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Abstract

The growth curve model (GCM) has been widely used in longitudinal
studies and repeated measures. Most existing approaches for statistical
inference in the GCM assume a specific structure on the within-subject
covariances, e.g., compound symmetry, AR(1) and unstructured covari-
ances. This specification, however, may select a suboptimal or even
wrong model, which in turn may affect the estimates of regression co-
efficients and/or bias standard errors of the estimates. Accordingly,
statistical inferences of the GCM may be severely affected by misspeci-
fication of covariance structures. Within the framework of the GCM in
this paper we propose a data-driven approach for modelling the within-
subject covariance structures, investigate the effects of misspecification
of covariance structures on statistical inferences and study the possible
heterogeneity of covariances between different treatment groups.
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1 Introduction

The growth curve models (GCM) are generalized multivariate analysis-of-
variance models that are useful especially in longitudinal studies and repeated
measures (Potthoff and Roy, 1964). The GCM is defined by

Y;)Xn = XpXmBerZan + €pxn (1)

where Y is the response matrix of n subjects measured at p time points, and
X and Z are within- and between-subject design matrices with ranks m and
r, respectively. Typically, the columns of X are the powers of time at which
repeated measures are made when polynomials of time are used to model
the mean structures. The rows of Z are the indicators of treatment groups,
i.e., the ith row of Z is given by z; = (0,...,0,15,,0,...,0) where 1,, is the
(n; x 1) vector with all components being one and n; is the sample size of
the ith treatment group (i = 1,2,...,7; >.._;n; = n). The columns of the
error matrix e are assumed to be independent p-variate Normal with (p x 1)
mean vector 0 and (p X p) covariance matrices ¥;, depending on the treatment
group of which the responses are generated (i = 1,2, ...,r). We denote this by
€ ~ Npxn(0; 31,29, ..., 5,; I,) where I,, is the identity matrix with size n.

When the covariances are homogeneous, i.e., X1 = Yo = ... = X, = X,
the estimates of the parameters B and ¥ were discussed in the literature by
many authors including Potthoff and Roy (1964), Khatri (1966) and von Rosen
(1989) among others. Particularly, if the homogeneous covariance matrix 3
is given then the maximum likelihood estimate (MLE) of B must have an
explicit form in terms of generalized weighted least squares (GWLS)

B(X) = (X's7'X)"'x's" 'y 2/ (22" (2)

When ¥ is unknown, a two-step estimation strategy is commonly used to
calculate the estimate of B. In other words, we first find an appropriate
estimate of ¥ and then plug it into the GWLS in (2) (e.g., Potthoff and Roy,
1964; Gleser and Olkin, 1970). In particular, when the MLE of ¥ is utilized
then the resulting GWLS estimate is the MLE of B (Rao, 1965; von Rosen,
1989). Obviously, the GWLS in (2) says that the estimate of B may depend
on the estimate of 3, of which an exception is that ¥ has the so-called Rao’s
simple covariance structure (SCS) :

Y =XTX + QO (3)

where I' and © are (m x m) and ((p — m) x (p —m)) positive definite and
@ is orthogonal to X, i.e., @ X = 0 (Rao, 1966). In fact, it can be shown



B(X) = E(Ip) if and only if ¥ is of Rao’ SCS given in (3) (Kariya, 1985; Pan
and Fang, 2002). Typical examples of the SCS include compound symmetry
and random regression coefficients structures (Lee, 1988; Pan and Fang, 2002).
Accordingly, the estimate of B is affected by the estimate of ¥ unless ¥ is
within the space of the SCS. On the other hand, since the estimated covariance
of B is given by

Cov(B) = Cov(vec(B)) = ¢ [(2Z) ' @ (X' 1X)7} (4)

(e.g., von Rosen, 1989) where ¢ is a constant and ® denotes the Kronecker
product of two matrices, it is obvious that 6&/(@) depends on the estimate
of X even if ¥ falls into the space of the SCS. Accordingly, correct estimate of
the covariances plays an important role in statistical inference of the GCM.

In the statistical literature the GCM was studied under a variety of as-
sumptions of covariance structures, for example, unstructured covariance (UC)
by Potthoff and Roy (1964) and von Rosen (1989), the SCS by Rao (1966)
and Lee (1988), compound symmetry structure by Lee (1988), AR(1) by Fu-
jikoshi et al (1990) and Lee (1988), random regression coefficients structure
by Rao (1966), etc.. With the specification of SCS and UC, statistical diag-
nostics including outlier and influential observation detections was addressed
within likelihood and Bayesian framework by Pan and Fang (2002) and Pan
et al (1997, 1998, 1999). ;From inferential and predictive points of view, Lee
(1991) and Keramidas and Lee (1995) suggested several selection criteria to
choose an appropriate covariance structure from a menu of candidates. This
kind of menu-selection procedures, however, may not be optimal. For example,
when the true covariance structure is not contained in the menu the selected
covariance structure, though “best” in some sense, may not be close to the
true value. Consequently, statistical inference may be badly affected by the
misspecification of covariance structures. On the other hand, the assumption
of homogeneous covariances, i.e., X1 = Y9 = ... = X,., might not be true in
practice. For example, in many biological and medical problems the homo-
geneity assumption does not hold because different treatment groups may have
different variations over time. Also, it is not uncommon that within-subject
correlation structures may vary from group to group. Accordingly, we hope to
establish a mechanism to test whether or not the assumption of homogeneous
covariances is true.

In this paper we propose a data-driven approach to jointly model the mean
and covariance structures for all treatment groups. The approach is based on
a modified Cholesky decomposition advocated by Pourahmadi (1999; 2000)
for modelling homogeneous covariance structures. We extend Pourahmadi’s



(1999) approach to model heterogeneous covariances and in the modelling ap-
proach the homogeneity assumption becomes testable. We also investigate
the effects of misspecification of covariance structures on statistical inferences
in the GCM. This paper is organized as follows. In Section 2 the modified
Cholesky decomposition is briefly reviewed and models for mean-covariance
structures are proposed. In Section 3 maximum likelihood estimation is de-
veloped and in Section 4 principle of testing homogeneous covariances is de-
scribed. In Section 5 a real data set, Cattle data (Kenward, 1987), is analyzed
for illustration. Numerical comparisons between the data-driven and menu-
selection approaches are made as well. In Section 6 we discuss some further
issue and in the Appendix we give the technical details of the proposed ap-
proach.

2 Regression models for mean-covariance struc-
tures

For illustration, let us look at the homogeneous GCM Y ~ Ny, (XBZ, %, I,,)
first. We assume the (p x p) covariance matrix X is positive definite in this
paper. Accordingly, there is a unique lower triangular matrix 7" with 1’s as
diagonal entries and a unique diagonal matrix D with positive diagonal entries
such that TXT" = D. This modified Cholesky decomposition has a transparent
statistical interpretation: the below-diagonal entries of T" are the negatives of
the autoregressive coefficients, ¢, in

-1
Uj = py + Z k(e — 1),
=1

the linear least squares predictor of y; based on its predecessors y(;_1), ..,
y1, where p; = E(y;) and y; is the jth component of the (p x 1) response
y, the column random variable of Y (j = 1,2,...,p). It can be shown that
the diagonal entries of D are the innovation variances ajz = Var(y; — 9;)
(Pourahmadi, 2000). Obviously, it follows that X~! = 7"D~!T.

For the heterogeneous GCM Y ~ Ny (XBZ, %1, %9, ..., 5,; I,), we take
the modified Cholesky decomposition for each covariance matrix 3, i.e.,
T;%;T! = D;, and then obtain the autoregressive coefficients ¢jr; from the
lower triangular matrices T; and the innovation variances 0']2~i from the diago-
nal matrices D; (7 =1,2,....p; k=1,2,....,5 — 1; ¢ = 1,2,...,7). In a spirit of
Pourahmadi (1999), we propose the following regression models to model the



mean and covariance structures, simultaneously,
! / 2 /
i = 3 5i, bjki = @i and log oy, = A3\ (5)

where p; is the mean of the responses in the ith group measured at the jth
time point, 3;, 7; and A; are (m x 1), (¢ x 1) and (d x 1) regression coefficients
for the ith group, and (; is actually the ¢th column of B. The covariates
xj (i.e., the transpose of the jth row of X), aj, and h; are associated with
the powers of time when using polynomials of time to model the mean and
covariance structures for growth data. For example, we may choose

zi o= (Lt 02, .,y
aje = (L, (t; —tr), (tj — te)?, s (b — )71 (6)
hj = (Lt 2,0ty

if the within-subject correlation only depends on the elapsed time, where ¢;
is the jth time point at which observations are made. In the literature a
Brownian motion specified to covariance structures of the GCM was considered
by Lundbye-Christensen (1991), which is a special case of the mean-covariance
models (5) with the structures (6).

The advantages of the joint regression modelling of mean-covariance struc-
tures in (5) are multi-folds, for example, a) it is a data-driven approach that
is capable to capture the true structures for mean and covariance, b) the
resulted estimates of covariance matrices fll are guaranteed to be positive def-
inite, ¢) the reparameterized regression coefficients have transparent statistical
interpretations in terms of autoregressive coefficients and innovation variances
(Pourahmadi, 1999, 2000), and d) the assumption of homogeneous covariances
becomes testable. We will discuss these issues in more details in the following
sections.

3 Maximum likelihood estimation

Denote Y = (Y1,Y2,....Y,) and Z = (Z1, Za, ..., Z,) where Y; and Z; are the
(pxn;) responses and (r X n;) between-subject design matrices of the ith group
(1t =1,2,...,7), respectively. Similar to Pourahmadi (1999), it can be shown
that the log-likelihood function ¢ = ¢(B;v1,...,Vr; A1, ..., Ar) oOf the heteroge-
neous GCM Y ~ prn(XBZ,El,EQ, woey 2p;y 1) modeled with the regression
models (5), except a constant being —(pn/2) log(27), has the following three



representations corresponding to B, (71, ...,7) and (A1, ..., A.), respectively,

¢ = anlog\2|—72tr{2 (Yi - XBZ;)(Y; — XBZ;)'}

= Zm log | D;| — *ZZ (eji — [ATil"%) D (eji = [A5) %) (7)

i= 1 j= 1
= —3 Z th;& ~3 Z Z(eji — &5i)'(eji — €5) ) exp{PjAi}
i=1 j=1 i=1 j=1
where
Ei - E_XBZZ = (61i7€2i7-'-76pi)/7
) i

! A
A;i = g Ak Ch; and eji:E O jkiChi
k=1 k=1

fori =1,2,....,7r and j = 1,2,...,p. Note that when j = 1 the sum notation
22:1 means zero here.

Let vec(B) = (04, B, ..., B..)' be the mr x 1 vector by vectorizing the matrix
B through column by column. Taking differentiation of ¢ in (7) with respect
to vec(B), v; and A; leads to the following estimating equations, respectively,

dl/dvec(B ZvecXE (Y — XBZ;))Z]] =0

/0y = Z Ai(eji — (A5 ) o5 = 0
op 12
OU/ON = =5 Y hy+ 5 D (egi — (A5 (e5i = (A5 3)hs o = 0
j=1 j=1
(8)
The estimating equations above in general have no explicit solutions and cer-
tain numerical optimization procedures such as the Nowton-Raphson algo-
rithm and Fisher-scoring algorithm are used instead. In the Appendix we show

that the Fisher information matrix of the parameter 6 = (vec(B)';7], ..., Vo;
Yy AL) must have the form

T 0 0
T=E(-0%/0000")=| 0 Ioo T (9)
0 3o 133
where
Ty = B(—820/dvec(B)dvec(B [ZZ’ ® (X'S; 1X)} (10)
=1



and the matrices Zoo (rq X rq), Zss (rd x rd) and Zso (rd x rq) are block-
diagonal with ith block being non-zero (i = 1,2, ...,r). Their detailed matrix
forms are provided in the Appendix.

Based on the above equations, we propose the following Fisher-scoring
algorithm to calculate the MLEs of the parameters in the GCM.

Algorithm:

Step 1: Given a starting value of 6, say 6y = ((vec(B°)’; 'y?/, ey 'y,(?/; )\(1),, ey )\9/)’,
we form the covariance matrices ¥ = 3; (7Y, \?) using the modified Cholesky
decomposition where i = 1,2, ..., 7.

Step 2: Use the following procedure

vec(B') = vec(B%) + { i |:(Z’LZZ/) ® (X/[E?]_lX)} }71

=1
r

X { z; vec [X’[E?]‘I(Yi - XBOZi)Z{} }

VY (o T T - ot/on (1)
A A0 Is2 Is3 ) gy, \ OL/OX )y o

to update the parameter estimates of B, v = (7], ...,7.) and A = (A}, ..., ALY,
respectively.

Step 3: Use the updated value 6; = ((vec(B); (v); (A1)') in Step 2 to replace
0y and then repeat Steps 1 and 2 above. These procedures are repeated until
convergence for 6.

and

A by-product of the algorithm above is the asymptotic variance-covariance
matrix of the MLE 6 = (vec(B); 4}, .. 4% Xy, ..., ALY, which is obtained by
simply calculating the inverse of the Fisher information matrix (9), evaluated
at the MLE 6. Regarding the starting values 7 and A (i = 1,2,...,7), a

convenient choice is W = =4 =0and N} =--- =2 =0 (i = 1,2,...,7).
In other words, the starting values of covariance matrices in all groups are
chosen to be an identity matrix ¥y = --- = 3, = I,,. Alternatively, those can

be chosen from the sample covariance matrices (Pourahmadi, 2000). Similarly,
the regression coefficients B may start from the sample mean of each group.



4 Hypothesis tests and model selection

As mentioned in Section 1, most literature work in the GCM assumes a ho-
mogeneous covariance across all the groups, i.e., 31 = Yo = --- = ¥,.. Within
the framework of the mean-covariance models in (5), this becomes a testable
assumption. In fact, testing the homogeneity is equivalent to testing the fol-
lowing hypothesis

Hy:yi=v=- = and A=A ==\ (12)

where the parameters in the regression coeflicients B are arbitrary. The like-
lihood ratio test statistic for testing the homogeneity (12) can be computed
straightforwardly but its exact distribution is difficult to obtain. Instead, we
could use the asymptotic likelihood ratio test. Let éo and /1 be the maximized
log-likelihoods under the null hypothesis Hy and the alternative hypothesis H;
of which Hy is not true, respectively. The homogeneity hypothesis (12) can
then be tested using —2(fy — 1) ~ x2 on (r — 1)(q + d) degrees of freedom.
When Hj is rejected, the usual hypothesis of covariance homogeneity is not
true and heterogeneous covariances exist across the treatment groups. On the
other hand, acceptance of Hy in (12) implies no evidence to against the homo-
geneous covariance assumption. Note in this case the homogeneous covariance
is modeled jointly with the mean without any specifications of structures. The
mean structure, however, may vary from group to group in this case.

When the null hypothesis Hy in (12) is rejected, we may need to further
identify the type of dependence present by investigating the following hypothe-
ses

Hy: M =X=---= A\ and Hy:vi=vm=-= (13)

The first hypothesis in (13) indicates that the innovation variances are the
same across the treatment groups, while the second implies there is no differ-
ence for within-subject correlation among groups. Again, we can test the null
hypotheses in (13) using the asymptotic likelihood ratio tests —2(@0 —@1) ~ X2
on appropriate degrees of freedom.

In the GCM we may also be interested in testing whether or not both the
mean and covariance structures are the same across the treatment groups. In
other words, we want to test the following hypothesis

Hy: pr=p==08,m=7= =7 and
Al =A==\, (14)

where (3; is the ith column of the regression coefficients matrix B (i =
1,2,...,7). Similarly, the hypothesis in (14) can be tested using the asymptotic



likelihood ratio statistic —2(¢g — £1) ~ x2 on (r — 1)(m 4 ¢ + d) degrees of
freedom.

When using polynomials of time to model the mean and covariance struc-
tures, obviously we need to choose the appropriate degrees of polynomials m,
q and d in (6). In a spirit of Pan and MacKenzie (2003), we propose to use
the following Bayesian Information Criterion (BIC)

BIC(m, q,d) = —(2/n)lmax + (m + ¢+ d){(logn) /n} (15)

to choose the most appropriate degrees of polynomials, where Ornax = E(E; A1,
A M, s j\r) is the maximized log-likelihood for the models with the specific
degree trip (m, q,d) and m—+q+d is the number of parameters in the associated
models, including polynomials of degree zero (i.e., intercept). The best triple
of degrees, say (m*,¢*,d*), satisfies

(m*,q*,d*) = arg min {BIC(m,q,d)} (16)
m,q,d
where m, ¢ and d lie in the range from 1 to p. The global search of the best
triple, however, is computationally intensive because the number of maximiza-
tions required to find the best triple (m*, ¢*, d*) is as large as p3. Even if the
number of repeated measurements, p, is mediate, the search for (m*, ¢*,d*)
may be highly computationally time-consuming.

Within the framework of linear regression models, Pan and MacKenzie
(2003) proposed a profile search strategy that saturates the degrees m, g and
d in pairs. Their study shows that the profile search is able to capture the
best triple (m*, ¢*,d*) in most circumstances. A significant advantage is that
the number of maximizations for searching for (m*,¢*,d*) reduces to 3p + 1.
For more details one can refer to Pan and MacKenzie (2003). In the real
data analysis presented in the next section we adopt this strategy to locate
the degree triple in the modelling of the mean and covariance structures. Our
analysis confirms that the profile search does lead to the global best triple
(m*, ¢, d*).

So far we have assumed that the degree triple (m,q,d) of polynomials
is chosen to be the same across all treatment groups. It is not uncommon,
however, that different treatment group may have a different degree triple.
In principle the above parameter estimation procedure and model selection
strategy are also suitable to this case but the search of the optimal degrees
of polynomials is more computational intensive. On the other hand, testing
the hypothesis of homogeneous covariance H, : 31 = Y9 = - -+ = ¥,. no longer
reduces to testing of the hypothesis (12) in this case because the dimension of



the parameters 1, ¥2, ..., 7» Or A1, Ag, ..., A, may not be the same. However,
the asymptotic likelihood ratio test can be still applied to this case as long as
the MLEs of the covariance matrices under the null and alternative hypotheses
are obtained.

5 An Example

In this section we analyze Kenward’s Cattle data (1987) using the joint mean-
covariance modelling strategy. We also compare the data-driven approach to
menu-selection methods through the data analysis.

Kenward (1987) analyzed an experiment in which cattle were assigned
randomly to two treatment groups A and B, and their weights were recorded
to study the effect of treatment on intestinal parasites. Thirty animals re-
ceived treatment A and another thirty received treatment B. The animals
were weighted 11 times over 133-day period at 0, 14, 28, 42, 56, 70, 84, 98,
112, 126 and 133 in days. Pourahmadi (2000) analyzed the data in treatment
group A, modelling the covariance structure by adopting a saturated mean
model and employing two cubic polynomials of time in the augmented regres-
sion model defined in (5), one for the autoregressive coefficients and another
for the innovation variances. Below we analyze the two group data simul-
taneously using the proposed mean-covariance modelling strategy within the
framework of growth curve models.

Table 1. The mazimum likelihood estimates of parameters involved in the
autoregressive coefficients and innovation variances, i.e., . = (Y1, ..., Yis) and

N = (Ait, .o, Mia) (estimated standard errors in parentheses)
Group Parameter =1 =2 =3 =4 =5
B i 0.185(.006) -1.628(.104) 1.568(.158) -1.137(.188) 0.694(.231)
A 3.518(.077)  0.672(.258) 2.229(.258)  -0.185(.258)
A o 0.182(.003) -1.671(.061) 1.497(.106) -1.031(.147) 0.365(.164)
Aot 3.488(.078) -1.172(.258) 0.234(.258) -0.988(.258)

Firstly, we adopt Pan and MacKenzie’s (2003) BIC-based profile search
strategy to select the best degree triple (m*, ¢*, d*) of polynomials used in the
modelling. We find that (m*,¢*,d*) = (11,5,4), i.e., the mean has a satu-
rated structure, and the autoregressive coefficients and innovation variances



are modeled in terms of quadratic and cubic polynomials of lag/time, respec-
tively. The minimum value of the BIC is BIC(11,5,4) = 72.468. Table 1
above reports the parameter estimates and the associated standard errors as
well, while Figure 1 below gives the sample regressograms (solid points) and
the fitted polynomial curves (solid curves) for the autoregressive coefficients
and innovation variances in both groups. Note that the estimated coefficients
presented in Table 1 are those pertaining to the orthogonal polynomials in
order to avoid singularity of the design matrices.

(a) auto. coeff. for Group A (b) log-innov. var. for Group A

(c) auto. coeff. for Group B (d) log-innov. var. for Group B

Figure 1. The Sample regressograms (solid points) and the fitted polyno-
mials of lag/time with the best degree triple (m*,¢*,d*) = (11,5,4). The
panels (a) and (b) are those for Group A and (c) and (d) for Group B,
respectively.

Secondly, we study whether or not the covariances in Groups A and B are
homogeneous, which is equivalent to testing if the null hypothesis (12) is true
where r = 2. We therefore maximize the log-likelihood functions under the

10



null and alternative hypotheses and obtain fy = —2120 and ¢, = —2092.167
so that —2(¢y — £1) = 56. We then compare this value to the Chi-square
distribution with (r — 1)(g + d) = 9 degrees of freedom, i.e., x3, and conclude
that there is a highly significant evidence to against the null hypothesis. In
other words, heterogeneous covariances exist for the two group cattle data.
Furthermore, we may be concerned with whether either the autoregressive
coefficients or innovation variances vary from group to group. We therefore test
the hypotheses presented in (13) where r = 2. For the innovation variances,
we test the null hypothesis Hy : Ay = Ao against the alternative hypothesis
Hy : A1 # Xo. Under the null and alternative hypotheses, the maximized
log-likelihood functions are ly = —2118 and /; = —2092.167, respectively, and
hence the testing statistic value is given by —2(@0 —fl) = 58. When comparing
to x3, we know that the null hypothesis Hy is rejected and conclude that
the innovation variances are different in the two treatment groups. For the
autoregressive coefficients, we test the null hypothesis Hy : 71 = 79 versus
the alternative hypothesis Hy : 71 # 2. Under Hy and H;, the maximized
log-likelihood functions are fo = —2093.113 and {1 = —2092.167, respectively,
so that the testing statistic takes the value —2(20 - @1) = 4. When comparing
it to x2, this time we have no evidence to against the null hypothesis Hj.
In other words, the autoregressive coefficients are not significantly different in
the two treatment groups, which confirms Pan and MacKenzie’s (2003) finding
where a group indicator is incorporated into covariance modelling.

Table 2. Comparison between mean-covariance modelling and mean-
selections where all models assume a saturated mean

Covariance Parameter No. log-likelihood BIC

SCS 154 -2018.396 77.789
AR(1) 26 -2161.371 73.520
CS 26 -2409.231 81.782
Modelling 40 -2092.167 72.468

Thirdly, in order to gain an insight of merit on the mean-covariance mod-
elling we compare this strategy to several menu-selection approaches. Table
2 above presents the numbers of parameters, the maximized log-likelihood
functions and the BIC values for the mean-covariance modelling and several
specifications of covariance structures, including the Rao’s simple covariance
structure (SCS), AR(1) and and compound symmetry (CS). Note that since
the mean structure is saturated, i.e., m = 11, the Rao’s SCS is completely
identical to the unstructured covariance (UC). In Table 2, when AR(1) or CS

11



is used to specify the covariance structures it is possible that the two treatment
groups may have different variances and correlation coefficients. Therefore the
BIC values presented in Table 2 are the average in the two groups under these
two circumstances. From Table 2 it is obvious that the mean-covariance mod-
elling approach proposed in this paper performs better than the menu-selection
approaches in terms of BIC model selection criterion. Figure 2 below com-
pares those modelling approaches through different curves fitted to the sample
autoregressive coefficients and innovation variances (dot points) for the two
treatment groups, where the solid curve represents the fitting using the mean-
covariance modelling technique, while dot, dash and dash-dot curves are the
fitting with Rao’s SCS, CS and AR(1) covariance specifications, respectively.

05

004

(a) auto. coeff. for Group A (b) log-innov. var. for Group A

(c) auto. coeff. for Group B (d) log-innov. var. for Group B

Figure 2. The Sample regressograms (solid points), the fitted curves us-
ing the mean-covariance modelling technique (solid curve) and with covari-
ance specification being Rao’s SCS (dot curve), Compound Symmetry (dash
curve) and AR(1) (dash-dot curve). The panels (a) and (b) are those for
Group A while (c¢) and (d) are for Group B.

12



Again, Figure 2 shows that the mean-covariance modelling approach fits
the data well. It also clearly shows the menu-selection approach may misspec-
ify the covariance structures. For example, neither the CS nor AR(1) is able
to capture the true covariance structure, while Rao’s SCS tends to over-fit the
covariance structure. This, in turn, may influence the standard deviation of
the estimated regression coefficients and accordingly may bias the statistical
inferences of the GCM.

6 Discussion

In this paper we propose a data-driven approach to jointly model the mean
and covariance structures for longitudinal data within the framework of growth
curve models. The covariance matrices of repeated measures are reparameter-
ized in terms of the modified Cholesky decomposition and the reparameterized
parameters have a transparent statistical interpretation - autoregressive coeffi-
cients and innovation variances. These reparameterized parameters are further
fitted using regression models. The maximum likelihood estimates of the pa-
rameters are obtained using the Fisher-scoring algorithm. Based on the joint
models, the homogeneous covariance assumption becomes testable. The opti-
mal joint model can be obtained by searching for the most appropriate degree
triple of polynomials used for modelling the mean, autoregressive coefficients
and innovation variances. A profile BIC-based search strategy is proposed in
order to obtain the optimal degree triple.

Compared to menu-selection approaches, the joint mean-covariance mod-
elling strategy specifies no structures on the covariance matrices of within-
subject correlation. In contrast, menu-selection approaches assume a specific
structure to the covariance matrices. When the structure is misspecified, sta-
tistical inferences of the regression coefficients may be incorrect. For example,
within the framework of generalized estimating equations (GEE) Wang and
Carey (2003) showed that misspecification of covariance structures produces
too large standard deviations for regression coeflicients and hence results in
inefficient estimates. Ye and Pan (2004a) further modeled the mean and co-
variance structures in GEE using regression models. Very recently they (Ye
and Pan, 2004b) proposed to use local-likelihood estimation approach devel-
oped by Fan et al (1998) to nonparametrically model the mean and covariance
structures for large longitudinal data.

For the growth curve models, Rao’s simple covariance structure plays a
special role in the sense that within this sub-covariance space the MLE of re-
gression coefficients no longer depends on the choice of covariance structures.

13



It is more interesting to see how this specific covariance structure can be char-
acterized in terms of the autoregressive coefficients and innovation variances.
In other words, we want to know under which condition satisfied by the au-
toregressive coefficients and innovation variances the covariance falls into Rao’s
simple covariance space. This issue awaits for further exploitation.

To our knowledge, this is the first article that addresses the joint model of
mean-covariance structures in the growth curve models in terms of the data-
driven regression technique. Of course, under certain specifications of covari-
ance structures statistical modelling was widely discussed in the literature
for the GCM, multilevel models, structural equation models, etc. Modelling
mean-covariance structures without any specifications of covariance structure
distinguishes our approach from the literature work. In addition, our previous
experience on statistical diagnostics in the GCM (e.g., Pan and Fang, 2002;
Pan et al, 1997, 1998, 1999) shows that the covariance structure plays an
important role in outlier detection and influential observation identification.
The diagnostics issue studied within the framework of joint mean-covariance
modelling will be reported in a follow-up paper.
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Appendix: Derivation of the Fisher Information matrix

First, based on (8) we have the second-order derivatives of the log-likelihood
with respect to vec(B), v; and \; as given below

ot /ovec(Byoved'(B) = — 3 [(Z:2) & (X'S;1X)
=1
p
%) 007, = —Z[ jz][Aj’L]//U?Z
j=1
p
O2/oNON, = =1 (esi — [AST %) (egi — [ASv) (hih}) [ o3

7=1

| (4.1)
where A%, = ng;ll ajie),; and e;i is the kth row of the residual matrix E; =
Y, — XBZ; (j = 1,2,....,p; i = 1,2,...,r). Similarly, the second-order mixed
derivatives of ¢ with respect to vec(B), v; and A; can be written into
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p
020 /0moved(B) = =3 {[A%)(esi — [A5)'%) 7} & L]
j=1
+ (4517 ® (2 - (A% 7))} o2,
02/9N\;0ved (B) = —Zh]vec’[(xj = [AFi] i) (eji — [A5) %) Z ﬂ
j=1
p
825/8)%8%{ = _Zhj(eji_[Aji]/%)/[Asi]//U]zi

<
Il
—

(A.2)
where Af; = Zk 1 akxy and X = (x1, ..., xp).

Second, when taking expectation to the first equation of (A.1) it obviously
results in Z;; as given by (10) because the second-order derivative of ¢ with
respect to vec(B) is a constant. On the other hand, by noting that E(ej;;) = 0
and E(Af;) = Zf;ll ajrE(e};) = 0 we have Zy; = 0 and Z3; = 0. Therefore,
the Fisher information matrix must have the form given in (9), in which the
matrices oo, Z3o and Z33 are obviously block-diagonal due to the forms of
score functions given in (8).

The ith diagonal block of Zas (i = 1,2,...,7) can be calculated through

p
In(iyi) = E[-8°/0vi0v] = B(AGA5])/0%;
J

1

— j—1
/1 2
= ZE<ZO“]]€€I<:1 Zaglezﬂ)/%‘i
j=1 = =1
j—1j—
2
= Z ZajkaﬂE €i€li) /5 (A.3)
]:1 k=1 l=
p j—lj—
— Al (1o 2
- Z ajkajl(nlakll)/ajz
]:1 k=1 =
P
= nzz ﬂ/aﬂ—nz
J=1
where
j=13j-1 p
I 2
Wi = Z Zajkajlakli and  W; = Z Wii/o5; (A.4)
k=1 I=1 j=1

1
where oy; is the (k,[)th element of the matrix ;. On the other hand, since
TiEZ' = Ei - EZ‘ ~ prni(07Di7[ni) where Ei = (éli,égi,...,épi)/ and éjz‘ =
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ng;ll bjrieri we have ej; — éj; ~ Ny, (0,0%1,,) so that

» Vgt
(eji — €50)' (eji — €50) /03 ~ X,

which implies that E[(ej; — €;i) (eji — éji)/ajzi] = n;. Accordingly, the ith
diagonal block of Z33 (i = 1,2, ...,r) can be expressed as

T33(iyi) = E[-0%(/ON0ON)

E|:(€ji - [Afi]'%)/(eji - [Aii]/%)/%zi} (hjh;‘)

|
N[
7=

Il
=

(A.5)

Il
[l
=

Il
—

E [(ejz‘ — &ji) (eji — éji)/agzz} (hjh})
J

ng
2

NE

g

[
Il

where H = (hq, ha, ..., hy)" is the design matrix involved in the modelling of
innovation variances.
Finally, the ith diagonal block of Z3 is given by

Igg(i,i) = E[ 826/8)\13’%]

i E{ (ess = (A5 (A5} /7,

I
M@

1

.
Il

I
M@

h (E[Ajieji] ~ B([AY] [A;i]/)%,)' o, (A.6)

<.
Il
_

= n@Zh z ]1%)/ 21

where E([A%][A%]') = n;Wj; is already showed in (A.3) while

7j—1

-1
E[Afieji] = E ( > ajkff%ﬂﬂ') = aiB(cliesi)
k=1 k=1

7j—1

7j—1
= E aji(nmjki) =Ny E k0 ki = n,-A‘;
k=1 k=1

In summary, the Fisher information matrix has the form in (9) in which the
block forms of 711, Za9, Z33 and Z3o are provided by (10), (A.3), (A.5) and
(A.5), respectively.
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