Classification of Agricultural Crops and Quality Assessment Using Multispectral and Multitemporal Images

Bo Ranneby and Jun Yu

Research Report
 Centre of Biostochastics

Classification of Agricultural Crops and Quality Assessment Using Multispectral and Multitemporal Images

Bo Ranneby ${ }^{1}$ and Jun Yu
Centre of Biostochastics
Swedish University of Agricultural Sciences
SE-901 83 Umeå, Sweden

Abstract

In this paper, a new approach for classification of multitemporal satellite data sets, combining multispectral and change detection techniques is proposed. The algorithm is based on the nearest neighbor method and derived in order to optimize the average probability for correct classification, i.e. each class is equally important. The new algorithm was applied to a study area where satellite images (SPOT and Landsat TM) from different seasons over a year were used. It showed that using five seasonal images can substantially improve the classification accuracy compared to using one single image. As an real application to a large scale, the approach was applied to the Dalälven's catchment area.

As the distributions for different classes are highly overlapping it is not possible to get satisfactory accuracy at pixel level. Instead it is necessary to introduce a new concept, pixel-wise probabilistic classifiers. The pixel-wise vectors of probabilities can be used to judge how reliable a traditional classification is and to derive measures of the uncertainty (entropy) for the individual pixels. The probabilistic classifier gives also unbiased area estimates over arbitrary areas. It has been tested on two test sites of arable land with different characteristics.

Keywords: Classification, nearest neighbor method, probabilistic classifier, agricultural crops, quality assessment, multispectral and multitemporal images, remote sensing, catchment area.

[^0]
1 Introduction

The aim with this study is to test the usefulness of remote sensing methods for classification of agricultural crops. The test area is located in Dalarna, Sweden. Characteristic for agriculture fields in that area is that they are long and narrow, which is a complication for the classification. As a consequence, several of the existing remote sensing classification methods will not give satisfactory results. For example, the traditional maximum likelihood method will not work for classification of rare classes. To overcome most of the problems with traditional methods we use a new approach for classification of multitemporal satellite data sets, combining multispectral and change detection techniques. Next section is devoted to describe this new classification algorithm, and furthermore to introduce the pixel-wise probabilistic classifier, a new concept for measuring the uncertainty at the pixel level. Section 3 presents the study area and input data including masks, satellite images, and field data. Results of classification for the study area and discussion are given in Section 4. An real application of the new approach to a large scale is presented in Section 5. More detailed class definitions and classification results are referred to Appendix.

2 Methods

The classification algorithm developed in this paper will be based on the nearest neighbor (k-NN) method, introduced by Fix and Hodges (1951). The main procedures are as follows.

- Define the target function. The probabilities of correct classification for each class are used. Note that it differs from the overall correct classification, which is often used in various applications.
- Denoise the feature vector. The wavelet shrinkage method based on 2D-wavelet transform is used to denoise the images (Yu et al. 2000, Yu and Ekström 2002). The feature vector consists of components that are pixel values from different spectral bands.
- Remove outliers from the reference data. When the feature vector high dimension and the number of classes is large, new data editing methods are needed in order to remove outliers due to poor quality of field data, and to find out the prototypes for each class in the case of nearest neighbor classifiers. This must be done so that poor quality data is removed at the same time as most of the natural variations within the different classes are kept.
- Calculate the information values in the components in the feature vector. Before the feature vector can be used the components have to be rescaled. The size of the rescaling factor is a function of the dependence between the studied objects and the component. Since any natural order relation between the classes does not exist conventional dependence measures, such as the correlation coefficient, cannot be
used. Instead measures with the origin in information theory are used (Rajski, 1961, 1964).
- Determine a proper metric. We prefer to use the following metric:

$$
\sqrt{\sum_{i=1}^{d} w_{i}^{2}\left|x_{i}(\mathbf{s})-x_{i}(\mathbf{t})\right|^{2}}
$$

where $\mathbf{x}(\mathbf{s})=\left[x_{1}(\mathbf{s}), x_{2}(\mathbf{s}), \ldots, x_{d}(\mathbf{s})\right]$ and $\mathbf{x}(\mathbf{t})=\left[x_{1}(\mathbf{t}), x_{2}(\mathbf{t}), \ldots, x_{d}(\mathbf{t})\right]$ are two pixels at location \mathbf{s} and \mathbf{t}, with attribute of the spectral components, d is the dimension of feature vector, $w_{i}=\frac{\alpha_{i}^{p} / q_{i}}{\sum \alpha_{i}^{p} / q_{i}}$ is the rescaling factor, q_{i} and α_{i} are the the inter-quartile range and the information value of the i th component, respectively, and p is determined so the target function is maximized. Usually p equals to 1.

- Determine prototypes for the classes. Here the information about the occurrence of different classes in the reference data can be used.
- Run a nonparametric classification. Here the nearest neighbor classifier is used (Fix and Hodges, 1951, Ripley, 1996).
- Declare the quality of classification result by using probability matrices. The probability matrix is based on the confusion matrix and defined as $\mathbf{P}=\left[P_{i j}\right]$ where $P_{i j}$ is the probability that class i is classified as class j.

The classification algorithm is derived in order to optimize the average probability for correct classification, i.e. each class is equally important. If we want to have good classification performance also for small classes they have to be overestimated (unless the classification is 100% perfect). Traditional methods as Maximum likelihood classification or Linear Discriminant Analysis (LDA) with or without prior information fail completely (Ranneby \& Yu, 2003).

However, as the distributions for different classes are highly overlapping it is not possible to get satisfactory accuracy at pixel level. Instead it is necessary to introduce a new concept, pixel-wise probabilistic classifiers. This concept is closely related to fuzzy classification; see Bezdek et al. (1999) for different definitions. Instead of classifying each pixel to a specific class, each pixel is given a probability distribution describing how likely the different classes are. The drawback with fuzzy classifiers is that until now the methods are not based on any rigorous theory and the literature is sparse where the probabilistic classifier definition is used. The probabilistic classifier derived in this project will be based on the k-NN method. Articles on fuzzy classification and k-NN are available, see e.g. Bereau \& Dubuisson (1991) and Kissiov \& Hadjitodorov (1992), but they have a different scope. To be useful for area estimation the probabilities must be extracted from proper class distributions. When the classifier uses distances in feature space to derive the probabilities it is intuitively obvious that the probabilities will be inversely proportional to the distances raised to some power. However,
there is only one value that is correct and that value depends on the number of components in the feature vector.

The pixel-wise vectors of probabilities can be used to judge how reliable a traditional classification is and to derive measures of the uncertainty (entropy) for the individual pixels. The entropy at pixel \mathbf{s} is defined as $-\sum_{i=1}^{d} p_{i}(\mathbf{s}) \log p_{i}(\mathbf{s})$, where $\mathbf{p}(\mathbf{s})=\left[p_{1}(\mathbf{s}), p_{2}(\mathbf{s}), \ldots, p_{d}(\mathbf{s})\right]$ is the probability vector on this pixel. It is extremely important that proper probability distributions allowing frequency interpretation are derived; otherwise misleading results are obtained. The probabilistic classifier gives also unbiased area estimates over arbitrary areas.

3 Study area and input data

The study area is located in the eastern part of Dalarna in Sweden. Input data includes various masks, satellite data (Landsat TM and SPOT images), difference images, field data ("block database").

- Map masks. Masks from the topographic maps will be used for stratification before classification. Agricultural area was defined by the agricultural mask from the 1:100000 scale "blue map" (Blå kartan).
- Cloud cover masks. All scenes have been manually interpreted for cloud cover and other image data errors. Areas covered by clouds, haze and shadows from clouds were digitized on the screen. Other pixels having erroneous measurements for different other reasons were also marked and included in the "cloud mask", which in reality is a mask defining pixels not to be used for classification. Examples of this are data dropouts, resampling effects at the scene edges and "no data" pixels outside the imaged area.
- Satellite data. The images to be used are either Landsat TM images or SPOT images. The satellite data were geometric corrected with ortho-correction methods. The data are resampled to 25 m pixel size. The following table presents the satellite images used in the study area.

Table 1: SPOT and Landsat images used in the study area

	Scene	Date	Spectral bands used
SPOT-2	$054-226 / 8$	$1998-10-24$	XS 1, 2, 3
Landsat-5	$194-018$	$1999-05-07$	TM 2, 3, 4, 5
Landsat-5	$194-018$	$1999-07-10$	TM 2, 3, 4, 5
SPOT-4	$054-226 / 227$	$1999-07-30$	XS 1, 2, 3, 4
Landsat-7	$195-018$	$1999-09-11$	TM 2, 3, 4, 5

All images used were registered by the Landsat satellites with the TM sensor (Thematic Mapper) as the principal instrument. The TM sensor has 7 spectral bands in visible, near infrared, mid infrared and
thermal infrared with 30 meter ground resolution. Most of the satellite data were geometric corrected with ortho-correction methods, using the digital elevation model to remove image parallaxes. The geometric accuracy requirement for multitemporal data classification is to aim for less than one pixel RMS error. This quality was not reached for all scenes used, leading to local misalignments between scenes in some cases. The main reason for this has been the deteriorated geometric quality of the ageing Landsat-5 TM sensor, which was launched already in 1984 and could not be replaced completely until 2000 by Landsat- 7. The Thematic Mapper data are resampled to 25 meter pixel size for the continued processing. The image data is stored as 8 bit integer data in each band, corresponding to digital numbers from $0-255$.

- Field data. The "block database", i.e. a GIS database with polygons grouping the parcels of agricultural units ("blocks") that are registered in the IAKS database (the administrative database for agricultural aid in Sweden).

4 Results and discussion

The crops and agricultural land were predefined into 25 classes, including cereals (autumn-sown and spring-sown), oil seed crops, potatoes, grassland on arable land, energy forest (salix), and so on. Details on the definition of crop classes and different thematic levels can be found in Tables 9 and 10 in Appendix. Because the spectral signature differs between the center and the boundary of the arable units, and from the one field units to multi-field units, the pixels along the edges and transition zones were grouped into their own classes.

In field data, only few were used as reference data for classification, i.e. build up of prototypes for each class. The major part was used for validation.

Table 2: Probability matrices at level 1

	5 seasonal scenes			1 single scene		
	C1	C2	C3	C1	C2	C3
C1	0.90	0.09	0.01	0.84	0.14	0.02
C2	0.36	0.62	0.02	0.49	0.49	0.03

For the purpose of comparison, classification was done using single image and five images in different seasons, respectively. The probability matrices at level 1 are shown in Table 2, and the corresponding results at level 2 are presented in Tables 3 and 4. It is evident that the use of multitemporal images over seasons can substantially improve the classification result compared to a single image. With one single image, however, spring-sown cereals and spring-sown oil seed crops (C 2 and C 3 in Table 4) have quite high accuracy (53% and 70% respectively). At the thematic level 1 we have very good classification accuracy for arable land (84\%), but much lower for

Table 3: Probability matrix using five seasonal scenes at level 2

	C1	C2	C3	C4	C5	C6	C7	C8
C1	0.49	0.35	0.00	0.00	0.03	0.00	0.14	0.00
C2	0.04	0.78	0.01	0.00	0.03	0.00	0.14	0.01
C3	0.00	0.07	0.72	0.00	0.01	0.00	0.20	0.00
C4	0.01	0.09	0.01	0.65	0.04	0.00	0.20	0.00
C5	0.02	0.02	0.02	0.00	0.63	0.01	0.27	0.02
C6	0.00	0.04	0.00	0.00	0,11	0.56	0.27	0.01
C7	0.01	0.04	0.00	0.00	0.20	0.01	0.71	0.02

Table 4: Probability matrix using one single scene at level 2

	C1	C2	C3	C4	C5	C6	C7	C8
C1	0.19	0.30	0.01	0.03	0.11	0.00	0.34	0.01
C2	0.04	0.53	0.01	0.01	0.10	0.01	0.27	0.02
C3	0.01	0.07	0.70	0.00	0.05	0.00	0.17	0.00
C4	0.02	0.02	0.01	0.17	0.37	0.00	0.39	0.01
C5	0.02	0.04	0.00	0.05	0.47	0.02	0.38	0.02
C6	0.01	0.14	0.00	0.00	0.12	0.28	0.42	0.03
C7	0.02	0.06	0.01	0.02	0.28	0.04	0.54	0.03

grazing land (50%). This is mainly depending on confusion with pasture or grass for hay or silage on arable land.

Looking further into the classification accuracy at level 3 in Table 11 (five seasonal images) and 12 (one single image) in Appendix, it can be found that even with images from five occasions it is difficult to identify winter barley and winter wheat. One possible reason is that the image from 7th of May is too early. This is confirmed by the information value for spectral band 5 . The value is only half of that from the image taken in July. Probability of correct classification for these two classes are slightly below 40%. Both crops occupy, however, less than 1% each of the cultivated area in the study area. The other classes of grains have considerably higher probabilities of correct classification $(55 \%-93 \%)$. For other crops and agricultural landscapes, the probability of correct classification is above 50%, except meadow, fallow (>1 year) and other land use, which hardly surprised have low accuracy.

Even though the classification accuracy at pixel level by using one single image is low, the results can be useful in applications concerning the source apportionment. Here it is, however, important to develop sensible area estimates for different catchments. One problem in area estimation based on the classified image is that small classes will be overestimated whereas large classes often underestimated. Therefore, the observed area has to be corrected. By using information from the block database and the Monte Carlo method, area correction matrix was obtained. The area estimation in the study area before and after correction is summarized in Table 13 (for units with single field) and 14 (for all types of units). one can see that the observed (classified) proportion for spring barley, pasture on arable land and meadow was $13.2 \%, 19.5 \%$ and 2.16%, respectively. After correction
the proportions became $29 \%, 34 \%$ and 0.27% respectively.
It is worth noticing that the above probabilities can only be used for evaluation of quality at the scene level. In practice, often the quality of classification at pixel level is required. Hence, the probabilistic classifier is derived and run on two small test sites. These two sites were selected with different characteristics of spatial distributions (homogeneous versus heterogeneous), each of size 16×16 pixels, see Figure 1 .

Figure 1: Location of the test sites
The probability for each class at pixel level and the entropy for each pixel were calculated. Figure 2 and 3 present the map of entropy for test site 1 and test site 2 , respectively. Note that they are based on five scenes and at thematic level 2. Higher values of entropy indicate uncertain classification at that pixel. By setting some threshold, we are able to identify areas, where the classification accuracy is unsatisfactory. In our test 1, most of the entropies are very low, except a few pixels with medium size entropies. This indicates that the quality of classification at this site is high. As also expected, the accuracy of classification at site 2 (heterogeneous area) became lower, so that one obtain a number of pixels with high entropies (red colored).

In areas having an unsatisfactory classification it is possible to take additional field plots and perform an improved classification. Here it is important that the classification method can handle different types of reference data. The final product will be two maps, one showing the pixel wise classification and the other giving the classification accuracy at pixel level.

Figure 2: Entropy map of test site 1 (above) and test site 2 (below)

5 Large scale applications

The classification method developed in the study area was later applied to the Dalälven's catchment area. This region is of size $29000 \mathrm{~km}^{2}$ and requires five Landsat TM scenes to be completely covered. The two scenes 194018 and 196017 were used here, since they cover the large part of the region (see Table 5). The time points at July 1999 and August 1999 respectively were chosen so that the cloud cover is minimized in both scenes.

Table 5: Landsat images used in classification for Dalålven's catchment area

	Scene	Date	Spectral bands used
Landsat-5	$194-018$	$1999-07-10$	TM $2,3,4,5$
Landsat-5	$196-017$	$1999-08-01$	TM $3,4,5$

According to results from the study area, it would be desirable if we could use several seasonal scenes also for the whole catchment. It was, however, impossible to get Landsat TM images to fulfill such requirement. Alternatively, one can consider using either SPOT images (10 meter resolution) or MERIS images (200 meter resolution) to handle the agricultural fields. The former demands much more work in preprocessing to make a useful mosaic spatially over the whole catchment as well as temporally over different seasons, whereas the latter has too low spatial resolution to distinguish different agricultural units. Ideas with SPOT mosaic are very interesting and will be included in a future study.

Table 6: Probability matrices at level 1

	scene		194018	scene		196017
	C 1	C 2	C 1	C 2		
C1	0.82	0.18	0.81	0.19		
C2	0.35	0.65	0.25	0.75		

Table 7: Probability matrix for scene 194018 at level 2

	C1	C2	C3	C4	C5	C6	C7	C8
C1	0.20	0.26	0.07	0.05	0.05	0.01	0.34	0.03
C2	0.08	0.48	0.05	0.02	0.03	0.02	0.26	0.04
C3	0.02	0.08	0.61	0.01	0.03	0.01	0.19	0.04
C4	0.03	0.02	0.24	0.21	0.07	0.00	0.38	0.04
C5	0.02	0.05	0.12	0.05	0.24	0.02	0.44	0.05
C6	0.02	0.19	0.01	0.00	0.06	0.36	0.32	0.04
C7	0.02	0.06	0.07	0.02	0.14	0.04	0.58	0.05

The crops and agricultural land were predefined in the same way as in the study area. They are presented in Tables 15 and 16 for scene 194018 and scene 196017, respectively. Note that the number of classes differs from

Table 8: Probability matrix for scene 196017 at level 2

	C1	C2	C3	C4	C5	C6	C7	C8
C1	0.09	0.38		0.09	0.14		0.28	0.00
C2	0.02	0.49		0.09	0.09		0.29	0.02
C3								
C4	0.01	0.26		0.34	0.08		0.27	0.04
C5	0.02	0.14		0.11	0.33		0.35	0.05
C6								
C7	0.01	0.09		0.01	0.12		0.75	0.02

that in the study area. This is simply because of the lack of field data in different scenes. Summarized results of our classification are shown in Table 6 for the thematic level 1 and Table 7-8 for the thematic level 2.

From Table 6, one can see that classification accuracies at thematic level 1 are quite similar and satisfactory for both scenes. Looking at Tables 7 and 8 for thematic level 2 , two things are obvious and common in both scenes, that is, C1 (autumn-sown cereals) is confused with C2 (spring-sown cereals) and C7 (other crops) is confused with all other classes. One of the reasons is that C2 and C7 are both dominating classes in arable land and grazing land respectively.

For details of probability matrices at thematic level 3, readers are referred to Table 17 (for scene 194018) and 18 (for scene 196017) in Appendix.

References

Bereau, M. and B. Dubuisson (1991). A fuzzy extended k-nearest neighbor rule. Fuzzy Sets and Systems 44, 17-32.
Bezdek, J.C., J.M. Keller, R. Krishnapuram, and N.R. Pal (1999). Fuzzy Models and Algorithms for Pattern Recognition and Image Processing, Kluwer Academic Publishers.
Fix, E. and J.L. Hodges (1951). Discriminatory analysis - nonparametric discrimination: consistency properties. Report no. 4, US Air Force School of Aviation Medicine, Random Field, Texas.
Kissiov, V.T. and S.T. Hadjitodorov (1992). A fuzzy version of the k-nn method. Fuzzy Sets and Systems 49, 323-329.
Rajski, C. (1961). A metric space of discrete probability distributions. Information and Control, 4, 373-377.
Rajski, C. (1964). On the normed information rate of discrete random variables. Trans. Third. Prague Conference, 583-585.
Ranneby, B. and J. Yu (2003). Remote sensing classification of environmental indicators. Proceedings of 30th International Symposium on Remote Sensing of Environment - Information for Risk Management and Sustainable Development, Hawaii.
Ripley, B.D. (1996). Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

Yu, J., M. Ekström, and M. Nilsson (2000). Image classification using wavelets with application to forestry. Proceedings of the 4 th International Conference on Methodological Issues in Official Statistics, Stockholm.
Yu, J. and M. Ekström (2002). Multispectral image classification using wavelets: A simulation study. Pattern Recognition, 36(4), 889-898.

Appendix

Table 9: Class definition and different thematic levels for the study area

Crops	Level 3	Level 2	Level 1
Winter barley	1	1	1
Spring barley	2	2	1
Oats	3	2	1
Winter wheat	4	1	1
Spring wheat	5	2	1
Mixed grain	6	2	1
Rye	7	1	1
Spring turnip rape	8	3	1
Peas	9	7	1
Linseed	10	3	1
Potatoes	11	4	1
Pasture or grass for hay or silage on arable land	12	5	1
Seed ley	13	5	1
Grazing land	14	7	2
Meadow	15	5	2
Woodland pasture	16	7	2
Fallow (one year)	17	7	1
Fallow ($>$ one year)	18	7	1
Energy forest (salix)	19	6	1
Reed canary grass (1999)	20	5	1
Strawberries	21	7	1
Other cultivation of berries	22	7	1
Forest plantation on arable land	23	7	1
Other land use	24	7	2
Boundary pixels	25	8	3

Table 10: Definition of the thematic levels

Code	Level 2	Level 1
1	Autumn-sown cereals	Arable land
2	Spring-sown cereals	Grazing land
3	Spring-sown oil seed crops	Boundary pixels
4	Potatoes	
5	Grass land on arable land for hay or silage	
6	Energy forest (salix)	
7	Other crops	
8	Boundary pixels	

Table 11: Probability matrix using five seasonal scenes at level 3

	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25
C1	0.38	0.35	0.14	0.04	0	0	0.01	0	0	0	0	0.01	0	0.01	0	0	0.05	0	0	0	0	0	0	0	0
C2	0.02	0.65	0.11	0.01	0	0.02	0.01	0	0	0	0	0.03	0.01	0.03	0	0.01	0.08	0.01	0	0	0	0	0	0	0.01
C3	0.02	0.22	0.55	0	0	0	0.01	0	0	0.01	0	0.02	0.01	0.03	0	0.01	0.10	0	0	0	0	0	0	0.01	0.01
C4	0.08	0.22	0.03	0.36	0	0	0.07	0	0	0	0	0.04	0	0.03	0	0	0.15	0.02	0	0	0	0	0	0	0
C5	0	0	0	0	0.93	0	0	0	0	0	0	0	0	0	0	0	0.07	0	0	0	0	0	0	0	0
C6	0	0.03	0	0.02	0	0.90	0	0	0	0	0	0.02	0	0	0	0	0.03	0	0	0	0	0	0	0	0
C7	0.03	0.15	0	0.07	0	0	0.67	0	0	0	0	0	0	0	0	0	0.04	0.03	0	0	0	0	0	0	0
C8	0	0.04	0.01	0	0	0	0	0.77	0.12	0	0.01	0	0.01	0	0	0.01	0.02	0	0	0	0	0	0	0	0
C9	0	0.07	0.04	0	0	0	0	0	0.82	0	0	0.01	0	0.03	0	0	0.02	0	0	0	0	0	0	0	0
C10	0.01	0.11	0.02	0	0	0	0.01	0	0	0.46	0	0.02	0	0	0	0	0.36	0	0	0	0	0	0	0	0.01
C11	0	0.06	0.03	0	0	0	0.01	0	0	0.01	0.65	0.01	0.02	0.03	0.01	0.01	0.14	0.02	0	0	0.01	0	0	0	0
C12	0	0.01	0	0.01	0	0	0.01	0	0	0.02	0	0.62	0	0.10	0	0.02	0.13	0.01	0.01	0.01	0.01	0	0	0	0.02
C13	0.02	0.13	0.27	0	0	0	0	0	0	0	0	0.06	0.49	0.02	0	0	0.01	0	0	0	0	0	0	0	0
C14	0	0.02	0.01	0	0	0	0	0	0	0	0	0.25	0	0.48	0.02	0.11	0.04	0.02	0.01	0	0	0.01	0	0.01	0.03
C15	0	0	0	0	0	0	0	0	0	0.02	0	0.12	0	0.68	0.13	0.04	0	0	0	0	0	0	0	0	0
C16	0	0.01	0	0	0	0	0	0	0	0.01	0.01	0.04	0	0.23	0	0.65	0.01	0.01	0	0	0	0	0	0.01	0.01
C17	0	0.05	0.01	0.01	0	0.01	0.01	0	0	0	0	0.07	0	0.08	0	0.02	0.63	0.02	0.01	0.02	0	0	0	0.02	0
C18	0	0.02	0.01	0	0	0	0.01	0	0	0.02	0	0.25	0	0.17	0	0.03	0.16	0.21	0.01	0.02	0	0	0	0.04	0.03
C19	0	0.02	0.03	0	0	0	0	0	0	0	0	0.11	0	0.12	0	0.03	0.05	0.05	0.56	0	0	0	0.01	0.01	0.01
C20	0	0	0	0	0	0	0	0	0	0.02	0	0	0	0.02	0	0.10	0.15	0	0	0.71	0	0	0	0	0
C21	0	0.03	0	0	0	0	0	0	0	0	0.06	0.03	0	0	0	0	0.17	0	0	0	0.72	0	0	0	0
C22	0	0.02	0	0	0	0	0	0	0	0	0	0.10	0.02	0.42	0	0.02	0.07	0	0	0	0	0.35	0	0	0.02
C23	0	0	0.02	0	0	0	0	0	0	0	0	0.08	0	0.19	0	0	0	0.02	0.10	0	0	0	0.59	0.02	0
C24	0	0.05	0.01	0	0	0	0.01	0	0	0	0	0.13	0	0.32	0	0.04	0.17	0.06	0.03	0	0	0	0	0.16	0.01

Table 12: Probability matrix using one single scene at level 3

	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25
C1	0.08	0.3	0.12	0.06	0.01	0	0.01	0	0.01	0	0.01	0.07	0	0.05	0	0.03	0.19	0.01	0.01	0	0	0	0	0.01	0.02
C2	0.01	0.28	0.25	0.03	0.01	0	0	0	0.04	0.01	0.01	0.05	0.04	0.04	0	0.04	0.11	0.01	0.01	0	0	0	0.01	0	0.02
C3	0.01	0.19	0.3	0.03	0.02	0	0	0	0.04	0.01	0.01	0.06	0.04	0.05	0	0.04	0.13	0.01	0.01	0	0	0	0.01	0	0.02
C4	0.01	0.16	0.06	0.19	0	0	0.02	0	0	0.02	0.03	0.13	0	0.08	0.01	0.04	0.24	0.01	0	0	0	0	0	0	0
C5	0	0.04	0.14	0	0.21	0	0	0.07	0.04	0	0.07	0.11	0	0.14	0	0	0.18	0	0	0	0	0	0	0	0
C6	0.02	0.13	0.12	0	0	0.05	0	0	0	0	0	0.23	0	0.17	0	0	0.05	0.13	0	0	0	0	0	0.03	0.07
C7	0	0	0	0.09	0	0	0.21	0	0	0.03	0.04	0.19	0	0.03	0	0	0.39	0	0	0	0	0	0	0	0.01
C8	0	0.01	0.02	0	0.02	0	0	0.82	0.08	0.01	0	0	0.01	0	0	0	0.02	0	0	0	0	0	0	0	0
C9	0	0	0.01	0	0.01	0	0	0.08	0.84	0	0	0.02	0	0	0	0.03	0	0	0	0	0	0	0	0	0
C10	0	0.07	0.05	0.03	0.03	0	0	0.01	0	0.14	0.01	0.07	0	0.01	0	0	0.35	0.01	0	0.15	0.07	0	0	0	0
C11	0	0	0.01	0.02	0.01	0	0	0	0	0.01	0.17	0.18	0.02	0.01	0.02	0.05	0.25	0	0	0.16	0.08	0	0	0	0.01
C12	0	0.02	0.02	0.01	0	0	0	0	0	0	0.05	0.35	0.05	0.10	0.05	0.03	0.14	0.01	0.02	0.03	0.06	0	0.02	0.01	0.02
C13	0	0.21	0.04	0.02	0.01	0	0	0	0	0	0.02	0.06	0.41	0.11	0	0.01	0.04	0	0.01	0	0	0	0	0.01	0.04
C14	0	0.03	0.02	0.01	0	0	0	0	0	0	0.01	0.23	0.06	0.31	0.01	0.15	0.04	0.01	0.05	0	0	0	0.01	0.02	0.03
C15	0	0	0	0	0	0	0	0	0	0	0.01	0.16	0.08	0.34	0.10	0.05	0.04	0	0.15	0	0.02	0	0.04	0	0
C16	0	0.01	0	0.01	0	0	0	0	0	0	0	0.09	0	0.18	0.01	0.67	0.01	0	0.01	0	0	0	0	0.01	0
C17	0	0.04	0.03	0.03	0.01	0	0.01	0	0	0.02	0.03	0.14	0.02	0.10	0.02	0.04	0.30	0.01	0.02	0.09	0.06	0	0	0	0.02
C18	0	0.04	0.03	0.03	0.01	0	0	0	0	0.01	0.03	0.21	0.04	0.13	0.01	0.07	0.14	0.07	0.02	0.03	0.03	0	0.07	0.01	0.03
C19	0.01	0.05	0.09	0	0	0	0	0	0	0	0	0.07	0.04	0.27	0	0.05	0.05	0.01	0.28	0	0	0	0.02	0.02	0.03
C20	0	0	0	0	0	0	0	0	0	0	0.15	0	0	0	0	0.05	0.22	0	0	0.54	0.05	0	0	0	0
C21	0	0	0	0	0.03	0	0	0	0	0.03	0	0.06	0	0	0.11	0	0.17	0	0	0.03	0.58	0	0	0	0
C22	0	0	0	0	0	0	0	0	0	0	0.02	0.37	0	0.42	0.02	0.02	0	0	0	0	0	0.1	0	0	0.07
C23	0	0.05	0	0	0	0	0	0	0	0	0	0.14	0.06	0.10	0	0.02	0.02	0	0.06	0	0	0	0.54	0.02	0
C24	0	0.04	0.03	0.01	0.01	0	0	0	0	0	0.01	0.17	0.03	0.26	0.01	0.05	0.10	0.01	0.11	0.01	0.01	0	0.02	0.07	0.02

Table 13: Area estimation for one field per unit

	5 seasonal scenes		one single scene	
Class	Observed	Corrected	Observed	Corrected
C1	1.26%	0.79%	0.44%	0.79%
C2	21.95%	27.49%	11.70%	27.49%
C3	9.20%	10.14%	11.44%	10.14%
C4	1.01%	0.94%	2.25%	0.94%
C5	0.10%	0.04%	0.65%	0.04%
C6	0.58%	0.08%	0.03%	0.08%
C7	1.01%	0.09%	0.38%	0.09%
C8	0.72%	0.85%	0.97%	0.85%
C9	0.42%	0.27%	1.99%	0.27%
C10	1.16%	0.20%	0.62%	0.20%
C11	1.00%	0.98%	2.66%	0.98%
C12	26.11%	34.04%	18.85%	34.04%
C13	0.69%	0.32%	4.30%	0.32%
C14	11.74%	11.96%	10.66%	11.96%
C15	0.42%	0.31%	2.01%	0.31%
C16	2.80%	0.47%	5.18%	0.47%
C17	13.62%	7.27%	13.22%	7.27%
C18	1.32%	1.38%	0.79%	1.38%
C19	1.60%	1.54%	2.33%	1.54%
C20	0.67%	0.05%	1.96%	0.05%
C21	0.29%	0.05%	2.92%	0.05%
C22	0.21%	0.08%	0.21%	0.08%
C23	0.21%	0.08%	1.56%	0.08%
C24	0.77%	0.59%	0.70%	0.59%
C25	1.15%		2.18%	

Table 14: Area estimation for all types of units

	5 seasonal scenes		one single scene	
Class	Observed	Corrected	Observed	Corrected
C1	1.41%	0.89%	0.45%	0.81%
C2	25.89%	30.96%	13.20%	29.05%
C3	11.06%	11.60%	13.05%	10.64%
C4	0.99%	0.98%	1.93%	0.92%
C5	0.17%	0.06%	0.70%	0.04%
C6	0.42%	0.06%	0.02%	0.08%
C7	0.95%	0.09%	0.33%	0.08%
C8	0.84%	0.95%	1.07%	0.94%
C9	0.37%	0.24%	2.32%	0.31%
C10	1.39%	0.22%	0.55%	0.21%
C11	1.47%	1.30%	2.60%	1.05%
C12	25.82%	32.50%	19.51%	34.00%
C13	0.61%	0.32%	4.43%	0.32%
C14	6.70%	8.82%	7.22%	10.21%
C15	0.33%	0.21%	2.16%	0.27%
C16	1.60%	0.29%	3.44%	0.34%
C17	14.86%	7.35%	13.98%	7.35%
C18	1.05%	1.21%	0.76%	1.33%
C19	1.25%	1.24%	1.66%	1.28%
C20	0.58%	0.05%	2.48%	0.06%
C21	0.49%	0.07%	3.66%	0.05%
C22	0.11%	0.05%	0.15%	0.07%
C23	0.12%	0.05%	1.45%	0.07%
C24	0.59%	0.48%	0.52%	0.52%
C25	0.93%		2.38%	

Table 15: Class definition and different thematic levels for scene 194018

Crops	Level 3	Level 2	Level 1
Winter barley	1	1	1
Spring barley	2	2	1
Oats	3	2	1
Winter wheat	4	1	1
Mixed grain	6	2	1
Triticale	7	2	1
Rye	8	1	1
Peas	10	7	1
Linseed	11	3	1
Potatoes	12	4	1
Pasture or grass for			
hay turnip rape	9	3	1
hrazing land	14	7	2
Meadow	15	5	2
Fallage on arable land	13	5	1
Fallow (one year)	17	7	1
Energy forest year)	18	7	1
Strawberries	19	6	1
Other	20	7	1
Other cultivation of berries	21	7	1
Boundary pixels	23	8	3

Table 16: Class definition and different thematic levels for scene 196017

Crops	Level 3	Level 2	Level 1
Winter barley	1	1	1
Spring barley	2	2	1
Oats	3	2	1
Mixed grain	4	2	1
Potatoes	5	4	1
Pasture or grass for			
hay or silage on arable land	6	5	1
Grazing land	7	7	2
Meadow	8	5	2
Woodland pasture	9	7	2
Fallow (one year)	10	7	1
Strawberries	11	7	1
Other land use	12	7	2
Boundary pixels	13	8	3

Table 17: Probability matrix for scene 194018

	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23
C1	0.06	0.18	0.07	0.05	0.11	0.01	0.02	0.03	0.00	0.02	0.04	0.02	0.05	0.06	0.00	0.04	0.14	0.02	0.03	0.00	0.00	0.01	0.04
C2	0.02	0.28	0.09	0.02	0.11	0.02	0.01	0.03	0.01	0.04	0.04	0.02	0.03	0.06	0.00	0.03	0.09	0.01	0.03	0.00	0.00	0.02	0.04
C3	0.01	0.22	0.14	0.03	0.09	0.01	0.01	0.02	0.01	0.03	0.06	0.03	0.03	0.06	0.00	0.03	0.12	0.02	0.02	0.00	0.00	0.02	0.04
C4	0.02	0.07	0.07	0.11	0.04	0.01	0.01	0.06	0.00	0.00	0.08	0.06	0.05	0.16	0.00	0.03	0.15	0.03	0.01	0.00	0.00	0.01	0.03
C5	0.01	0.13	0.07	0.03	0.42	0.01	0.01	0.03	0.00	0.00	0.03	0.01	0.02	0.07	0.01	0.04	0.07	0.01	0.02	0.00	0.00	0.00	0.01
C6	0.00	0.16	0.07	0.03	0.02	0.06	0.00	0.04	0.02	0.03	0.08	0.05	0.06	0.06	0.00	0.04	0.15	0.02	0.03	0.01	0.00	0.02	0.05
C7	0.04	0.10	0.13	0.06	0.02	0.01	0.16	0.07	0.00	0.00	0.08	0.03	0.02	0.07	0.00	0.01	0.16	0.02	0.00	0.00	0.00	0.02	0.00
C8	0.02	0.06	0.03	0.01	0.02	0.00	0.01	0.31	0.00	0.00	0.04	0.07	0.05	0.06	0.00	0.03	0.25	0.01	0.01	0.00	0.00	0.00	0.01
C9	0.00	0.01	0.02	0.00	0.00	0.01	0.01	0.01	0.76	0.07	0.05	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.01
C10	0.01	0.06	0.04	0.00	0.00	0.01	0.00	0.02	0.13	0.46	0.13	0.01	0.02	0.01	0.00	0.03	0.05	0.00	0.00	0.00	0.00	0.01	0.01
C11	0.00	0.06	0.02	0.01	0.00	0.02	0.00	0.01	0.03	0.04	0.47	0.02	0.04	0.02	0.00	0.02	0.13	0.01	0.02	0.00	0.01	0.02	0.05
C12	0.00	0.01	0.01	0.02	0.00	0.00	0.00	0.02	0.02	0.01	0.23	0.21	0.07	0.03	0.00	0.04	0.25	0.01	0.00	0.02	0.00	0.01	0.04
C13	0.00	0.03	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.11	0.05	0.23	0.08	0.01	0.04	0.16	0.02	0.02	0.04	0.01	0.09	0.05
C14	0.00	0.02	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.13	0.25	0.04	0.24	0.03	0.02	0.05	0.01	0.01	0.10	0.04
C15	0.00	0.01	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.10	0.21	0.11	0.21	0.03	0.02	0.08	0.01	0.00	0.14	0.02
C16	0.00	0.02	0.01	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.21	0.03	0.57	0.01	0.01	0.04	0.00	0.00	0.02	0.02
C17	0.00	0.05	0.03	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.24	0.06	0.07	0.08	0.01	0.03	0.19	0.02	0.03	0.01	0.01	0.05	0.06
C18	0.00	0.06	0.03	0.02	0.01	0.01	0.00	0.01	0.01	0.01	0.06	0.05	0.11	0.11	0.01	0.04	0.09	0.10	0.05	0.03	0.01	0.10	0.08
C19	0.00	0.12	0.04	0.01	0.02	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.03	0.17	0.03	0.05	0.04	0.02	0.36	0.00	0.00	0.04	0.05
C20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.18	0.17	0.01	0.00	0.00	0.18	0.00	0.00	0.18	0.01	0.04	0.09
C21	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.02	0.22	0.03	0.00	0.01	0.19	0.02	0.02	0.01	0.11	0.19	0.11
C22	0.00	0.04	0.02	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.05	0.02	0.08	0.15	0.06	0.07	0.09	0.02	0.09	0.00	0.00	0.16	0.06

Table 18: Probability matrix for scene 196017

	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13
C1	0.09	0.10	0.24	0.05	0.09	0.05	0.16	0.10	0.01	0.06	0.05	0.00	0.00
C2	0.02	0.33	0.15	0.05	0.07	0.05	0.12	0.03	0.02	0.11	0.02	0.01	0.02
C3	0.02	0.09	0.32	0.05	0.13	0.04	0.09	0.05	0.02	0.12	0.04	0.01	0.02
C4	0.02	0.06	0.15	0.07	0.17	0.08	0.07	0.06	0.02	0.19	0.06	0.02	0.03
C5	0.00	0.06	0.09	0.12	0.34	0.06	0.06	0.02	0.01	0.13	0.06	0.01	0.04
C6	0.02	0.02	0.05	0.08	0.11	0.25	0.09	0.07	0.01	0.21	0.04	0.01	0.04
C7	0.01	0.03	0.04	0.01	0.01	0.07	0.30	0.07	0.32	0.07	0.01	0.03	0.03
C8	0.00	0.03	0.02	0.03	0.01	0.10	0.23	0.18	0.07	0.25	0.03	0.03	0.02
C9	0.01	0.01	0.01	0.01	0.00	0.01	0.30	0.05	0.52	0.05	0.01	0.02	0.00
C10	0.02	0.03	0.07	0.09	0.05	0.08	0.11	0.06	0.02	0.21	0.22	0.02	0.02
C11	0.00	0.00	0.00	0.13	0.01	0.02	0.01	0.00	0.00	0.16	0.65	0.00	0.02
C12	0.03	0.02	0.07	0.04	0.02	0.09	0.26	0.06	0.24	0.07	0.02	0.06	0.02

Table 19: Area estimation for scene 194018

	Number of fields / unit					
Class	one		zero	>1	all	
C1	Observed	Corrected	Observed	Observed	Observed	Corrected
C2	10.70%	0.42%	0.81%	0.27%	0.73%	0.44%
C3	4.22%	22.98%	13.79%	5.30%	11.85%	24.50%
C4	1.51%	0.72%	5.21%	2.40%	4.63%	7.17%
C5	3.84%	0.30%	1.41%	1.23%	1.44%	0.59%
C6	0.70%	0.72%	0.55%	1.57%	4.61%	0.33%
C7	0.34%	0.08%	0.35%	0.46%	0.72%	0.75%
C8	1.38%	0.07%	1.41%	1.03%	1.37%	0.07%
C9	1.17%	0.34%	1.62%	0.47%	1.37%	0.40%
C10	1.83%	0.14%	2.54%	0.57%	2.12%	0.16%
C11	8.01%	0.63%	11.17%	8.89%	9.79%	0.71%
C12	3.48%	0.56%	3.57%	4.33%	3.59%	0.60%
C13	13.33%	41.50%	13.16%	14.62%	13.33%	41.84%
C14	10.08%	16.33%	5.24%	12.29%	7.61%	13.74%
C15	1.32%	0.33%	0.54%	1.90%	0.94%	0.27%
C16	7.06%	0.43%	2.63%	7.42%	4.68%	0.32%
C17	11.87%	5.36%	14.10%	13.90%	13.22%	5.64%
C18	1.79%	1.35%	1.40%	2.13%	1.60%	1.31%
C19	3.02%	0.47%	2.03%	4.56%	2.60%	0.42%
C20	2.03%	0.06%	2.02%	2.14%	2.03%	0.06%
C21	0.66%	0.15%	0.72%	0.78%	0.70%	0.15%
C22	6.50%	0.47%	5.23%	7.93%	5.91%	0.43%
C23	4.81%		4.74%	5.76%	4.84%	

Table 20: Area estimation for scene 196017

	Number of fields / unit					
Class	one		zero	>1	all	
	Observed	Corrected	Observed	Observed	Observed	Corrected
C1	1.64%	0.22%	1.28%	2.07%	1.59%	0.22%
C2	5.35%	9.47%	5.85%	2.61%	5.07%	9.42%
C3	6.44%	3.06%	5.76%	5.36%	6.03%	3.10%
C4	5.14%	1.40%	5.99%	6.09%	5.59%	1.47%
C5	6.89%	0.98%	10.74%	2.54%	7.49%	1.05%
C6	13.91%	42.35%	13.89%	21.05%	15.08%	44.88%
C7	18.01%	33.71%	15.62%	12.99%	16.36%	31.58%
C8	6.52%	0.78%	4.38%	8.43%	6.10%	0.78%
C9	14.89%	6.19%	14.94%	2.49%	12.86%	5.59%
C10	13.79%	1.03%	13.56%	24.24%	15.44%	1.13%
C11	2.54%	0.07%	3.63%	5.39%	3.39%	0.09%
C12	1.68%	0.73%	1.43%	1.30%	1.53%	0.70%
C13	3.20%		2.93%	5.43%	3.47%	

Table 21: Area estimation for the overlapped area of scenes 194018 \& 196017

$\mathbf{1 9 4 0 1 8}$				$\mathbf{1 9 6 0 1 7}$		
Class	Observed	Corrected	Class	Observed	Corrected	
C1	0.16%	0.33%	C1	2.64%	0.27%	
C2	5.40%	17.00%	C2	6.37%	11.24%	
C3	2.12%	5.20%	C3	10.53%	3.98%	
C4	1.07%	0.54%	C4	7.83%	1.73%	
C5	0.49%	0.17%	C5	11.75%	1.33%	
C6	0.72%	0.68%	C6	18.94%	50.27%	
C7	0.05%	0.06%	C7	11.65%	25.18%	
C8	0.99%	0.06%	C8	4.61%	0.67%	
C9	0.87%	0.27%	C9	5.85%	3.51%	
C10	1.86%	0.13%	C10	11.97%	1.13%	
C11	6.41%	0.58%	C11	2.69%	0.08%	
C12	3.96%	0.60%	C12	0.80%	0.62%	
C13	17.45%	47.34%	C13	4.38%		
C14	11.55%	18.04%				
C15	1.30%	0.36%				
C16	7.31%	0.44%				
C17	14.89%	5.49%				
C18	2.21%	1.49%				
C19	3.19%	0.46%				
C20	3.02%	0.07%				
C21	1.07%	0.19%				
C22	8.12%	0.50%				
C23	5.82%					

[^0]: ${ }^{1}$ E-mail address to the correspondence author: bo.ranneby@sekon.slu.se

