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Abstract

Incorporating subset selection into a classification method often carries a num-
ber of advantages, especially when operating in the domain of high-dimensional
features. In this paper, we focus on Bayesian network (BN) classifiers and formal-
ize the feature selection from a perspective of improving classification accuracy.
To exploring the effect of high-dimensionality we apply thegrowing dimension
asymptotics, meaning that the number of training examples is relatively small
compared to the number of feature nodes. In order to ascertain which set of fea-
tures is indeed relevant for a classification task, we introduce adistance-based
scoring measurereflecting how well the set separates different classes. This score
is then employed to feature selection, using the weighted form of BN classifier.
The idea is to view weights as inclusion-exclusion factors which eliminates the
sets of features whose separation score do not exceed a given threshold. We estab-
lish the asymptotic optimal threshold and demonstrate that the proposed selection
technique carries improvements over classification accuracy for different a priori
assumptions concerning the separation strength.
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1 Introduction

This paper is about techniques for improving the performance accuracy of the classi-
fication methods in high-dimensional framework. Such methods operate on a given
set of examples to produce aclassifier, sometimes also called classification rule, or
in the machine-learning literature, a prediction algorithm. The goal is to find a classi-
fier with high performance accuracy, that is a low misclassification rate on a separate
test set. In our analysis, we employ Bayesian Network (BN) models, which have an
increasing number of applications in classification theory (e.g. Cowell et al. 1999)
as well as in decision analysis and artificial intelligence (Korb and Nicholson 2003),
offering complementary advantages such as ability to deal effectively with uncertain
and high-dimensional examples.

The focus of the study is onfeature selection, which involves identifying a set
of feature nodes of the input examples that are highly relevant for classification task.
More generally, feature selection can be viewed as a problem of setting discrete struc-
tural parameters associated with specific classification method. We subscribe here to
the view that feature selection is not merely for reducing the computational load as-
sociated with a high-dimensional classification problem but can be tailored primarily
to improve performance accuracy.

The common need for all subset selection procedures is an evaluation function by
which a separation strength of a feature, or a subset of features, is assessed. Assum-
ing that the performance measure is defined by the misclassification risk, the latter
seems to be a most appealing function for this. However, it was shown in (Pavlenko
and von Rosen 2001), that under rather mild regularity conditions for class probabil-
ity densities, the asymptotic misclassification risk can be expressed as a monotone
transform of the cross-entropy distance between the classes. This theoretically justi-
fies the use of a distance-based scoring measure since it induces, over the set of all
potential features, the same ranking as the one induced by the misclassification risk.
The form of feature selection we develop in this study is an extended version of the
weighting techniquerecently proposed for augmented BN classifiers in order to make
more pronounced the inputs of highly informative sets and thereby increase the per-
formance accuracy, (Pavlenko and von Rosen 2002). Given the separation score of
each set of features, we redefine the weight-functions asinclusion-exclusionfactors
which depend on a selection threshold and reflect whether the set is chosen for the
classification. The main objective is to specify the optimal threshold (score), so that
the classifier will then be based only on the sets that have this score or higher.

We emphasize that the feature selection is carried out jointly and discriminatively
together with estimation of the specific augmented BN classifier. This type of feature
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selection is, clearly affected by inaccuracy of estimates involved. The effect is es-
pecially pronounced in a high-dimensional setting, i.e. when the number of training
examples is relatively small compared to the number of feature nodes. We employ
a growing dimension asymptoticsapproach and show how it can accommodate BN
classifies and enables us to evaluate the asymptotic distribution of the classifier and
optimize the threshold, simultaneously taking into account bias and variance effects.

The paper is organized as follows: in Section 2 we present augmented BN mod-
els and introduce the growing dimension asymptotics. Distance-based scoring mea-
sure is derived in Section 3 together with asymptotically optimal weighting schemes.
These results are then used in Section 4 to define the selection technique and specify
the optimal threshold. We conclude in Section 5.

2 BN classifier in high-dimensional framework

A BN modelM = 〈G,FG〉 for a set of random variablesx = {x1, . . . , xp} is a set
of joint probability distributions, specified via two components: a structureG and
a set of local distribution familiesFG . The structureG for x is a directed acyclic
graph having for every variablexi in x a node labelled byxi with parents labelled by
PaMi . In this wayG represents a set of conditional independence assertions which
implies a factorization of the joint distribution ofx into F (x) =

∏p
i=1 F (xi|PaMi ),

whereF (xi|PaMi ) are thep conditional and marginal probability distributions and
eachF (xi|PaMi ) belongs to the specific family of allowable local distributionsFG .
We assume thatx consists of continuous random variables and each local probability
distribution is selected from a familyFG,Θ which depends on a finite set of param-
etersθ ∈ Θ. The parameters for a local distribution are a set of real numbers that
completely determine the functional form ofF (xi|PaMi ), givenM. Consequently,
the joint probability density for a BN model is represented by

f(x1, . . . , xp; θ) =
p∏

i=1

f(xi; θi|PaMi ),

whereθ1, . . . , θp are subsets ofθ andf(xi; θi|PaMi ) are conditional local densities.

In the current study, BN models will be embedded in theclassification frame-
work where the outcome of interests,c, falls into ν unordered classes, which for
convenience we denote by the set{1, 2, . . . , ν}. The goal is to build a rule for assess-
ing the class membership of an item based onp feature variablesx ∈ Rp, whose joint
conditional probability density in each class is represented by a BN model,M, hav-
ing its own set of parameters, but sharing a common structure. Using Bayes’ theorem
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and flipping the densities into class posterior probabilitiesPr(c |x) we construct the
classification rule

c = j if Pr(c = j |x) = max
k

Pr(c = k |x), (1)

wherePr(c = j|x) ∝ πjf(x; θj), Pr(c = j) = πj are class prior probabilities,
j = 1, . . . , ν and∝ denotes proportionality. This is in fact the definition of ageneral
Bayesian network classifier(BN classifier) commonly found in the literature (e.g.
Cowell et al. 1999).

2.1 Augmenting via binary classification

A well-known example of the BN classifier is thenaive Bayesian classifier, which
is a network with one arc from the class nodec to each of the feature nodesxi.
In this case,G represents the assumption that the feature variables are conditionally
independent, given the class variable, from which it is immediate thatf j(x; θ) =∏p

i=1 f j
i (xi; θ), j = 1, . . . , ν. Hence,Pr(c = j |x) ∝ πj

∏p
i=1 f j

i (xi; θ). It is worth
noting that the naive BN classifier does surprisingly well when only a finite sample
of training observation is available. This behavior has been noted in (e.g. Hastie et
al. 2001). The naive Bayesian approach also turns out to be effective when studying
the high dimensionality effect; see for instance, (Friedman 1997), where the bias and
variance induced on the class density estimation by the naive Bayes decomposition
and their effect on classification have been studied.

However, the total conditional independence inherent to the naive BN is far from
being realized in most applications. To relax this assumption we use the method-
ology proposed by (Friedman et. al 1997) where the problem was approached by
augmentingthe naive BN model by allowing additional arcs between the nodes that
capture possible dependencies among them. In this way, the original set of nodes is
decomposed into several subsets and, requiring the subsets to benon-overlapping,
the network structureG forms a decomposition of bothx andθj into κ pairwise dis-
joint, independent,m-dimensional subsets, so thatp = κm andx = (x1, . . . ,xκ),
θj = (θj

1, . . . , θ
j
κ) wherexi = (xi1, . . . , xim), θj

i = (θj
i1, . . . , θ

j
im) i = 1, . . . , κ,

j = 1, 2. We call these structuresaugmented Bayesian networks(augmented BN)
and the subsetsblocks.

Augmenting the network followed by the block independence implies that the
joint probability density ofx for each class can be decomposed into a product of local
interaction models, i.e.f(x; θj) =

∏κ
i=1 fi(xi; θ

j
i ), where the localm-dimensional

densityfi(xi; θ
j
i ) belongs to a familyFG,Θ which depends on a finite set of parame-
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tersθj
i ∈ Θ, i = 1, . . . , κ, j = 1, 2. This makes it possible to build a classification

model separately for each block, and then combine all local classifiers.

To learn the augmented BN classifier we need to choose parametric families
for representing the local class conditional densities. GivenG we assume that the
family FG,Θ satisfies the following regularity conditions: for eachxi, the function
`i(xi; θ

j
i ) := ln fi(xi; θ

j
i ) is three times differentiable in the components ofθj

i and
all first-, second- and third- order derivatives with respect toθj

i of `(xi; θ
j
i ) are inte-

grable with respect tof(x; θj) dx, j = 1, 2.

In what follows we restrict ourselves tobinary classification, the special (but
common) case in whichν = 2 and assign to the class that wins the most pairwise
comparisons. Further, we will make use of the decision boundaries that are expressed
in terms of a logarithmic difference between two densities, i.e. thediscriminant score,

C(x; θ1, θ2) = `(x; θ1)− `(x; θ2).

To motivate why this representation of the classifier is attractive, we note first that the
scoreC(x; θ1, θ2) preserves the ordering of the class posterior probabilities leading
to the decision rule

c(x) =
{

1 whenever C(x; θ1, θ2) > ln π2
π1

,

2 otherwise.
(2)

which is equivalent to (1).

E1 = Pr(C(x; θ1, θ2) ≤ ln
π2

π1
|c(x) = 1), (3)

E2 = Pr(C(x; θ1, θ2) > ln
π2

π1
|c(x) = 2). (4)

These in turn form theBayes riskRC(x;θ1,θ2) = π1E1 + π2E2, which gives a straight-
forward way of judging the classification accuracy. Note also that in the symmetric
case with equal prior probabilities both class-wise error rates are equal, and the min-
imum attainable Bayes risk isRC(x;θ1,θ2) = 1

2(E1 + E2).

2.2 High-dimensional framework and estimates

A theoretically sound way to deal with the high-dimensional problem is to turn to
a general asymptotic approach, meaning that a relationship between dimensionality
and sample size satisfies the condition:

lim
nj→∞

λ(p, nj) < ∞,
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whereλ(p, nj) is a positive function increasing alongp and decreasing alongnj , j =
1, 2. Since the increase ofp andnj is somehow simultaneous in a high-dimensional
setting, the asymptotic approach we are going to work with can be based on the ratio

lim
nj→∞

p

nj
= η, (5)

where0 < η < ∞ is a certain constant for eachj = 1, 2. This approach is often
referred to under the name ofgrowing dimension asymptotics(Pavlenko and von
Rosen 2001) and the goal is to apply this to explore the high-dimensionality effect on
the classification performance. Regardingnj , in this study we assume the same rate
of growing for both samples sizes so thatn1 = n2 = n.

In order to completely specify the learning method in the context of augmented
BN model, we define the asymptotic properties of estimatesθ̂j

i to be plugged-in into
C(x; θ1, θ2). We introduce the statisticsT j

i = n1/2(θ̂j
i −θj

i )
′I1/2(θj

i ), which for each
i = 1, . . . , κ describes the standardized bias of the estimateθ̂j

i , whereIj = I(θj) is
the Fisher information matrix which is positive definite for allθj ∈ Θj and whose
eigenvalues are bounded from above. By the network structure, the matrices are of
block-diagonal form with blocksIj

i = I(θj
i ) of dimensionm × m, j = 1, 2. We

assume that the estimateθ̂j
i is such that for eachj uniformly in i:

1. limn→∞maxi |E[T j
i ]| = 0.

2. All eigenvalues of the matricesnE[(θ̂j
i −θj

i )(θ̂
j
i −θj

i )
′] are bounded from above

so that

lim
n→∞max

i
|nE[(θ̂j

i − θj
i )
′I(θj

i )(θ̂
ν
i − θj

i )]−m|
= lim

n→∞max
i
|E[〈T j

i , T j
i 〉]−m| = 0,

where〈•, •〉 denotes the scalar product.

3. maxi E[|T j
i |3] = O( 1

n3/2 ). (6)

4. The asymptotic distribution ofT j
i converges toNm(0, I) asn approaches in-

finity.

These assumptions form the standard set of “good” asymptotic properties, of which
first three reflect unbiasedness, efficiency and boundness of the third absolute mo-
ment ofθ̂j

i , uniformly in i asn →∞.
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Let us now in this framework analyze classifierC(x; θ̂1, θ̂2), given the structure
G. Since we fix the block-size to the constantm, the total number of blocks,κ, must
grow together withn according to (5) in such a way that

lim
n→∞

κ

n
= ρ, where 0 < ρ < ∞ (7)

andη = mρ. This assumption being designed for augmented BN, is just a particular
case of (5).

Further, by the block independence we get

C(x; θ̂1, θ̂2) =
κ∑

i=1

Ci(xi; θ̂1
i , θ̂

2
i ), (8)

whereCi(xi; θ̂1
i , θ̂

2
i ) = `i(xi; θ̂1

i ) − `i(xi; θ̂2
i ), which implies that the classifier in-

duced by augmenting BN islog additivein each block and the corresponding pro-
cedure is within the frame of theGeneralized Additive Models; see (Hastie et al.
2001). The main advantage of the additive structure of the augmented classifier is
that in the asymptotic framework specified by (7),C(x; θ̂1, θ̂2) can be viewed as a
sum of a growing numbers (κ grows together withn) of independent random vari-
ables and, under rather mild regularity conditions imposed on the family of local
densitiesFG,Θ, we may state the convergence of this sum towards a Gaussian dis-
tribution. This methodology has been studied in details in (Pavlenko and von Rosen
2001), where the asymptotic distribution ofC(x; θ̂1, θ̂2) was used to establish the
minimum misclassification risk

RC(x;θ̂1,θ̂2) −→ Φ
(
−
√

J

2
1√

1 + 2mρ
J

)
, (9)

asn → ∞ by (7), whereΦ(y) = 1√
2π

∫ y
−∞ exp(−z2/2)dz andJ denotes the cross-

entropy distance between the classes defined as

J =
∫

ln
f1(x; θ1)
f2(x; θ2)

(
f1(x; θ1)− f2(x; θ2)

)
dx. (10)

3 Separation score and weighted BN classifier

Given the augmented structureG specified bym andκ, the cross-entropy distance
JG defined by (10) is additive and decomposable asJG =

∑κ
i=1 Ji, where

Ji =
∫

ln
fi(xi; θ1

i )
fi(xi; θ2

i )
(f(x; θ1)− f(x; θ2))dx (11)
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is the input ofith block of nodes towardsJG . Our idea is to employ this quantity
to evaluate the relevance of the block with respect to (for) classification: We define
theseparation scoreof theith block by the valuenJi

2 , and its sample based analogue
nĴi
2 with estimated parameters infi(xi; θ

j
i ). Normalization byn is to ensure that

0 < nJi
2 < ∞ asn →∞ according to (7).

In the growing dimension asymptotics framework it is worthwhile introducing a
distribution function of the block scores as

Hn(u) =
1
κ

κ∑

i=1

1
[
nJi
2

,∞)
(u),

where1{A} is the indicator function of the setA. We suppose also that the con-
vergencelimn→∞Hn(u) = H(u) takes place uniformly inu andH(u) is a known
distribution. Observe that using the distributionH(u) in asymptotics (7) we can
conclude that

J = lim
n→∞JG = lim

n→∞

κ∑

i=1

Ji = 2ρ

∫
udH(u), (12)

whereJ is the limiting value of the cross-entropy distance for givenG.

To incorporate the block separation strength into classification we specify the

weight-function of theith block bywi := w(nĴi
2 ) wherewi(u) is nonnegative and

bounded foru > 0 and define theweightedBN classifier as

Cw(x; θ̂1, θ̂2) =
κ∑

i=1

wiCi(xi; θ̂1
i , θ̂

2
i ), (13)

which provides us with the natural extension of the augmented BN model: each local

classifierCi(xi; θ̂1
i , θ̂

2
i ) is weighted by the correspondent block separation scorenĴi

2 .

When weighting the network by separation score in practical situations, it is es-

pecially important to investigate the asymptotic properties of estimates,nĴi
2 , since we

generally can not observenJi
2 . An impression about the bias induced in the separa-

tion score by the plug-in estimative approach for high-dimensional data is given by

considering the asymptotic distribution ofnĴi
2 , established in (Pavlenko 2003). It is

shown that uniformly ini asn → ∞ the distribution ofnĴi
2 converges to the non-

centralχ2 distribution,χ(u; m, γ2
i ) with m degrees of freedom and non-centrality

parameterγ2
i , i = 1, . . . , κ. This asymptotic result reveals a remarkable property of

nĴi
2 in high-dimensional case: For the non-centralχ2 distribution one can see that

E[
nĴi

2
] = γ2

i + m +O(n−3/2), (14)
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whereγ2
i = nJi

2 , (see, for instance Johnson et al. 1995) which implies thatnĴi
2 over-

estimatesthe true value of the separation score up to the orderm, the block size.
Furthermore, the accumulation of the bias over the increasing number of blocks in
asymptotics (7) leads to the bias of the classifier of orderO(κ/n), which in turn can
severely hurt the classification accuracy. To help with this problem, i.e. to take into
account the bias induced by plug-in estimation, we derive a down-weighting proce-
dure which can be provided by a properly chosen weight-functionw in (13). This
function is obtained by minimizing the misclassification riskRw over all possible
type of weighting assuming thatE1,w = E2,w, i.e. whenπ0 = 0, in which case
Rw = Φ(− Dw

2 ), whereDw = Ew√
Vw

,

Ew = ρ

∫
γ2[

∫
w(u)χ(u;m + 2, γ2)du]dH(γ2), (15)

Vw = 2ρ

∫
[
∫

uw2(u)χ(u;m, γ2)du]dH(γ2). (16)

These in turn give the optimal type of weighting as

w0(u) =
∫

γ2χ(u; m + 2, γ2)dH(γ2)
u

∫
χ(u; m, γ2)dH(γ2)

. (17)

4 Selection technique

We now extend the formulations to accommodate feature selection. We denote by
κ0 the putative number of irrelevant blocks and assume that for alli = 1, . . . , κ0,

p limn→∞ nĴi
2 = γ2

0 and limn→∞ κ0
κ = ψ, wherep lim means limit in probability

andψ > 0 is a fixed small constant. The first assumption is to reflect that the irrele-
vant blocks suppose to have close sample characteristics, i.e. low sample separation
score with the same limit value,γ2

0 and the second one is to ensure that the number
of irrelevant blocks is sufficiently small. In fact, the notion “number of irrelevant
blocks” is subtle in the growing dimension framework. When reasoning in a usual
way, certain number of relevant or irrelevant blocks is a measure of absolute growth
rather than relative. On the other hand, it seems unsound to make a finite selection
from an infinite number of potential feature nodes. By normalizingκ0 with the total
number of blocks,κ we determine the notion -fraction of irrelevant features, denoted
by ψ, which suits better the needs of our current investigation.

The method adapted in this paper to incorporating the subset selection step into
classification is based on the replacing the weight-function in (13) with its discrete
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analog of the formwi(u) = 1[γ2
0 ,∞)(u), so that

C(x; θ̂1, θ̂2) =
κ∑

i=1

1[γ2
0 ,∞)

(nĴi

2

)
Ci(xi; θ̂1

i , θ̂
2
i ). (18)

The indicator form ofwi(u) can be seen as a special type of weighting and thus
works as aninclusion-exclusion factorthereby eliminating the blocks whose sepa-

ration score,nĴi
2 , does not exceed the thresholdγ2

0 . Our goal is to determine the
optimal subset of̃κ blocks (̃κ < κ) whose contributions towards classification are
essential and using asymptotic results, develop the practically useful selection proce-
dure where the unknown thresholdγ2

0 can be estimated from data.

Since we are looking for the sets of nodes which provide the better classifica-
tion performance, optimizing the feature selection must be based on minimizing the
misclassification riskR. To do this, we first investigate the asymptotic effect of ex-
cluding a set of low informative blocks by usingε(C) = C̃ − C, which represents the
difference between the classifierC̃ based on the selected̃κ blocks and the classifier
C where all of the potentialκ blocks are used. Further, to relate the difference be-
tweenC̃ andC to the results (9) and (15)-(16) we note that the misclassification risk
R is a function of the first two moments of the the weighted classifier and therefore,
to proceed, we need to evaluateε(Ew) andε(Vw) which is done in the following
theorem.

Theorem 1 If limn→∞ κ0
κ = ψ ≥ 0 whereψ is small, then with the optimal weight-

ing by (17)
ε(ρ) = ρ̃− ρ = −ψρ,

ε(Ew) = ε(ρ)[(w(γ2
0)(γ2

0 −m)− 2γ2
0w′(γ2

0)],

ε(Vw) = ε(ρ)2γ2
0w2(γ2

0),

and using the weight-functionw(u) = 1[γ2
0 ,∞)(u)

ε(D) = ε(ρ)
2Jρ

(Jρ + 2ρm)2
[γ2

0(Jρ + 4ρm)− 2m(Jρ + 2ρm)], (19)

wherew′(u) = d
duw(u), D = Ew√

Vw
|w=1

[γ2
0 ,∞)

(u) and in the asymptotic framework

specified by (7)Jρ = p limn→∞
∑κ

i=1 Ĵi.

Due to space consideration we do not represent the detailed proof here.
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Now, using the estimation scheme (6) we can specify the selection procedure
which minimizes the misclassification risk. Observe thatR being a monotone de-
creasing function ofD can be diminished by the feature selection (18) if and only if
ε(D) > 0, i.e. if D̃ > D. This implies that in (19) we require thatγ2

0(Jρ + 4ρm)−
2m(Jρ + 2ρm) < 0 sinceε(ρ) is negative, and therefore

γ2
0 < 2m

Jρ + 2ρm

Jρ + 4ρm
, (20)

so that the blocks with the limiting separation score lower than2m
Jρ+2ρm
Jρ+4ρm should be

excluded.

The practical implementation of the selection technique requires specification
of both separation score and selection threshold from the data. Estimation scheme
for nJi

2 is already specified in (6) and one can redly see that the standard type of
estimates like, for example maximum likelihood, satisfy the conditions. To evaluate
the threshold in practice we relate (20) to the exact form of the asymptotic cross-
entropy distance given by

p lim
n→∞ Ĵκ,n = J + 2ρm.

This results follows straightforwardly from the representation

Ĵi =
1
n
〈γi + T 1

i − T 2
i , γi + T 1

i − T 2
i 〉+O(

1
n2

), (21)

whereT j
i are defined in (4) andγ2

i = nJi
2 is, in this context the true separation

score distributed byHn(u). (21) is obtained by the standard Taylor series expansion
of fi(xi; θ̂

j
i ) aboutθj

i and taking into account the regularity conditions imposed on
FG,Θ; see the details in (Pavlenko 2003). Using the convergence properties ofHn(u)
we further write

p lim
n→∞

κ∑

i=1

Ĵi = 2 lim
n→∞

κ

n

∫
(γ2 + m)dHn(γ2) = J + 2ρm,

by (7) and (12), where the bias-term2ρm highlights the effect of high dimensionality.

With these results we establish the selection procedure: to improve the classifica-
tion accuracy, theith block should be excluded if

nĴi

2
< 2m

Ĵκ,n

Ĵκ,n + 2ρm
. (22)

To give an impression of how the proposed feature selection technique effects the
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Figure 1:H(u) = U[0,b] is specified for eachb ∈ [0; 1.3] and for each block.D and

D̃ (upper panel) as wellR andR̃ (middle panel) are plotted as functions ofnb/2,
without selection (solid lines) and with selection (dashed lines), respectively. The
bottom panel represents the distribution of1− R̃/R.

classification accuracy, we consider two cases ofH(u) specifying our apriori knowl-
edge about the block separation strength givenG. We first assign the block separation
score a uniform distribution, i.e. assume thatH(u) = U[a,b](u), wherea andb are
given constants. For the second case, we assume thatH(u) = χ(u,m, γ2), i.e. that
the separation strength has the non-centralχ2 distribution withm degrees of free-
dom and non centrality parameterγ2. For each case we calculate estimates of the

block separation scores,nĴi
2 and the cross-entropy distancêJn using the data pro-

duced from the correspondent distributionH(u) and then compare betweenD and
D̃ for different network models represented in terms ofG andm for the training set,
and different values ofa, b, γ2 and different training set sizes. Since the proposed
selection technique is based on estimates, we have to take into account the high-
dimensionality effects when evaluating the classification performance. To do so, we
focus on the training sets of the sizen = 1200 assuming thatκ = 100 andm = 12
for both distributions.

Figures 1 and 2 represent the behavior ofD̃ andR̃ (usingκ̃ selected blocks) as
well asD andR (using allκ blocks), as functions of the sample size normalized
by the range of the correspondent distributionH(u); see two upper panels, respec-
tively. Histograms in the bottom panels illustrate the benefit in classification accuracy
arising from the feature selection approach for each particular choice ofH(u). The
selection procedure is running for each sample and since the training examples are
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Figure 2:H(u) = χ(u;m, γ2) is specified for eachu ∈ [0; 1.3] and for each block;
m andγ2 are uniformly drawn from values in[1;κm] and[0; 10], respectively. Oth-
erwise, the plots are produced in the same way as in Figure 1.

different in different trials we expect the number of excluded blocksκ0 to depend on
the trial.

The effect of incorporating the feature selection specified by (22) is clearly seen
in terms of more rapid decrease of the asymptotic misclassification riskR of the
selective BN classifier with increasing the sample size for bothU[a,b](u) andχ2 dis-
tributions,(middle panel in both figures, dashed lines) even ifκ0

κ is small, i.e. when
the small portion of low-informative blocks is excluded. The decrease of the misclas-
sification risk measured as1− R̃

R for the selective BN model versus the model without
selection is demonstrated by the histogram in figures 1 and 2 (bottom panel). For both
cases of the distributionH(u), the selective BN reveals noticeably (up to 20%) lower
asymptotic misclassification rate than that for the classifier without selection.

5 Conclusion

We have presented a theoretically justified subset selection approach which is based
on the idea of defining a probabilistic distance measure of the separation score of
a set of feature nodes for the augmented BN classifier. Feature selection was de-
veloped as an extension of the weighted BN classifier, where weight-functions are
viewed as inclusion-exclusion factors. The optimization of the selection procedure
was based on minimizing the misclassification risk and is combined with estimating
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the unknowns for a given network structureG, therebyjointly taking into account
the high-dimensionality effects. The calculations were shown to be feasible in the
context of augmented BN model for different augmenting orderm and when classi-
fiers are defined as a discriminant score of the local class-conditional densities sat-
isfying rather mild regularity conditions. The selective BN classifier has shown to
achieve a better general performance accuracy in a high-dimensional framework. We
have developed an algorithm that approximates our theoretical model and present ex-
perimental results which support the contention that the proposed feature selection
scheme does substantially improve classification performance of the augmented BN
model for different apriori assumptions about the block separation properties.
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