Using this type of distribution means
that the contributions of all blocks into the distance J (κ) are identical so that
the separation strength of all blocks is assumed to be the same and equal to
γ2. Then in a view of (3.9) and given the point mass distribution H(γ2), the
optimal weight-function, w0, turns out to be

w0(u) =
γ2g(u;m + 2, γ2)

ug(u;m, γ2)
,

which according to (3.12) gives the limiting risk

R(w0) = Φ
(
− 1

2

√
2ρ

∫
[γ2g(u;m + 2, γ2)]2

ug(u; m, γ2)
du

)
.

We nowmay understand the effect of weighting by comparingR(w0) withR(1),
i.e. with the misclassification risk when w0 = 1 (no weighting is involved).
For this case, we use (3.5)-(3.6) as well as properties of the non-central χ2

distribution and find

E(1) = ρ

∫
γ2dH(γ2) = ργ2,

V (1) = ρ

∫
[
∫

ug(u;m, γ2)du]dH(γ2) = ρ(γ2 + m),

which in turn gives

R(1) = Φ
(
− 1

2

√
2ρ

γ4

γ2 + m

)
.

12



Using standard arguments it is not difficult to show that
∫

[g(u; m + 2, γ2)]2

ug(u; m, γ2)
du >

∫
g(u; m + 2, γ2)
ug(u; m, γ2)

du >

∫
g(u;m + 2, γ2)du∫
ug(u; m + γ2)du

=
1

γ2 + m
.

Since Φ(y) is a decreasing function of y, we conclude that R(w0) < R(1).

Observe that the obtained result could be seen as somewhat counter in-
tuitive: Assuming the true separation strength to be equal for all blocks and
thereby giving them equal weights, should not effect classification accuracy.
Our results however clearly indicate the decrease of misclassification risk when
weighting by w0. A clue to the decrease of R(w0) is provided by the results
of Theorem 2, where we have shown that when using sample based weight-
function in a high dimensional setting, the block separation strength is heavily
overestimated. Thus, even in a specific case of a point mass distribution H(γ2),
the optimal weight-function w0 established in Theorem 3 turns out to be suf-
ficiently sensitive to the high dimensionality effects and provides the desirable
down-weighting.
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Figure 1: Optimal weight function w0(u) (left) and associated misclassification
risk R(w0) (right), given that dH(γ2) = 1, γ2 = 1.8 and n = 36. The behavior
of w0(u) and R(w0) with m = 3, κ = 8 and ρ = 0.222 (solid line); with m = 6,
κ = 4 and ρ = 0.111 (dashed line).

We conclude with some graphical illustrations of the weighting technique,
which is given by Figure 1 where w0 and R(w0) are plotted under different
values of m, κ and ρ. As expected each weight-function places substantial
part of its mass to the right tail (left panel) so that the block impacts with

13



high deviations of estimates are down-weighted. Observe also that the weight-
function seems to be more “flat” as the block size m increases. The right
panel shows the asymptotic misclassification risk R(w0) when weighting by
w0. Not surprising it is seen to be slowly decreasing given the smaller number
of independent blocks in the network, i.e. when κ = 4 (dashed line) whereas
embedding more independence in the network structures, i.e. letting κ = 8
and reducing the block size, lead to a faster decrease (solid line). Roughly
speaking, given that the structure of BN is correct, the corresponding additive
classifier borrows strength from the local density which naturally results in a
better classification accuracy. However, the design of these procedures should
take into account block separation strength combined with the effect of high
dimensionality induced by the sample based weight-function.

Appendix

Proof of Lemma 3.1: To prove (3.5), we use the representation (3.2) for∫ Di(xi, θ̂
1
i , θ̂

2
i )fi(xi, θ

1
i )dxi and observe that

1
2n

κ∑

i=1

E[wi · (〈
√

2γi + T 2
i ,
√

2γi + T 2
i 〉 − 〈T 1

i , T 1
i 〉)]

=
1
n

κ∑

i=1

E[wi · (〈γi, γi〉+
√

2〈γi, T
2
i 〉)] (A.1)

since T 1
i and T 2

i are independent and identically distributed. By the distri-
butional properties of nĴi(n)

2 established in Theorem 2.1, the first summand of
the right-hand side of (A.1) can be transformed as follows

1
n

κ∑

i=1

E[w(
nĴi

2
)〈γi, γi〉] =

κ

n

1
κ

κ∑

i=1

〈γi, γi〉
∫

w(u)g(u; m, γ2
i )du +O(n−1/2).

Therefore, since Hn(·) converges towards H(·) as n →∞, we get by Helly-Bray
theorem (see Rao, 1973)

1
κ

κ∑

i=1

〈γi, γi〉
∫

w(u)g(u;m, γ2
i )du−→

∫
γ2[

∫
w(u)g(u; m, γ2)du]dH(γ2).

(A.2)
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Now we take a closer look at the expectation

1
n

κ∑

i=1

E
[
w(

nĴi(n)
2

)
√

2〈γi, T
2
i 〉

]
,

and note that nĴi(n)
2 and T 2

i are statistically dependent. Therefore the main
point is to evaluate E[w(u)y], where u tends to G(u;m, γ2) and y tends to
N(0, 1). First we perform the simple (univariate) case when m = 1. As it will
be explained below obvious changes will suffice to treat the vector case. We
introduce the univariate analogies of T 1

i and T 2
i and define them by y1 and y2

respectively. Then the expectation to be evaluated is

E[w((y2 − y1 + γ)2)y2].

Consider first only E[w((y2 − y1 + γ)2)]. Since y1 and y2 are independent and
distributed as N(0, 1) we get

E[w((y2 − y1 + γ)2)] =
1√
2π

∫∫
w((y2 − y1 + γ)2)e−y2

1/2e−y2
2/2dy1dy2,

and by changing variables

E[w((z2 − z1)2)] =
1√
2π

∫∫
w((z2 − z1)2)e−z2

1/2e−(z2−γ)2/2 dz1 dz2,

where z2 = y2 + γ and z1 = y1. It is further seen that z2 under the integrals
can be obtained by differentiating with respect to γ: Indeed

∂

∂γ
E[w((z2 − z1)2)] =

1√
2π

∫∫
(z2 − γ)w((z2 − z1)2)e−z2

1/2e−(z2−γ)2/2dz1dz2,

or in terms of u and y2

∂

∂γ
E[w(u)] = E[y2w(u)]. (A.3)

Note that the expectation to be evaluated is given by the right-hand side of
(A.3). Taking the same approach to the vector case (i.e. m > 1) and coming
back to T 2

i instead of y2 we establish the following

〈γi, E[T 2
i w(u)]〉 = 〈γi,

∂

∂γ
E[w(u)]〉. (A.4)
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Using the following recurrence relation for the non-central χ2 distribution
G(u; m, γ2)

∂G(u;m, γ2)
∂γ

= γ[G(u;m + 2, γ2)− G(u; m, γ2)], (A.5)

see Johnson et al. (1988) and applying (A.5) to (A.4) we obtain

〈γi,
∂

∂γ
E[w(u)]〉

= 〈γi, γi〉
∫

w(u)dG(u; m + 2, γ2)− 〈γi, γi〉
∫

w(u)dG(u; m, γ2). (A.6)

Combining (A.4) with (A.6) and using (A.2) gives

1
2n

κ∑

i=1

〈γi, γi〉
∫

w(u)dG(u; m, γ2
i ),

from which we conclude that

1
n

κ∑

i=1

γ2
i

∫
w(u)dG(u; m + 2, γ2

i )−→ρ

∫
γ2[

∫
w(u)dG(u;m + 2, γ2)]dH(γ2)

as n → ∞. Since the function under the integral is bounded, we can use the
Helly-Bray theorem and turn to integration with respect to H(u).

To evaluate the second moment we use the representation (3.3) and distri-
butional properties of nĴi(n)

2 from Theorem 2.1. These give

E
[ κ∑

i=1

w2
i ·

∫
[Di(xi, θ̂

1
i , θ̂

2
i )

]2
fi(xi, θ

1
i )µ(dxi)

=
1
n

κ∑

i=1

E[w2
i 〈
√

2γi + T 2
i − T 1

i ,
√

2γi + T 2
i − T 1

i 〉] +O(n−1/2). (A.7)

The right-hand side of (A.7) yields

2
n

κ∑

i=1

∫
uw2(u)dG(u;m, γ2

i )−→2ρ

∫∫
uw2(u)dG(u; m, γ2)dH(γ2),

by the same arguments that have been used for the first moment. This com-
pletes the proof.
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