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Abstract

Models for repeated measures cross-over designs are defined in terms of
growth curve models. In the paper two specific cross-over designs, called
the AB:BA and ABAB:BABA design, are studied. The maximum like-
lihood estimators for the parameters are derived by utilizing the theory
for growth curve models. A model with a structured dispersion matrix
is defined for the AB:BA design, and a specific linear transformation
is used to derive estimators in a convenient way. To illustrate numeri-
cally, maximum likelihood estimates are calculated for an ABAB:BABA
study.
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1 Introduction

The simplest example of a cross-over design is the two-sequence two-period
cross-over design for comparing two treatments. That is, if the two treatments
involved are denoted A and B, then half of the subjects receive treatment A
in the first period followed by treatment B in the second period, whereas the
remaining subjects receive the treatments in the reverse order. This design is
denoted AB:BA, where the colon is used to separate the treatment sequences.
Higher order cross-over designs are obtained by including more than two treat-
ments or two periods. Typically, in a standard cross-over design, a response
variable is measured once at the end of each period for each subject. A re-
peated measures cross-over design is a cross-over design where a sequence of
measurements is collected within each period. For example, to compare two
test drugs, the concentration of the drug in the blood might be measured ev-
ery 30 minutes for each subject during three hours after administration of the
drug.

The aim of this paper is to show that statistical models for a repeated
measures cross-over design in a useful way can be defined through the growth
curve model. The growth curve model (GCM) (other names of the model
are generalized linear model, GMANOVA, multivariate linear normal model
etc.) was introduced by Potthoff and Roy (1964) as a method for analysis of
growth curve experiments. An extended version of the GCM was presented
by von Rosen (1989). In general, the model applies to longitudinal data in
which subjects are followed for a period of time. To date the GCM has only
been applied to cross-over designs by Banken (1984), in a canonical version,
to study hypothesis testing problems. Putt and Chinchilli (1999) developed a
mixed effects model and gave conditions under which explicit estimators of the
variance components exist as well as hypothesis test of treatment differences.
However, explicit maximum likelihood estimators of the fixed effects are not
obtained, unless independent random errors are assumed, in which case the
estimators coincide with the ordinary least square estimators. The main ad-
vantages of using the GCM is that explicit maximum likelihood estimators of
the parameters are obtained.

Two specific cross-over designs, called the AB:BA and ABAB:BABA de-
sign, are studied. Models for these designs are described and the maximum
likelihood estimators for the parameters are derived by utilizing the theory
for the GCM. Two models are defined for each of the design, with respect to
inclusion or exclusion of a so-called carry-over effect. When the carry-over
effect is omitted, the extended GCM is applied. Furthermore, a model with
a structured dispersion matrix is defined for the AB:BA design, and a spe-
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cific linear transformation is used to derive estimators in a convenient way.
To illustrate numerically, maximum likelihood estimates are calculated for an
ABAB:BABA study published by Ciminera and Wolfe (1953) and later re-
analyzed by Putt and Chinchilli (1999).

2 Background

2.1 Growth curve models

For reviews of the model see von Rosen (1991) and Kshirsagar and Smith
(1995). We will define two types of the GCM which will be referred to as
GCM1 and GCM2. GCM1 is the same model as introduced by Potthoff and
Roy, whereas GCM2 is an extended version of GCM1 introduced by von Rosen
(1989). In the following, X will be a random observable matrix, where each
subject or unit is represented by a column in X. Let further, for an arbitrary
matrix A of real numbers, ρ(A) denote the rank of A, C(A) the column
space of A, A− a generalized inverse of A, A′ the transpose of A, C(A)⊥ the
orthogonal complement of C(A) and Ao any matrix generating C(A)⊥.

Definition 2.1 (GCM1) Let X : p×n, A : p×q, q ≤ p, B : q×k, C : k×n,
ρ(C) + p ≤ n and dispersion matrix Σ : p× p, p.d. The GCM1 for X is:

X = ABC + Σ1/2E,

where the elements, ekl, k = 1, . . . , p, l = 1, . . . , n, of E are iid N(0, 1), A and
C are known matrices, and B and Σ are unknown parameter matrices.

The matrices A and C are called the within subject design and between
subject design matrices, respectively. Note that E[X] = ABC and that the
columns of X are independently distributed according to the multivariate nor-
mal distribution Np(ABCi,Σ), i = 1, . . . , n. Furthermore, if A = Ip, where
Ip denotes the identity matrix of size p× p, the ordinary MANOVA model is
obtained.

Example 2.1 Suppose that we study a group of animals under three differ-
ent treatment conditions and that a time series of p (p ≥ 3) measurement,
t1, . . . , tp, of some response variable is collected for each animal. The p-vectors
of measurements from animals are assumed to be independent observations
from a multivariate normal distribution. Furthermore, suppose that the ex-
pected ”growth curve” follows a cubic polynomial function in time, where the
parameters may differ between treatment groups. Let the first n1 columns of X
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represent animals in treatment group 1 and the following n2 columns animals
in treatment group 2, and so on. Then

A =




1 t1 t21 t31
1 t2 t22 t32
...

...
...

...
1 tp t2p t3p


 , B =




b11 b12 b13

b21 b22 b23

b31 b32 b33

b41 b42 b43


 ,

C =




1′n1
0′n2

0′n3

0′n1
1′n2

0′n3

0′n1
0′n2

1′n3


 ,

where ni is the number of animals in treatment group i, i = 1, 2, 3, and 1ni and
0ni represent ni × 1 vectors consisting of ones and zeroes, respectively. The
columns of B represent the unknown parameters for each treatment group, and
the expected response at time t equals b1i+b2it+b3it

2+b4it
3 in treatment group

i.

Next, an extension of GCM1, called GCM2, will be defined. Note that Def-
inition 2.1 implies that the expected responses within subjects, must follow the
structure given in A. For instance, in Example 2.1 all subjects have to follow
a cubic polynomial growth. However, the coefficients of the cubic polynomial
are allowed to be different between treatment groups. The extended model
allow subjects to have a different degree in the polynomial growth curves. In
addition, the model is useful when linear restrictions of B exists in the GCM1,
such as DBF = 0, where D and F are known matrices.

Definition 2.2 (GCM2) Let X : p× n, Ai : p× qi, Bi : qi × ki, Ci : ki × n,
ρ(Ci)+p ≤ n, i = 1, 2, . . . ,m, C(C′

i) ⊆ C(C′
i−1), i = 2, 3, . . . , m and Σ : p×p,

p.d. The GCM2 for X is:

X =
m∑

i=1

AiBiCi + Σ1/2E,

where the elements, ekl, k = 1, . . . , p, l = 1, . . . , n, of E are iid N(0, 1), Ai

and Ci are known matrices and Bi and Σ are unknown parameter matrices.

It follows that the columns of X are independently distributed according to
the multivariate normal.

Example 2.2 (Example 2.1 continued). Suppose that the expected response
at time t in group 1, 2 and 3 is a linear, quadratic and cubic function of t,
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respectively. That is

expected mean group 1 = b11 + b21t,

expected mean group 2 = b12 + b22t + b32t
2,

expected mean group 3 = b13 + b23t + b33t
2 + b43t

3.

These assumptions can simultaneously be described by the model

E[X] = A1B1C1 + A2B2C2 + A3B3C3,

where

A1 =




1 t1
1 t2
...

...
1 tp


 , A2 =




t21
t22
...
t2p


 , A3 =




t31
t32
...
t3p


 ,

B1 =
(

b11 b12 b13

b21 b22 b23

)
, B2 =

(
b31 b32 b33

)
, B3 =

(
b41 b42 b43

)
,

C1 =




1′n1
0′n2

0′n3

0′n1
1′n2

0′n3

0′n1
0′n2

1′n3


 , C2 =




0′n1
0′n2

0′n3

0′n1
1′n2

0′n3

0′n1
0′n2

1′n3


 , C3 =




0′n1
0′n2

0′n3

0′n1
0′n2

0′n3

0′n1
0′n2

1′n3


 .

Note that the condition C(C′
3) ⊆ C(C′

2) ⊆ C(C′
1) is fulfilled.

2.2 Results on growth curve models

2.2.1 Maximum likelihood estimators

The maximum likelihood (ML) estimators of the parameters B and Σ in the
GCM1 are presented in the next lemma. When estimating B full-rank condi-
tions for A and C are supposed to hold. Also, uniqueness conditions for the
parameters and given linear combinations of B̂ are presented as well as the
dispersion matrix D[B̂]. Let G− denote an arbitrary g-inverse in the sense of
GG−G = G. Proofs of the lemma as well as results and proofs in the case of
general rank conditions can be found in von Rosen (1989, 1990).

Lemma 2.1 (i) Suppose that ρ(A) = q and ρ(C) = k in the GCM1. The ML
estimator of B is given by

B̂ = (A′S−1A)−1A′S−1XC′(CC′)−1.
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The ML estimator of Σ equals

nΣ̂ = (X−AB̂C)(X−AB̂C)′ = S + VV′,

where S = X(I−C′(CC′)−C)X′ and V = XC′(CC′)−C−AB̂C.

(ii)
D[B̂] = c1(CC′)−1 ⊗ (A′Σ−1A)−1,

where
c1 = n−k−1

n−k−p+q−1 .

(iii) An unbiased estimator of D[B̂] is given by

D̂[B̂] = c11(CC′)−1 ⊗ (A′Σ̂
−1

A)−1,

where
c11 = n

n−k−p+q c1.

(iv) The ML estimator of Σ is always unique. The ML estimator of B is
unique if and only if ρ(A) = q and ρ(C) = k. The linear combination
DB̂F is unique if and only if C(D′) ⊆ C(A′) and C(F) ⊆ C(C).

Example 2.3 (Example 2.2 continued) The A matrix in Example 2.1 has
full column rank, i.e. ρ(A) = 4. One way to verify this is to calculate the
determinant of the sub-matrix obtained by omitting the last p− 4 rows, i.e. if
this matrix is denoted Asub,

Asub =




1 t1 t21 t31
1 t2 t22 t32
1 t3 t23 t33
1 t4 t24 t34


 .

Then det(Asub) is the well-known so called Vandermonde determinant, which
means that det(Asub) =

∏
i<j(tj − ti), i = 1, 2, 3, j = 2, 3, 4. Since tj − ti > 0

for i < j, det(Asub) > 0, so that Asub is non-singular with ρ(Asub) = 4, which
also implies ρ(A) = 4. More generally, if the expected response is a polynomial
function of degree q − 1, q ≤ p, then the rank of A equals q.

The ML estimators of the parameters in GCM2 for arbitrary m can be
found in von Rosen (1989). As mentioned GCM2 becomes useful when linear
restrictions on the parameters exist in GCM1. To see why, suppose DBF = 0
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for known matrices D and F. This is a homogeneous system of equations in
B which has the general solution B = (D′)oΘ1 +D′Θ2Fo′ , where Θ1 and Θ2

are new parameter matrices. If the expression for B is inserted in GCM1 we
obtain

X = A(D′)oΘ1C + AD′Θ2Fo′C + Σ
1
2 E.

However, since C(C′Fo) ⊆ C(C′) this model is in fact a GCM2 with m = 2 and
unknown parameters Θ1 and Θ2. Thus, the ML estimators of the parameters
of B and Σ can be derived. The results are presented in the next lemma.

Lemma 2.2 Suppose DBF = 0 in the GCM1, where D: s× q, F: k × t are
known matrices. Then

B̂ = (D′)oΘ̂1 + D′Θ̂2Fo′ ,

nΣ̂ = (X−AB̂C)(X−AB̂C)′,

where

Θ̂2 = (DA′T′
1S
−1
2 T1AD′)−DA′T′

1S
−1
2 T1XC′Fo(Fo′CC′Fo)−

+(DA′T′
1)

oZ11 + DA′T′
1Z12(Fo′C)o′ ,

Θ̂1 = ((D′)o′A′S−1
1 A(D′)o)−(D′)o′A′S−1

1 (X−AD′Θ̂2Fo′C)C′(CC′)−

+((D′)o′A′)oZ21 + (D′)o′A′Z22Co′ ,

T1 = I−A(D′)o((D′)o′A′S−1
1 A(D′)o)−(D′)o′A′S−1

1 ,

S1 = X(I−C′(CC′)−C)X′,
S2 = S1 + T1XC′(CC′)−C(I−C′Fo(Fo′CC′Fo)−Fo′C)C′(CC′)−CX′T′

1,

S1 is assumed to be p.d. and Zij, i, j = 1, 2, are arbitrary matrices.

In the next lemma uniqueness conditions are given for B̂ and linear combi-
nations KB̂L as well as the dispersion matrix of B̂. For proofs see von Rosen
(1990, 1995).

Lemma 2.3 Suppose that the same conditions as in Lemma 2.2 hold.

(i) The estimator B̂ is unique if and only if

ρ(C) = k,
C(D′) ∩ C(A′)⊥ = {0},
C(D′) ∩ {C(D′)⊥ + C(A′)⊥} = {0}.
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(ii) The linear combinations KB̂L, where K and L are known matrices, are
unique if and only if

C(L) ⊆ C(C),
C((D′)o′K′) ⊆ C((D′)o′A′),

C(Fo′L) ⊆ C(Fo′C),
C(DP′

1K
′) ⊆ C(DP′

1A
′),

where
P1 = I− (D′)o((D′)o′A′A(D′)o)−(D′)o′A′A.

(iii) Let

c1 =
n− k − 1

n− k − p + q − 1
,

c2 = q(n−k+ρ(F)−1)
(n−k−p+q−1)(n−k+ρ(F)−p+2q−1) ,

c3 = n−k+ρ(F)−1
n−k+ρ(F)−p+q−1 .

and

L1 = (D′)o((D′)o′A′Σ−1A(D′)o)−(D′)o′ ,

L2 = (I− (D′)o((D′)o′A′Σ−1A(D′)o)−(D′)o′A′Σ−1A)
×D′(DA′(A(D′)o)o((A(D′)o)o′Σ(A(D′)o)o)−1(A(D′)o)o′AD)−D

×(I−A′Σ−1A(D′)o((D′)o′A′Σ−1A(D′)o)−(D′)o′).

Then,
D[B̂] = R1 + R2,

where

R1 = c1(CC′)−1 ⊗ L1,

R2 = Fo(Fo′CC′Fo)−Fo′ ⊗ (3c2L1 + (c3 + 2)L2).

As in Lemma 2.1 (iii) we could have presented unbiased estimators of D[B̂]
but they will be rather lengthy. However, Σ̂ is a consistent estimator of Σ
and therefore in order to find reasonable estimators of D[B̂] we replace Σ by
Σ̂. Observe that the correction performed in Lemma 2.1 (iii), i.e. replacing c1

by c11 does not have any strong implication.
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2.3 Cross-over designs and mixed linear models

For reviews of the cross-over design see Jones and Kenward (1987) and Senn
(1993). A common practice is that repeated measurements are collected for a
response variable in each period from each subject. Some examples are

1. Systolic blood pressure measured 2, 4, 8, 24 and 48 hours
after administration of a drug.

2. Lamb weights taken at eight two-weekly intervals during an
experiment on growth rate.

3. Concentration of a test drug in the blood measured every ten
minutes after administration of the drug.

The term repeated measures cross-over design is used for this type of design.
We will assume that measurements are made at equivalent times for each sub-
ject and for each period, although this is not always necessary. Several different
methods to analyze this design have been proposed. If a uniform covariance
structure (compound symmetry) between repeated measurements is assumed,
ANOVA-methods can be used. However, since the repeated measurements
within periods are made during a short time interval, the uniform structure
assumption often does not make sense. Another disadvantage with ANOVA is
that the change of the response variable across the period of measurement is
usually modelled with a general time effect and time by treatment interaction,
whereas a model of the response by a time-dependent function, e.g. a linear
or logarithmic growth rate in Example 1 above, would be preferred. Putt and
Chinchilli (1999) present a mixed effects model that can model time-dependent
changes, which is based on the random coefficients growth curve model by Rao
(1965). Since this model probably is the most commonly applied approach to-
day, we will summarize it briefly. The model, which in principle can be applied
to all types of cross-over designs, is written

Yijkl = wijkl(βikl + δijk) + εijkl,

where i, j, k and l indexes sequence, subject in sequence i, treatment and
replicate of treatment k within sequence i, respectively. The response vector,
Yijkl is a q-vector of measurements of the jth subject on the ith sequence
for the lth replicate of treatment k, wijkl is a q×r design matrix, βikl and
δijk are the r-vectors of fixed and random effects, respectively, and εijkl is a
q-vector of random errors. The fixed effect βikl is composed of parameters
representing mean and nuisance effects. If the random subject effect δijk
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is written δij = (δ′ij1, . . . , δ
′
ijt)

′, where t is the number of treatments, the
between-subject dispersion matrix is the tr×tr-matrix

D[δij ] =




Ω11 . . . Ω1t
...

. . .
...

Ω1t . . . Ωtt


 ,

where Ωkk′ = (ω(mm′)
kk′ ) and ω

(mm′)
kk′ is the between-subject covariance for the

mth and m′th location parameter on treatment k and k′, respectively. The
within-subject dispersion matrix is

D[εijkl] =




σ
(11)
k . . . σ

(1q)
k

...
. . .

...
σ

(q1)
k . . . σqq

k


 .

In order to obtain estimators of the fixed effects, the generalized least
square (GLS) method is used. In the case of normally distributed data, the
GLS estimator of the fixed effects will be equal to the maximum likelihood ML
estimator. However, the within-subject dispersion matrix must be known in
order to calculate the GLS estimate, except in the case of independent random
error, i.e. all σ

(mm′)
k = 0, m 6= m′, k = 1, . . . , t. When this is not the case,

the estimated generalized least square (EGLS) method may be used (see Putt
and Chinchilli, 1999) . For independent random errors the GLS estimator
will be equal to the ordinary least square (OLS) estimator. In Putt and
Chinchilli (1999), all models that were evaluated assumed independent random
errors and an unstructured matrix for the random subject effects. Explicit
(closed form) expressions for the ML estimates of the variance components
were obtained for designs which are uniform within sequence (i.e. for each
subject, each treatment appears in the same number of periods), there are no
covariates and where every subject has the same design matrix.

3 Growth curve models for the analysis of cross-
over designs

3.1 Introduction

In Section 3.2 – 3.4, a two-sequence two-period repeated measures cross-over
design is considered. Firstly, the model is defined in terms of a multivariate
linear normal model and the maximum likelihood estimators of the parameters

9



are derived. Secondly, a transformation of the problem is considered, that
under certain additional assumptions of the dispersion matrix, simplifies the
derivation of the maximum likelihood estimators of the parameters. In Section
3.5, the results in Section 3.2 – 3.4 are extended to a two-sequence four-period
design. Lastly, the models are illustrated numerically by calculating the ML
estimates for a cross-over study that compares two different insulin mixtures
in rabbits.

3.2 Description of the model for a two-sequence two-period
design

We will assume that a time series of p (p ≥ 1) measurements of a response vari-
able are collected within periods for each subject, and that the measurements
are made at equivalent times for each subject in each period. The 2p-vectors
of measurements from subjects are assumed to be independent observations
from a multivariate normal distribution. We will also assume that the vari-
ance is equal for the two treatments. The expected response variable could be
a polynomial function of time with unknown coefficients, or some other un-
known linear combination of a time-dependent function. The aim of a study
could be to compare the time course of changes in the response variable for
treatments. It will be shown that the model can be considered as a GCM1
and consequently results given in Section 2.2 can be used.

Let n1 and n2 be the number of subjects in treatment sequence 1 and 2,
respectively, and n = n1 + n2 the total number of subjects. Let t1, . . . , tp be
the time points of measurements, which are assumed to be the same for each
subject. Let (X′

i1l : X′
i2l)

′ be the random observable 2p× 1 vector for subject
i, i = 1, . . . , n1 + n2, where the vector has been partitioned by period and
index l, l = 1, 2 represents treatment sequence. Thus, l = 1 for i = 1, . . . , n1

and l = 2 for i = n1 +1, . . . , n1 +n2. We assume that (X′
i1l : X′

i2l)
′ will follow

the model

(
Xi1l

Xi2l

)
=

(
A1 0
0 A1

)(
B1l

B2l

)
+

(
Σ11 Σ12

Σ21 Σ22

) 1
2

ei,

where the ei:s are independently distributed according to N2p(0, I), A1: p× q
is the within subject known design matrix with ρ(A1) = q and q ≤ p; Bjl

is the q-vector of unknown parameters for period j = 1, 2 and treatment
sequence l = 1, 2; Σjj is the dispersion matrix for period j; and Σ12 is the
matrix of covariances between components in period 1 and 2. This means that
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(X′
i1l : X′

i2l)
′ are independently multivariate normally distributed with mean

(
A1 0
0 A1

)(
B1l

B2l

)
,

and dispersion matrix (
Σ11 Σ12

Σ21 Σ22

)
.

In a standard set-up (see Jones and Kenward, 1987) Bjl comprises a general
mean effect, treatment effect, period effect and a simple carry-over effect.
Thus,

B11 = µ + τ 1 + π1,

B12 = µ + τ 2 + π1,

B21 = µ + τ 2 + π2 + λ1,

B22 = µ + τ 1 + π2 + λ2,

where the terms in Bjl are:

µ = (µ1, . . . , µq)′ : a general mean effect,
τ r = (τ1r, . . . , τqr)′ : the effect of treatment r, r = 1, 2,

πj = (π1j , . . . , πqj)′ : the effect of period j, j = 1, 2,

λr = (λ1r, . . . , λqr)′ : the carry-over effect from treatment r

However, it should be noted that the inclusion of a simple carry-over effect in a
AB:BA cross-over design is controversial (see Senn, 1993). Therefore, later on
a model where Bjl comprises only of a general mean-, treatment- and period
effect will also be evaluated. Let the observation matrix X be the 2p × n
matrix with (X′

i1l : X′
i2l)

′ as columns. Then, the model in matrix notation
becomes

X = ABC + Σ1/2E, (1)

where

A =
(

A1 0
0 A1

)
, C =

(
1′n1

0′n2

0′n1
1′n2

)
,

B =
(

B11 B12

B21 B22

)
=

(
µ + τ 1 + π1 µ + τ 2 + π1

µ + τ 2 + π2 + λ1 µ + τ 1 + π2 + λ2

)
,

Σ =
(

Σ11 Σ12

Σ21 Σ22

)
,
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and the elements eij of E : 2p× n are iid N(0, 1). The model is now given in
the same form as the GCM1. However, there is a difference in the definition
of the parameter matrix B in our case on the one hand, and in the GCM1 on
the other hand. The main interest in our case lies in the estimators of µ, τ r,
πj and λr, and in linear combinations of these. This problem is solved in the
next section.

3.3 Maximum likelihood estimators of the parameters

Maximum likelihood estimators of the parameters are presented in the next
theorem.

Theorem 3.1 Suppose that we have a two-sequence two-period repeated mea-
sures AB:BA cross-over design with n1 and n2 subjects in treatment se-
quence 1 and 2, respectively. Suppose that a response variable is measured at
time points t1, . . . , tp within periods for each subject, and that the 2p-vectors
of outcomes from subjects are independent observations from a multivariate
normal distribution with a positive definite dispersion matrix, Σ. Suppose
n = n1 + n2 ≥ 2p + 2. Let further A, A1, B and C be defined as in Section
3.2.

(i) If the constraints

τ 1 + τ 2 = 0, (2)
π1 + π2 = 0, (3)
λ1 + λ2 = 0 (4)

are imposed on the parameters, and, for convenience, the parameters are
renamed as τ = τ 1, π = π1 and λ = λ1, then the maximum likelihood
estimator of µ, τ , π and λ equal

µ̂ =
1
4

(
I : I

)
B̂

(
1
1

)
=

1
4
(B̂11 + B̂21 + B̂12 + B̂22), (5)

τ̂ =
1
2

(
I : 0

)
B̂

(
1

−1

)
=

1
2
(B̂11 − B̂12), (6)

π̂ =
1
4

(
I : −I

)
B̂

(
1
1

)
=

1
4
(B̂11 − B̂21 + B̂12 − B̂22), (7)

λ̂ =
1
2

(
I : I

)
B̂

(
1

−1

)
=

1
2
(B̂11 + B̂21 − B̂12 − B̂22), (8)

where A, B, C are defined in Section 3.1, and B̂ and Σ̂ are given by
Lemma 2.1.
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(ii) The maximum likelihood estimators of µ, τ , π and λ are unique if and
only if ρ(A1) = q.

Proof (i) First note that the model satisfies the conditions of the GCM1 (see
Definition 2.1) and therefore the ML estimators of B and Σ are given by
Lemma 2.1. If the constraints in (2)-(4) are used, the parameter matrix B
equals

B =
(

B11 B12

B21 B22

)
=

(
µ + τ + π µ− τ + π

µ− τ − π + λ µ + τ − π − λ

)
. (9)

The relation in (9) represents a linear transformation, L: R4q → R4q, of
v = (µ′ : τ ′ : π′ : λ′)′ to w = vec(B) = (B′

11 : B′
21 : B′

12 : B′
22)

′ which can be
written as L(v) = Mv, where

M =




I I I 0
I −I −I I
I −I I 0
I I −I −I


 : 4q × 4q.

Since the inverse of M exists, L is an one-to-one linear transformation. There-
fore, L−1(ŵ) = L̂−1(w) = M̂−1w = v̂, where ̂ denotes the ML estimator.
The inverse of M equals

M−1 =
1
4




I I I I
2I 0 −2I 0
I −I I −I

2I 2I −2I −2I


 ,

which gives the ML estimators of µ, τ , π and λ.
(ii) Since ρ(A1) = q if and only if ρ(A) = 2q, the results follow from

Lemma 2.1(ii). Observe that ρ(C) = 2 follows from the definition of the
design. ¤

In the next theorem, a model is considered where no carry-over effects are
supposed to exist from treatments, i.e. when λ1 = λ2 = λ = 0. The ML
estimators of µ, τ , π will have the same expressions as in Theorem 3.1, but
B̂ will now be given by Lemma 2.2.

Theorem 3.2 Suppose that the same conditions as in Theorem 3.1 hold. In
addition, suppose λ = 0. Then, the maximum likelihood estimators of µ, τ ,
π are given by (5)-(7), where B̂ and Σ̂ are presented in Lemma 2.2.
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Proof From the ML estimator of λ in Theorem 3.1, we see that if D: q × 2q
and F: 2× 1 are defined by

D =
(

Iq : Iq

)
and F =

(
1

−1

)
.

Then DBF = 2λ and thus λ = 0 if and only if DBF = 0. The model now
satisfies the conditions of GCM1 with linear restrictions DBF = 0. Thus, the
ML estimators of µ, τ and π will have the same expression as in Theorem
3.1, except that B̂ and Σ̂ now are based on Lemma 2.2. ¤

The uniqueness of B̂ and µ̂, τ̂ , π̂ depends on the structure of A and
conditions are given by Lemma 2.3. In particular, if ρ(A) = 2q then τ̂ will
be unique, see Åsenblad (2001). Note that a “natural estimator” of τ is
1
4((B̂11−B̂12)−(B̂21−B̂22)). This estimator could be seen as a generalization
of the standard period-adjusted estimator of τ in the standard AB:BA design.
However, due to the linear restrictions of B imposed by the assumption λ =
0, the “natural estimator” of τ will be the same as the estimator given by
Theorem 3.2.

3.4 A model with a structure on the dispersion matrix

A model with structure on the dispersion matrix is considered that, together
with a linear transformation of the model, will simplify the problem of deriving
maximum likelihood estimators. Let Γ be the 2p× 2p non-singular matrix

Γ =
(

I I
I −I

)
. (10)

Then the first p rows of ΓX will consist of the sum of the two p-vectors in
period 1 and 2, and the last p rows of the difference between the same p-vectors.
That is,

ΓX =
(

I I
I −I

) (
X11 X12

X21 X22

)
=

(
X11 + X21 X12 + X22

X11 −X21 X12 −X22

)
,

where Xij : p× nj is the submatrix of X representing period i and treatment
sequence j. The expectation of ΓX is given by

E[ΓX] = ΓE[X] = ΓABC =
(

I I
I −I

)(
A1 0
0 A1

)
BC

= A
(

B11 + B21 B12 + B22

B11 −B21 B12 −B22

)
C.
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Moreover, the dispersion matrix for the columns of ΓX equals

D[(ΓX)i] = ΓD[Xi]Γ′ = ΓΣΓ′

=
(

I I
I −I

)(
Σ11 Σ12

Σ′
12 Σ22

)(
I I
I −I

)

=
(

Σ11 + Σ′
12 + Σ12 + Σ22 Σ11 + Σ′

12 −Σ12 −Σ22

Σ11 −Σ′
12 + Σ12 −Σ22 Σ11 −Σ′

12 −Σ12 + Σ22

)
,

where subscript i represents column i of X.
If we make the additional assumptions that the dispersion matrix is equal

for period 1 and 2 and that the covariances between period 1 and 2 are equal,
that is, Σ11 = Σ22 and Σ12 = Σ′

12, respectively, then the dispersion matrix
for the columns of ΓX becomes

D[(ΓX)i] =
(

2Σ11 + 2Σ12 0
0 2Σ11 − 2Σ12

)
=

(
Σ1 0
0 Σ2

)
,

which implies that the column vectors of X1j + X2j and X1j −X2j are inde-
pendently multivariate normally distributed, j = 1, 2. This result is important
and will be used to obtain estimators of the parameters in a convenient way.

The ML estimators of µ, τ , π, λ and Σ are presented in the next theorem.
In the following, it will be convenient to use the notation: Y11 = X11 + X21,
Y12 = X12 + X22, Y21 = X11 −X21, Y22 = X12 −X22, H11 = B11 + B21,
H12 = B12 + B22, H21 = B11 −B21 and H22 = B12 −B22. Furthermore, the
notation ()′ will be used to denote multiplication with the preceding factor
transposed.

Theorem 3.3 Suppose that the same conditions as in Theorem 3.1 hold. In
addition, suppose that Σ11 = Σ22 and Σ12 = Σ′

12. Then

(i) The maximum likelihood estimators of µ, τ , π, λ, Σ1, Σ2, Σ11 and Σ12

equal

µ̂ =
1
4
(Ĥ11 + Ĥ12),

λ̂ =
1
2
(Ĥ11 − Ĥ12),

π̂ =
1
4
(Ĥ21 + Ĥ22),

τ̂ =
1
4
(Ĥ11 − Ĥ12 + Ĥ21 − Ĥ22),

15



nΣ̂1 = ((Y11 : Y12)−A1(Ĥ11 : Ĥ12)C)()′,
nΣ̂2 = ((Y21 : Y22)−A1(Ĥ21 : Ĥ22)C)()′,

Σ̂11 =
1
4
(Σ̂1 + Σ̂2),

Σ̂12 =
1
4
(Σ̂1 − Σ̂2),

where (Ĥ11 : Ĥ12) and (Ĥ21 : Ĥ22) are obtainable from a GCM1 with
mean A1(H11 : H12)C and A1(H21 : H22)C, respectively.

(ii) The maximum likelihood estimators are unique if and only if ρ(A1) = q.

Proof (i) The model (1) becomes, after transformation by Γ given in (10),

(
Y11 Y12

Y21 Y22

)
= A

(
H11 H12

H21 H22

)
C +

(
Σ1 0
0 Σ2

) 1
2

E.

Since the column vectors of Xij + Xij and Xij −Xij are independently mul-
tivariate normally distributed, the model can be divided into two models

(Y11 : Y12) = A1(H11 : H12)C + Σ
1
2
1 E1, (11)

(Y21 : Y22) = A1(H21 : H22)C + Σ
1
2
2 E2. (12)

Thus, the models in (11) and (12) are GCM1 with mean A1(H11 : H12)C)
and A1(H21 : H22)C, respectively. Therefore, the ML estimators of H11, H12,
H21, H22, Σ1 and Σ2 are obtainable from Lemma 2.1. If Hij is written in
terms of µ, τ , π and λ defined in Section 3.2, we get

(
H11 H12

H21 H22

)
=

(
2µ + λ 2µ− λ

2τ + 2π − λ −2τ + 2π + λ

)
. (13)

Let v1 = (µ′ : λ′)′, v2 = (π′ : θ′)′, w1 = (H′
11 : H′

12)
′ and w2 = (H′

21 : H′
22)

′,
where θ = 2τ − λ. The relation in (13) represents a linear transformation,
L1: R2q → R2q, given by L1(vi) = M1vi, where M1: 2q × 2q equals

M1 =
(

2I I
2I −I

)
.

L1 is a one-to-one linear transformation, where the inverse of M1 equals

M−1
1 =

1
4

(
I I

2I −2I

)
.
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Let ŵi be the ML estimators of wi, i = 1, 2. Then L−1
1 (ŵi) = ̂L−1

1 (wi) =

M̂−1
1 wi = v̂i, i = 1, 2. Thus, the ML estimators of µ, λ, π and θ equal

µ̂ =
1
4
(Ĥ11 + Ĥ12),

λ̂ =
1
2
(Ĥ11 − Ĥ12),

π̂ =
1
4
(Ĥ21 + Ĥ22),

θ̂ =
1
2
(Ĥ21 − Ĥ22).

The derivation of the ML estimator of τ remains. Let v3 = (µ′ : λ′ : π′ : τ ′)′

and w3 = (µ′ : λ′ : π′ : θ′)′. Let L2: R4q → R4q be the linear transformation
given by L2(x) = M2x, where M2: 4q × 4q equals

M2 =




I 0 0 0
0 I 0 0
0 0 I 0
0 −I 0 2I


 .

Then L2(v3) = M2v3 = w3 and L2 is an one-to-one linear transformation,
where the inverse of M2 equals

M−1
2 =

1
2




2I 0 0 0
0 2I 0 0
0 0 2I 0
0 I 0 I


 .

Therefore, L−1
2 (ŵ3) = ̂L−1

2 (w3) = M̂−1
2 w3 = v̂3, which means that the ML

estimator of τ equals

τ̂ =
1
2
(λ̂ + θ̂) =

1
4
(Ĥ11 − Ĥ12 + Ĥ21 − Ĥ22).

Alternatively, since τ = 1
2(λ + θ), it follows immediately that the maximum

likelihood estimator of τ must equal 1
2(λ̂ + θ̂). In the same way, the ML

estimators of Σ11 and Σ12 are obtained.
(ii) If ρ(A1) = q, then, since ρ(C) = 2, the uniqueness follows immediately

from Lemma 2.2. ¤

If λ = 0, the estimator of τ follows easily due to the independence of the
column vectors X1j + X2j and X1j −X2j .
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Corollary 3.4 Suppose λ = 0 in the model defined by Theorem 3.3. Then
the maximum likelihood estimator of τ is equal to

τ̂ =
1
2
θ̂ =

1
4
(Ĥ21 − Ĥ22).

3.5 A two-sequence four-period design

In this section the two-sequence four-period ABAB:BABA cross-over design
is considered. As before, it is assumed that a time series of p measurements is
collected within periods at the same time points for each subject, and that the
vectors of observations from subjects are independently multivariate normally
distributed. The same notations as in Section 3.2 are used as much as possible.
Let X: 4p×n be an observation matrix, A: 4p×4q be a within-subject design
matrix, B: 4q × 2 be an unknown parameter matrix, C: 2 × (n1 + n2) be a
between-sequence design matrix and Σ: 4p×4p be an unknown p.d. dispersion
matrix. Moreover,

A =




A1 0 0 0
0 A1 0 0
0 0 A1 0
0 0 0 A1


 , C =

(
1′n1

0′

0′ 1′n2

)
,

B =




B11 B12

B21 B22

B31 B32

B41 B42


 =




µ1 + τ 1 + π1 µ2 + τ 2 + π1

µ1 + τ 2 + π2 + λ1 µ2 + τ 1 + π2 + λ2

µ1 + τ 1 + π3 + λ2 + θ1 µ2 + τ 2 + π3 + λ1 + θ2

µ1 + τ 2 + π4 + λ1 + θ2 µ2 + τ 1 + π4 + λ2 + θ1


 ,

where A1: p × q is defined as in Section 3.2. Now the model becomes the
usual GCM1. One difference with the two-period model is that we now have
second-order carry-over effects, θi, i = 1, 2. The ML estimators of µi, τ i, πi,
λi and θi, i = 1, 2, can be derived in the same way as in Section 3.3. The
results are summarized in the next theorem.

Theorem 3.5 Suppose that we have a repeated measures two-sequence four-
period ABAB:BABA cross-over design with n1 and n2 subjects in treatment se-
quence one and two, respectively. Suppose that a response variable is measured
at time points t1, . . . , tp within periods for each subject, and that the 4p-vectors
of outcomes from subjects are independent observations from a multivariate
normal distribution with an unknown positive definite dispersion matrix, Σ.
Suppose n = n1 + n2 ≥ 4p + 2. Let further A, A1, B and C be defined as
above.
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(i) If the constraints

τ 1 + τ 2 = 0, (14)
π1 + π2 + π3 + π4 = 0, (15)

λ1 + λ2 = 0, (16)
θ1 + θ2 = 0 (17)

are applied to the parameters and they are renamed as τ = τ 1, λ = λ1

and θ = θ1, then the maximum likelihood estimators of the parameters
equal

µ̂1 =
1
8
(I : I : 3I : 3I : I : I : −I : −I)vecB̂

=
1
8
(B̂11 + B̂21 + 3B̂31 + 3B̂41 + B̂12 + B̂22 − B̂32 − B̂42), (18)

µ̂2 =
1
8
(I : I : −I : −I : I : I : 3I : 3I)vecB̂

=
1
8
(B̂11 + B̂21 − B̂31 − B̂41 + B̂12 + B̂22 + 3B̂32 + 3B̂42), (19)

τ̂ =
1
8
(4I : 0 : −2I : −2I : −4I : 0 : 2I : 2I)vecB̂

=
1
8
(4B̂11 − 2B̂31 − 2B̂41 − 4B̂12 + 2B̂32 + 2B̂42), (20)

π̂1 =
1
8
(3I : −I : −I : −I : 3I : −I : −I : −I)vecB̂

=
1
8
(3B̂11 − B̂21 − B̂31 − B̂41 + 3B̂12 − B̂22 − B̂32 − B̂42), (21)

π̂2 =
1
8
(−I : 3I : −I : −I : −I : 3I : −I : −I)vecB̂

=
1
8
(3B̂11 + 3B̂21 − B̂31 − B̂41 − B̂12 + 3B̂22 − B̂32 − B̂42), (22)

π̂3 =
1
8
(−I : −I : 3I : −I : −I : −I : 3I : −I)vecB̂

=
1
8
(−B̂11 − B̂21 + 3B̂31 − B̂41 − B̂12 − B̂22 + 3B̂32 − B̂42),(23)

π̂4 = 1− π̂1 − π̂2 − π̂3 (1 is a vector of ones), (24)

λ̂ =
1
8
(4I : 4I : −4I : −4I : −4I : −4I : 4I : 4I)vecB̂

= 1
8 (4B̂11 + 4B̂21 − 4B̂31 − 4B̂41 − 4B̂12 − 4B̂22 + 4B̂32 + 4B̂42),(25)
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θ̂ =
1
8
(0 : 4I : 0 : −4I : 0 : −4I : 0 : 4I)vecB̂

=
1
8
(4B̂21 − 4B̂41 − 4B̂22 + 4B̂42), (26)

Σ̂ =
1
n

(X−AB̂C)(X−AB̂C)′, (27)

where B̂ is presented in Lemma 2.1.

(ii) The ML estimators of µ1, µ2, τ , π1, π2, π3, π4, λ and θ are unique if
and only if ρ(A1) = q.

Proof Since the proof is similar to the proof of Theorem 3.1 some details will
be left out.

(i) The model satisfies all conditions of a GCM1 (see Definition 2.1) and
the ML estimators of B and Σ are given by Lemma 2.1. After applying the
constraints given by (14)-(17), there will be an one-to-one linear transforma-
tion between v = (µ′1 : µ′2 : τ ′ : π′1 : π′2 : π′3 : λ′ : θ′)′ and w = vecB, say
L(v) = Mv = w, where M: 8q × 8q and M−1 are given by

M =




I 0 I I 0 0 0 0
I 0 −I 0 I 0 I 0
I 0 I 0 0 I −I I
I 0 −I −I −I −I I −I
0 I −I I 0 0 0 0
0 I I 0 I 0 −I 0
0 I −I 0 0 I I −I
0 I I −I −I −I −I I




and

M−1 =
1
8




I I 3I 3I I I −I −I
I I −I −I I I 3I 3I

4I 0 −2I −2I −4I 0 2I 2I
3I −I −I −I 3I −I −I −I
−I 3I −I −I −I 3I −I −I
−I −I 3I −I −I −I 3I −I
4I 4I −4I −4I −4I −4I 4I 4I
0 4I 0 −4I 0 −4I 0 4I




.

Thus, the ML estimator of v is given by v̂ = L−1(ŵ) = M−1ŵ.
(ii) Since ρ(A1) = q if and only if ρ(A) = 4q, the result follows from

Lemma 2.1 (ii). ¤
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Next, a model where the second order effect parameter θ in Theorem 3.5
equals 0 is considered.

Theorem 3.6 Suppose that the same conditions as in Theorem 3.5 hold. In
addition, suppose θ = 0. Then the maximum likelihood estimators of the
parameters µ1, µ2, τ , π1, π2, π3, π4, λ are given by (18)-(25) and Σ by
(27), with B̂ presented in Lemma 2.2.

Proof Let D: q × 4q and F: 2× 1 be defined by

D =
(

0 : I : 0 : −I
)

and F =
(

1
−1

)
.

Then DBF = 2θ and consequently DBF = 0 if and only if θ = 0. ML
estimators of the parameters are now obtainable via Lemma 2.2 and 2.3. ¤

3.6 A numerical example

To illustrate the results in Sections 3.1-3.5, a study published by Ciminera
and Wolfe (1953) (re-printed by Kenward and Jones (1987) and re-analyzed
by Putt and Chinchilli (1999)), is analyzed. The aim of this is to demon-
strate the models and the calculations of the maximum likelihood estimates
without making any formal statistical inference. It is a study of the blood
sugar level (mg %) in female rabbits for two different insulin mixtures called
A and B. The design is a two-sequence four-period ABAB:BABA cross-over
design, where the the blood sugar level was measured at five successive times
(t = 0, 1.5, 3, 3, 4.5 h) after injection. Consequently, the results in Section 3.5
are applied. In addition, in order to apply the results in Sections 3.2-3.4 for
an AB:BA design, an analysis is made of the two first periods of the study. As
observed by Putt and Chinchilli (1999), the data suggest the blood sugar level
to be modelled with a second-order polynomial function of time. Therefore,
the within-subject design matrix A1 equals

A1 =




1 0 0
1 1.5 1.52

1 3 32

1 4.5 4.52

1 6 62




.

There were 11 rabbits included in each treatment sequence, which means the
between-subject matrix C equals

C =
(

1′11 0′11

0′11 1′11

)
.
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The following models are evaluated:

Model 1a: The model defined in Sections 3.2 – 3.3 for an AB:BA cross-over
design, where a parameter for a carry-over effect is included. Theorem
3.1 is used to estimate the parameters. The results are presented in
Table 1.

Model 1b: The model defined in Sections 3.2-3.3 for an AB:BA cross-over
design, where no carry-over is included. Theorem 3.2 is used to estimate
the parameters. The results are presented in Table 1.

Model 2: The model defined in Section 3.4 for an AB:BA cross-over design.
The main model includes a parameter for a carry-over effect but the
treatment effect is also estimated under the assumption of no carry-
over effect. Theorem 3.3 and Corollary 3.4 are used to estimate the
parameters. The results are presented in Table 2.

Model 3a: The model defined in Section 3.5.1 for an ABAB:BABA cross-
over design, where parameters for a first- and second-order carry-over
effects are included. Theorem 3.5 is used to estimate the parameters.
The results are presented in Table 3.

Model 3b: The model defined in Section 3.5.1 for an ABAB:BABA cross-over
design, in which the second-order carry-over effect is omitted. Theorem
3.6 is used to estimate the parameters. The results are presented in
Table 3.

For all models the estimated standard deviations of the estimated param-
eters have been calculated by help of Lemma 2.1 (iii) and Lemma 2.3 (iii),
where Σ has been replaced by its ML estimator, and the fact that the dis-
persion matrix of MB̂, where M is a known matrix of proper size, equals
D[MB̂] = MD[B̂]M′.

Since no hypothesis testing is made, no formal inference about the parame-
ter estimates is made. However, all models seem to fit data well with respect to
the mean response profile. The conclusion by Putt and Chinchilli (1999), and
Cinemera and Wolfe (1953), was that treatment B resulted in a slightly larger
linear slope than treatment A. This in agreement with the results of Model
1b, Model 2 (τ̂ |λ = 0) and Model 3a-3b, and the magnitudes of the treatment
difference (A-B) are also in the same range. Observe that the constraints on
the parameters (see (2) and (14)) imply that the treatment difference (A-B)
equals 2τ .
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Table 1. Maximum likelihood estimates of the parameters for Model 1a and 1b, by use of Theorem
3.1 and 3.2, respectively. The standard deviations of the estimates are given in brackets.

Model Coefficient µ̂ τ̂ π̂ λ̂

Intercept 87.78 0.30 1.49 -0.69
(1.54) (2.03) (1.06) (1.54)

Model 1a Linear -38.32 2.23 -0.93 7.69
(2.27) (2.57) (0.79) (2.27)

Quadratic 6.29 -0.52 0.08 -1.37
(0.38) (0.46) (0.02) (0.38)

Intercept 87.89 1.32 1.71 .
(2.54) (0.82) (1.12) .

Model 1b Linear -39.58 -2.17 -1.11 .
(3.97) (0.53) (0.97) .

Quadratic 6.51 0.25 0.11 .
(0.68) (0.12) (0.20) .

Table 2. Maximum likelihood estimates of the parameters for Model 2, by use of Theorem 3.3 and
Corollary 3.4. The standard deviations of the estimates are given in brackets.

Model Coefficient µ̂ τ̂ π̂ λ̂ τ̂ |λ = 0

Intercept 88.49 0.58 0.82 -0.49 0.82
(1.41) (1.71) (0.96) (2.82) (0.96)

Model 2 Linear -37.28 3.28 0.93 9.93 -1.69
(2.12) (2.24) (0.74) (4.23) (0.73)

Quadratic 6.02 -0.75 -0.26 -1.86 0.18
(0.36) (0.39) (0.15) (0.72) (0.15)

Table 3. Maximum likelihood estimates of the parameters for Model 3a and 3b, by use of Theorem
3.6 and 3.7, respectively. The standard deviations of the estimates are given in brackets.

Model Coefficient µ̂1 µ̂2 τ̂ π̂1 π̂2 π̂3 λ̂ θ̂

Intercept 92.50 86.88 -2.00 -2.77 -3.62 -4.24 -5.40 -0.82
(3.09) (3.09) (2.46) (1.66) (1.17) (2.38) (3.74) (3.50)

Model 3a Linear -35.96 -45.82 -1.77 -7.73 -3.29 1.30 -0.83 0.74
(2.64) (2.64) (2.95) (1.78) (1.34) (2.53) (5.11) (4.46)

Quadratic 5.84 7.36 0.09 1.45 0.83 -0.34 -0.11 -0.28
(0.43) (0.43) (0.58) (0.37) (0.24) (0.37) (0.92) (0.21)

Intercept 91.40 87.84 -1.07 -2.71 -3.63 -4.21 -4.34 .
(2.12) (2.12) (1.44) (1.35) (1.16) (1.70) (2.19) .

Model 3b Linear -36.39 -45.42 -2.58 -7.77 -3.31 1.32 -2.23 .
(1.93) (1.93) (1.42) (1.57) (1.32) (1.73) (2.25) .

Quadratic 5.90 7.32 0.23 1.45 0.84 -0.34 0.23 .
(0.32) (0.32) (0.29) (0.31) (0.24) (0.24) (0.39) .
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4 Conclusion and discussion

Models for the repeated measures AB:BA and ABAB:BABA cross-over design
have been defined in terms of the GCM1, and maximum likelihood estimators
of the parameters have been derived by utilizing the theory for multivari-
ate linear normal models. The models differ from the standard situation in
that the main parameters, which we call the cross-over parameters, are linear
combinations DBF of B, for some matrices D and F, whereas the matrix B
generally is not of interest. The number of cross-over parameters is greater
than the number of elements of B. However, by placing certain natural addi-
tional restrictions (see (2)-(4) and (14)-(17)) on the cross-over parameters, the
cross-over parameters and the elements of B are related according to a one-
to-one transformation. The additional restrictions of the parameters will not
change the estimator of any treatment contrast. Other types of restrictions
than those suggested may also work, only the interpretation of the parameters
will change. To illustrate numerically, the maximum likelihood estimates of
the parameters for a study published by Cimenera and Wolfe (1953) have been
calculated. The results are in agreement with the analysis made by Putt and
Chinchilli (1999) using a mixed effect models, although no formal statistical
inference of the parameters has been made.

The advantage of the approach is that explicit expressions for the estima-
tors of the parameters are obtained. Explicit expression for an estimator is
advantageous since then, for example, the distribution of the estimator can be
approximated and properties of the distributions examined. A disadvantage of
the model is that the number of parameters for estimating the error structure
is greater than in a mixed effect model, in which a certain structure of the
error matrix could reduce the number parameters (see Putt and Chinchilli,
1999). However, it is also possible in the GCM1 and GCM2 to assume certain
structures in the dispersion matrix. This is demonstrated in Section 3.4 for
the AB:BA design, where Σ12 = Σ′

12 and Σ11 = Σ22 are supposed to hold.
There remain several questions about the methodology that could be of

interest in future work. For example, hypothesis testing of the parameters in
the model and other types of structures of the dispersion matrix than given in
Section 3.4 are areas to be resolved. Moreover, further experience when the
models are applied to real data is needed.
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