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Abstract
In several applications objects of interest can be investigated only if
they are observed from a long distance. Remotely sensed raster data
are collected by sophisticated sensors. These remotely sensed data are
transformed into digital images showing special properties of the ob-
served objects by di�erently colored pixels. Transformation of elements
of remotely sensed data into colored pixels can be realized by classi-
�ers. The case with a �nite number of classes (colors) is considered.
In geomatics such classes can be di�erent species of trees, e.g. spruce,
pine and broad-leaved. In this paper the nearest neighbor (NN -) classi-
�ers are considered. The NN -classi�ers are widely used in the analysis
of statistical data in many areas of research. The most important their
characteristics are the cross-classi�cation (CC-) probabilities. The cross-
validated (CV -) estimators of the CC-probabilities can be obtained using
training sets. The accuracy of NN -classi�ers is characterized by the dis-
tributions of the deviations of the CV -estimators from the true values of
CC-probabilities, which depend on the training sets. Resampling from
NN -clusters of connected NN -points can be used to obtain consistent
estimators for the distributions of the deviations in the case of 1NN -
classi�ers. Two numerical experiments illustrate the suggested methods
of resampling.

Key words: remotely sensed data, nearest-neighbor classi�ers, probability of mis-
classi�cation, estimation, cross-validation, point processes, clusters, resampling.
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1 Introduction
In several applications objects of interest can be investigated only if they are
observed from a distance and large raster data are collected by sophisticated
sensors. These data have to be transformed into digital images showing special
properties of the observed objects by di�erently colored pixels. This situation
is typical in geomatics where satellite sensors collect huge remotely sensed data
sets by scanning the surface of areas. Also �eld data have to be collected.

Let A0 be an area of interest where it is necessary to create a digital map
which shows its land cover. In order to be more speci�c we assume that A0

is covered by forest and it is of interest to create a map that shows where
the di�erent species of trees grow, e.g. pine, spruce, and broad-leaved trees.
Field data integrated with remotely sensed data are essentially used to create
these maps. Usually the maps are discretely colored and each color represent
a species. The whole process of creating discretely colored maps is rather
complex.

In this paper we consider methods of statistical classi�cation which are an
essential part in the process of creating the maps. Also we show how it is
possible to assess the accuracy of the classi�cation methods. The considered
methods are rather general and they can be applied in the creation digital
images in many �elds of research.

In the example with forest, the �eld data contain particular information
related to trees growing in plots placed in A0 and in a larger area A1 which
includes A0. It is essential that A1 together with A0 has been simultaneously
scanned by the same satellite sensor.

For each plot rather rich �eld information has been collected and it can
be used to �nd the proportions of these three species, i.e the proportions of
pine, spruce and broad leaved trees which grow in any part of the plot. It is
also possible to calculate the density of wood in the plot measured in m3/ha
and some other characteristics of forest. A description of the �eld data used in
this study is given in Holmstr�om et al. (2001) and Holmstr�om and Fransson
(2003).

The positions of 771 circular plots in the Remningtorp area (in V�asterg�otland,
Sweden) are shown in Fig. 1, where distances are given in meters. The inven-
tory was made during the winter 1997/1998 and 1998/1999. It is typical that
the plots placed in A0 constitute only a small part of its surface. Therefore,
it is necessary to use the remotely sensed data which is related to the whole
area A0.

The remotely sensed data are collected by a satellite sensor which registers
energies re�ected from small elements of the area's surface and the data are
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Figure 1: Positions of plots in the Remningtorp area, V�asterg�otland, Sweden.

saved for future needs. These remotely sensed data can be used in the creation
of digital maps by applying special software. The remotely sensed data contain
many uncertainties caused by restricted resolution of the sensors, the state of
atmosphere, noise in sensors and etc. That is why we have to consider the
remotely sensed data as observations of random statistical data.

Computer intensive methods such as cross-validation and bootstrap are
shown to be e�cient tools in the analysis of statistical data, Davison and Hink-
ley (1997). The nearest neighbor NN−classi�ers are of wide usage. There are
several books and papers devoted to evaluation of the classi�ers' characteris-
tics, e.g. Efron and Tibshirani (1993, 1997), Holst and Arle (2001), Steele and
Patterson (2000). Mostly only general questions are discussed there and they
are not directly connected to the analysis of remote sensed data as we do in
this paper. However the accuracy of NN -classi�ers are not enough investi-
gated. In the paper we apply some new methods to evaluate the accuracy of
NN -classi�ers.

The paper is organized as follows. In Section 2 we consider the creation of
training sets. From reference data, e.g. the �eld data in geomatics, for a small
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subset of remotely sensed data, it is possible correctly to �nd out which classes
will have the most of related pixels in the digital images of the observed objects.
The de�nition of classes is an important part in creating training sets. Section
3 is devoted to the NN -classi�ers and their CC-probabilities. The central part
of the paper is Section 4 where special resampling methods for the evaluation
of the accuracy of CV -estimators of CC-probabilities are suggested. Results
of two numerical experiments supporting the suggested resampling methods
are given in Section 5. We end this paper with discussion in Section 6.

2 Classes and training sets
The remotely sensed data are raster data sets. They have to be transformed to
sets of picture elements (pixels) of created digital maps. Each {i, j}-element of
the raster data contains coordinates xi, yj showing its position in the surface,
and the re�ected from this part energies in several bands of light eij1, ..., eijb0 .
The remotely sensed data related to A0 are saved as a huge list of elements
{xi, yj , eij1, ..., eijb0}, i, j ∈ {1, 2, ...}. A classi�er is a function which supplies
the elements of the raster data by numbers which code classes which can be
used to color pixels in the created digital maps.

In our example with forest one can de�ne such classes as pure (100%) pine
forest, pure (100%) spruce forest, pure (100%) broad leaves forest, and several
classes of mixed forest, e.g. with more than 80% of spruce, 0% of pine, and
less than 20% of broad leaves and etc.

B100%
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100%

O
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B

S

Figure 2: Simplex S3 in R3 is shown (left) for all possible mixtures of pines
broad leaved and spruces in plots. S3 is shown in the plane (right) as being
divided to 13 subclasses.

All possible values of mixtures can be shown by points in the triangular
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simplex in three-dimensional space S3 = {{z1, z2, z3} : 0 ≤ zi ≤ 100, z1 +
z2 + z3 = 100}, see Fig. 2 (left), where the points P = {100, 0, 0}, S =
{0, 100, 0}, B = {0, 0, 100} are pure pine, spruce and broad leaved classes,
respectively. The triangular simplex can be divided into several classes by
introducing restrictions on mixtures. In Fig. 2 (right) an example of a division
of S3 into many classes is shown. The vertices P, S, B are for pure pine, spruce
and broad leaves parts of forests. The edges PB,BS, PS of S3 are for mixtures
of pine and broad leaves, broad leaves and spruce, pine and spruce parts of
forest, respectively.

B

S

S1

P

Figure 3: Each point in the simplex S3 has coordinates pP, pS, pB which are
percentages of pines, spruces and broad leaved species of trees in the plot. The
plots were placed in the Remningtorp area (1999).

In Fig. 3 each point in the simplex S3 corresponds to a plot in the Remn-
ingtorp area. There are 9 plots with 100% of broad leaves trees 156 plots with
100% of spruce trees and 29 plots with 100% of pine trees. The points in
the three triangles near vertices P, B, and S correspond to plots which con-
tain more than 80% of pine, spruce and broad-leaved trees, respectively. The
points on the edges corresponds to the plots with forest containing only two
of three species, i.e. pines and broad leaves, broad leaves and spruces, spruces
and pines. The above mentioned mixture of two species with more than 80%
of spruce and less than 20% of broad leaves trees corresponds to the interval
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SS1 on the edge SB in Fig. 3. There are also plots with presence of pines,
spruces and broad leaved trees simultaneously. They are shown by the points
inside S3.

If we consider a division of each plot to several small subplots which are
squares with sides corresponding to resolution of satellite sensor, say with side
length 2 or even 1 meter then the distribution of points in S3 will be essentially
di�erent compared to the distribution in Fig. 3. In this case we will have a
lot of points interior and on edges of S3. Most of the subplots will be shown
as points placed at vertices P, S and B of S3. The other fraction of subplots
related to the mixtures of two species will be shown as points on three edges of
S3 and a small fraction of subplots will correspond to points in the inner part of
S3. The distributions of points on the edges and inside S3 will be approximated
by some limit distributions. Then one can hope to use only 7 classes: three
for P, S, and B for not mixed forest, 3 for forest with mixtures of two species
PS, SB and SP, and PSB for subplots with presence of pines, spruces and
broad leaved trees simultaneously.

In our example this division to small subplots was not possible to realize
because we have only the remote sensed data with the low resolution 20m ×
20m. This seems as the main reason that the distributions of points interior and
edges of S3 in Fig. 3 are essentially di�er from the more uniform distributions
in the case of division plots to small surface elements.

If a set of classes is de�ned then it is possible to consider many classi�ers
which are transformations from the raster data into the set of classes. These
transformations can be de�ned on single elements or on groups of elements of
raster data. From an in�nite number of possible classi�ers (transformations
into the set of classes) it is necessary to select an optimal one in some sense or
at least we have to have the possibility to compare any two classi�ers to select
the �better� one of them. In order to be able to do that it is necessary to have a
so-called training set. The �eld data can be used in order to obtain the training
set related to a selected set of classes. We suppose that the coordinates {xi, yj}
of the raster data correctly correspond to small elements of A1. Otherwise it is
necessary to correct the coordinates. If the resolution of censors is rather high
then each circular plot can be included in the union of several small parts of
surface corresponding to elements of the remotely sensed raster data. Many
such parts occurred to be inside each plot, see Fig. 4 (left). These parts are
shown as dark grey squares.

In the case of low resolution as in Fig. 4 (right) we identify the recalculated
for each plot �eld data with one square. In the case of high resolution we
consider the squares inside the plots which represent elements of the raster
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Figure 4: Possible mutual positions of square surface elements and circular
plots. High resolution (left) and low resolution (right).

data. Some of the squares are placed inside crowns of the same trees others
can contain parts of crowns related to di�erent trees. In the last case if the
species of these trees are di�erent we have to consider mixtures of two or tree
species simultaneously. Then the corresponding points will be placed on the
edges of the simplex S3 or inside it. Points inside S3 correspond to squares
containing parts of crowns simultaneously belonging to three di�erent species.
The boundaries of the visible crowns are fractal. It would be interesting to
�nd out the limit distribution of points on the edges and inside S3 when the
size of squares decreases, i.e. the sensor's resolution is growing.

Let Pi1j1 , ...,Pimjm be such small parts of the plots placed in A1. For
each such part we can use the �eld data in order to calculate percentages
of zP (ihjh), zS(ihjh), zB(ihjh) of pines, spruces, and broad leaved trees which
grow on Pihjh

, h = 1, ..., m. Let c(·) be a function, de�ned on the simplex S3,
which values are classes of forest.

Then the value c(zP (ihjh), zS(ihjh), zB(ihjh)) = ch ∈ K0 = {1, ..., k0} is
the true class of forest which grows on Pihjh

. Let xh = {eihjh1, ..., eihjhb0}
be the vector of registered energies re�ected from Pihjh

, h = 1, ..., m. The
3-tuple {h,xh, ch} is considered as the hth element of the training set T0 =
{{1,x1, c1}, ..., {m,xm, cm}}.

In the example with circular plots of radius 10m in the Remningtorp area
the remotely sensed data were registered by the SPOT4 satellite sensor with
low resolution (pixel size 20m× 20m) which corresponds Fig. 4 (right). Fig. 5
shows that in the considered example elements of the remotely sensed data do
not correspond exactly to the positions of the plots (shown as black squares).

7



2800 2820 2840 2860 2880 2900

1220

1240

1260

1280

1300

1320

Figure 5: Positions of 6 plots in Remningtorp area with respect to a grid on
(2780, 2900) × (1200, 1320). Plots are approximated by black squares. Each
square has size 20m× 20m.

The vectors {xh} of re�ected energies have to be recalculated to the plots. It
was done by Holmstr�om and Fransson (2003) using cubic convolution (e.g.,
Niblack (1986)). In our example we will only consider the two bands 3(r) and
4(swir) related to the re�ected light of low frequencies. In Table 1 a fragment
of the training set, related to the plots in Remningtorp area, is given.

Table 1. Fragment of the training set

No of data wood % of trees registered energies
element m3/ha P S B band 3(r) band 4(swir)

42 319.9 100 0 0 102.8 86.9
53 168.6 100 0 0 106.3 98.2
68 98.6 100 0 0 99.1 91.8
· · · · · · · · · · · · · · · · · · · · ·
14 314.1 0 100 0 124.8 83.2
16 536.5 0 100 0 100.1 59.5
17 27.1 0 100 0 143.8 88.4
· · · · · · · · · · · · · · · · · · · · ·
8 58. 0 0 100 124.7 80.9
57 67.1 0 0 100 149.9 116.5
58 131.9 0 0 100 157.4 116.7
· · · · · · · · · · · · · · · · · · · · ·
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Figure 6: The points which coordinates are energies registered by the SPOT 4
(1999) in the two bands 3(r)(x-axis) and 4th (swir) (y-axis) re�ected from the
�eld plots with (not less than 80%) of pines (¥), spruce (◦) or broad leaved (N)
trees with total density of wood not less than 100m3/ha.

In Table 1 P, S and B correspond to percentages of pine, spruce, and
broad leaved forest on data elements (plots) numbered as 1, 2, ... . The last two
columns contain values of the re�ected energies in bands 3(r) and 4(swir). We
denote by PB20 a forest with more than 80% of pines, less than 20% of broad
leaved trees, spruces being absent, by BS20 a forest with more than 80% of
broad leaved trees, less than 20% of spruces and pines being absent, and by
SB20 a forest with more than 80% of spruces less than 20% of broad leaved,
and pines being absent.

In Fig. 6 the x-axis corresponds to values of energies in band 3(r), and the
y-axis to values of energies in band 4(swir). Small black squares correspond
to the elements of training set belonging to plots with forest PB20, small
gray circles correspond to plots with forest SB20 and small black triangles
correspond to plots with forest BS20. We can see that there are three clusters
related to these three classes.

The variability of the re�ected energies in di�erent bands of light is a serious
source of possible misclassi�cation when remotely sensed data is used. The
de�nition of a set of classes and the construction of a training set are essential
preliminary steps in selecting an appropriate classi�er. After that any classi�er
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is de�ned as a speci�ed transformation from a set of raster data (from the set
of all possible values of energies in several bands of light) into the set of classes.
The training set can also be used to estimate the accuracy characteristics of
classi�ers. It is also possible to use the training set to compare two or more
suggested classi�ers in order to select the one which will be used to create a
discretely colored digital map of an area A0. Classi�cation is an important area
of statistical inference.

3 Nearest neighbor classi�ers and their characteristics
Suppose that the remotely sensed data related to an area A are written as the
following raster array

DRS(A) = {{i, j, e(i, j)} : Aij ⊂ A1}, (1)

where {Aij} are disjoint surface elements and e(i, j) = {e1(i, j), ..., eb0(i, j)}
are the re�ected energies in b0 bands of light from Aij registered by a satellite
sensor. The indices i, j code the coordinates (longitude and latitude) of Aij . In
the theoretical model we approximate Aij by squares which sides are equal to
the sensor's resolution. In order to avoid the necessity to use all components
of the registered energy e(i, j) one can apply a vector function fRS(·) which
transforms the value e(i, j) into x(i, j) = fRS(e(i, j)) ∈ X = (x). X is called
a feature space. If only the re�ected energies in bands b1, b2, ..., br, r < b0 are
used then fRS((e1, ..., eb0)) = {eb1 , ..., ebr}, r < b0.

Let Ai1j1 , ...,Aimjm be surface elements which are parts of the �eld plots
placed in A1. For each Aihjh

one can use the �eld data in order to �nd the exact
(true) class c(ih, jh) ∈ K0 = {1, 2, ..., k0} of the part of forest which grows on
Aihjh

. The set of pairs

{{x(ih, jh), c(ih, jh)}, h = 1, ...,m} (2)

is called a training set, and the points x(ih, jh) ∈ X are called training points.
Let mk be the number of all training points which have true class k ∈ K0. We
can also consider (2) as the union of subsets

T0
mk

= {{x(ih, jh), c(ih, jh)} : c(ih, jh) = k, h = 1, ..., mk, x(ih, jh) ∈ X},

i.e. the training set is the union of the subsets

T0
m =

k0⋃

k=1

T0
mk

, m = {m1, ..., mk0}, m· =
k0∑

k=1

mk. (3)
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Let X0
m be the set of all training points {x(ih, jh)}1≤h≤m. We do not know

the true classes c(i, j) for x(i, j) ∈ X r X0
m which are not completely placed

inside the plots. A classi�er has to supply each such point x(i, j) with a
class which we denote by c•(i, j). If c•(i, j) 6= c(i, j) then the classi�er has
made an error. It is desirable to �nd classi�ers which do not do too many
misclassi�cations. In the general case a classi�er is a function f•(x,T0

m) de�ned
on the feature space X = (x) which values are numbers in K0 = {1, ..., k0}.
Usually classi�ers essentially depend on the training sets.

We will consider some special classi�ers. We suppose that X ⊆ Rd, d ≥ 1.
We supply the feature space X with a distance function d(·, ·). For each point
x ∈ X we can �nd the k nearest neighbor (NN -)points in X0

m, i.e.
x(1) = x(ih1 , jh1), d(x,x(1)) = min1≤h≤m d(x,x(ih, jh)), x(2) = x(ih2 , jh2),
d(x,x(2)) = min1≤h≤m,h6=h1 d(x,x(ih, jh)), ..., x(k) = x(ihk

, jhk
),

d(x,x(k)) = min1≤h≤m,h6=hl,l<k d(x,x(ih, jh)), x(ih, jh) ∈ X0
m. The true classes

c(l) = c(ihl
, jhl

), l = 1, ..., k, are known from the �eld data. The sequence
of true classes of the k NN -points {x(1), ...,x(k)} to x is denoted by ck

1(x) =
{c(1), ..., c(k)}.

De�nition 1. The classi�er f•1NN (x,T0
m) = c(1) is called the nearest neighbor

classi�er or shortly 1NN -classi�er.

The 1NN -classi�er supplies any point x ∈ X with the class c(1) = c(ih1 , jh1)
of the NN -point x(ih1 , jh1). Let Kk

0 = K0 × ...×K0 = ({c1, ..., ck}) be the set
of all sequences of length k with cl ∈ K0. Let gk(·) : Kk

0 → K0 be a function
de�ned on Kk

0 which values are numbers of classes in K0. For example, if k = 3
and K0 ∈ {1, 2, 3} one can de�ne

g3(c1, c2, c3) =
{

c1, if c1, c2, c3 are di�erent,
c, if at least 2 of c(1), c(2), c(3) equal c.

(4)

De�nition 2. The classi�er f•kNN (x,T0
m) = gk(ck

1(x)) is called the kNN -
classi�er.

Note that the numbers of misclassi�cations essentially depend on the se-
lection of the feature space X and the distance d(·, ·). We consider the vectors
x(i, j) = fRS(e(i, j)) as values of the random variables X(i, j). The distrib-
utions of these r.v.s essentially depend on the types of trees which grow on
Aij ⊂ A. We introduce the following basic assumption.
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Assumption A1. For all classes of forest c ∈ K0 the feature values x(i, j)
given c(i, j) = c ∈ K0, Aij ⊂ A1 are values of independent random variables
with continuous probability distributions Pc[·] de�ned on the Borel σ-algebra
B(X), and Pc1 [·] � Pc2 [·] if c1 6= c2.

Suppose that energies re�ected from disjoint parts of trees growing in the
surface elements are independent r.v.s which distributions depend on the type
of trees, e.g. pine, spruce and broad leaved trees. Then the registered energies
within each band are also independent r.v.s. The distributions of these energies
are de�ned by the sizes zP (i, j), zS(i, j), zB(i, j) of the elements' parts occupied
by pines, spruce and broad leaved trees.

The set of classes K0 is de�ned by a division of the simplex S3 into disjoint
subsets. We can consider assumption A1 as a reasonable approximation if all
classes c ∈ K0 are de�ned by su�ciently small subsets of S3 because then the
positions of the points z(i, j) = {zP (i, j), zS(i, j), zB(i, j)} within these small
subsets are approximately identically distributed. If a satellite sensor has a
high resolution then, hopefully, A1 approximately holds and we need to con-
sider only 7 classes P, S, B, PS, PB, BS, PSB de�ned in the previous section.
In this case we have no need to consider the division of S3 into many classes
which are small subsets. In general if there are classes where the �eld data
show that the points z(i, j) are not identically distributed then it is necessary
to divide these classes in two or more smaller subclasses where the points z(i, j)
can be considered as identically distributed.

The following more technical assumption can be used in the justi�cation
of the below suggested methods.
Assumption A2. For any class c ∈ K0 the probability distribution Pc has
continuous positive density pc(x).

It follows from A2 that there are no ties, i.e. x(i′, j′) 6= x(i′′, j′′) if
{i′, j′} 6= {i′′, j′′}. Note also that we do not assume that Pc[·], c ∈ K0, are
known distributions. If x(i, j) ∈ X r X0

m, Aij ⊂ A, then we do not know
the true value c(i, j) and we do not assume that x(i, j) ∈ X r X0

m are values
of independent r.v.s. We use capital letters for r.v.s, e.g. X(i, j) = x(i, j)
means that x(i, j) is an observed value of the r.v. X(i, j), c(1) = c means that
the true class c(1) of the NN -point to x ∈ X, is c ∈ K0. Suppose that the
unknown true class of the forest on Aij ⊂ A1 is r ∈ K0, x(i, j) ∈ X r X0

m,
and s is the class of the forest on Aij suggested by a classi�er f•(·,T0

m), i.e.
f•(x(i, j),T0

m) = s ∈ K0. Formally, we can write the probability of this event
as

prs(f•,T0
m) = Pr[f•(X(i, j),T0

m) = s | T0
m]. (5)
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Let f•kNN be a kNN -classi�er with a function gk(·) on Kk
0. Then we can

write (5) as follows

prs(f•kNN ,T0
m) = Pr[gk(ck

1(X(i, j))) = s | T0
m], (6)

where we consider the training set T0
m as �xed and a r.v. X(i, j) has the

distribution Pr[ · ]. The matrix P(f•,T0
m) = (prs(f•,T0

m))r,s∈K0 is called the
confusion matrix of a classi�er f• given a training set T0

m. Henceforth, we write
in short prs(T0

m) and P(T0
m) instead of prs(f•,T0

m) and P(f•,T0
m).

The confusion matrix is the most important characteristic of each classi�er.
The probabilities prs(T0

m), r, s ∈ K0, are unknown and it is very di�cult to
�nd out how accurate we may estimate of their values. If probabilities (5)
or (6) would be known then they could be used in assessing the accuracy of
the created digital maps of the area A0, Belyaev (2000, 2003a). If accurate
estimators of the probabilities prs(f•a ,T0

m) and prs(f•b ,T0
m), r, s ∈ K0, would

be found then they could be used to select the better one of the two classi�ers
f•a , f•b .

4 CV -estimators of confusion matrices of NN-classi�ers
In this section we consider possible methods of assessing the accuracy of clas-
si�ers based on distances between points in T0

m corresponding to a training
set. The main di�culty is bound with the presence of dependencies between
values of classi�ers related to nearly placed training points in X0

m. Here we give
somewhat heuristical justi�cation of the below suggested resampling methods.
In the next Section 5 we test these resampling methods in two numerical ex-
periments. A more rigorous justi�cation will take many more pages and is
worth to be published in separate papers.

We will use a common cross-validation CV -method in order to obtain values
of estimators for P(T0

m) = (prs(T0
m))r,s∈K0 . The CV -method can be described

as follows. Let xri ∈ X0
m and the true class is r, i.e. the element {xri, r} ∈ T0

m.
We exclude this element from T0

m and consider T0
m(r,i) = T0

m r {xri, r} as the
reduced training set. The classi�er based on T0

m(r,i) �recognizes� the point xri

as having the class s, if f•(xri,T0
m(r,i)) = s. If s = r then the classi�cation is

correct otherwise it is erroneous. Similarly we can apply the classi�er f•(·) to
all points in X0

m. For each pair of classes r, s ∈ K0 we can �nd the following
frequencies

p̂CV
rs (T0

m) =
1

mr

mr∑

i=1

I(f•(xri,T0
m(r,i)) = s), (7)
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where the sum is taken over all mr elements {xri, r}. The frequencies p̂CV
rs (T0

m)
are called the CV -estimates of the CC-probabilities (5).

From (7) we see that the values p̂CV
rs (T0

m) can essentially depend on the
original training set T0

m. We have to consider T0
m as a value of a random

training set Tm. Is it possible to �nd the distribution of the deviation p̂CV
rs (T0

m)
from the true unknown value prs(T0

m)? If we consider the training set Tm as
random and T0

m as an observed value of Tm then we are interested to know the
cumulative distribution function (c.d.f.) Frsm(z) = P[p̂CV

rs (Tm)−prs(Tm) ≤ z]
of the deviations. Can we estimate Frsm(·) consistently if all mr →∞, r ∈ K0,
i.e. is there an estimator F̂rsm(·) which converges to Frsm(·) in probability if
all mr tend to in�nity? This is a complex problem and we will try to solve it.

For a short time we introduce the following temporary assumption. Sup-
pose that we know all probability distributions Pr[ ], r ∈ K0. Then, for any
given Tm, we can simulate any number n of points xr(i) ∈ X, i = 1, ..., n
which are values of i.i.d. r.v.s with probability distribution Pr[·] and true
class r. Then by the law of large numbers (LLN) the exact values of the CC-
probabilities (5) for any given value of Tm would be found as the following
limit

prs(Tm) = lim
n→∞

1
n

n∑

i=1

I(f•(xr(i),Tm) = s), r, s ∈ K0. (8)

We stress that the exact values of the CC-probabilities are depend on the
training sets. Under the temporary assumption we could also simulate any
number of independent copies T1

m, ...,Tn
m, ... of training sets which are values

of random sets identically distributed as the original training set T0
m. For each

training set Tj
m similarly as in (7) and (8) we could be able to �nd the values

of the CV -estimators p̂CV
rs (Tj

m) and their exact values prs(Tj
m), and thus write

the following list of deviations

{p̂CV
rs (Tj

m)− prs(Tj
m)}1≤j≤n, (9)

where n is a large number, say n ≥ 2000. The larger n the better.
From (9) as n →∞ we �nd the c.d.f.s of interest

Frsm(z) = lim
n→∞Frsmn(z), r, s ∈ K0, (10)

where Frsmn(z) = 1
n

∑n
j=1 I(p̂CV

rs (Tj
m) − prs(Tj

m) ≤ z). If we know Frsm(z)
or close to it Frsmn(z) with a large n then we can say how typical the (un-
known!) deviation p̂CV

rs (T0
m) − prs(T0

m) can be if the original training set is
T0

m. The c.d.f.s Frsmn(·) have been obtained by simulation in two arti�cial
numerical experiments (see Section 5). Here, we consider Tm as a r.v. and
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              Experiment 1                                          Experiment 2

Figure 7: Three distribution functions of deviations p̂CV
11 (Tm) − p11(Tm),

p̂CV
11 (Tm)−med p̂CV

11 (Tm) and p11(Tm)−med p11(Tm) are shown by thin, step-
wise and thick lines, respectively.

then p̂CV
rs (Tm), prs(Tm) are also r.v.s. We denote the medians of the c.d.f.s re-

lated to these r.v.s p̂CV
rs (Tm) and prs(Tm) by med p̂CV

rs (Tm) and med prs(Tm),
respectively.

In Fig. 7 the c.d.f.s of deviations p̂CV
rs (Tm)−prs(Tm), p̂CV

rs (Tm)−med p̂CV
rs (Tm),

and prs(Tm)−med prs(Tm), r = s = 1, are shown by thin black, stepwise, and
thick black lines, respectively. It shows that the typical deviations p̂CV

rs (Tm)
from prs(Tm) often can be larger than the typical deviations of p̂CV

rs (Tm)
and prs(Tm) from their medians. If one knows Frsmn(·), which is close to
Frsm(·), then it is possible to obtain con�dence intervals for the CV -estimators
p̂CV

rs (T0
m), r, s ∈ K0. Estimates F̂rsm(·) of Frsm(·) can be used in assessing the

numbers of correctly and erroneously classi�ed pixels in a preliminary version
of the digital image (map) of interest. If we could estimate consistently Frsm(z)
by using for each m only the original training set T0

m as all mk →∞ then we
could drop the temporary assumption, that we know all Pr[ ], r ∈ K0, which is
absolutely unrealistic and which we have used here only to simplify the under-
standing of this complex problem. We can exclude this temporary assumption
by using instead the theory of resampling methods from non-homogeneous data
which has been developed and applied in a series of papers: Belyaev (1996,
2003b), Belyaev and Sj�ostedt-de Luna (2000), Ekstr�om and Belyaev (2001),
Ekstr�om and Sj�ostedt-de Luna (2004).

In order to justify appropriate resampling methods we consider the original
training set T0

m as a realisation of a marked point process, where the marks
are the classes k ∈ K0. Let us consider vector-valued r.v.s M = {M1, ..., Mk0}
which components are independent and which have the Poisson distributions
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with mean values m1, ...,mk0 . Let TMr = {{Xri, r} : i = 1, ..., Mr}, where
{Xri} are i.i.d. Pr[ ]-distributed r.v.s. The resulting superposition TM =
∪k0

r=1TMr is the marked Poisson point process with independent discretely dis-
tributed marks and XM = {Xri : {Xri, r} ∈ TM, i = 1, ..., Mr, r ∈ K0}. We
can approximate the probabilities of events which can occur in the training set
T0

m by using the distribution of TM if all mk, k ∈ K0 are su�ciently large.
Now we will consider the training set T0

m as a realisation of TM. Here, we
still assume that we know all Pr[ ], r ∈ K0. The appropriate realisation of the
random set TM can be obtained by adding to Tm the i.i.d. pairs {Xki, k}, i =
mk+1, ...,Mk, if Mk > mk, k = 1, ..., k0 or by excluding from TM the randomly
chosen mk−Mk pairs if mk > Mk, k = 1, ..., k0. Suppose that limm·→∞

mk
m· > 0

for all k ∈ K0, m· = m1 + · · · + mk0 . In short, we denote this asymptotic
m ⇒ ∞. If m ⇒ ∞ then | Mk −mk |= Op(m

−1/2
k ), k = 1, ..., k0. Therefore,

the probabilities, of many similarly de�ned on realisations of TM and Tm events
of interest, are asymptotically equivalent as m ⇒ ∞. Conditionally TM = Tm

if M = m.
Recall that pk(x) is the probability density introduced in Assumption

A2. The marked Poisson point process corresponding to TM we denote by
PM(λm(·)), where the intensity measureλm(·) =

∑k0
k=1 mkpk(·). We write

P(λm(·)) if we consider points of PM(λm(·)) without marks. Hence, we can
approximately consider X0

m as a realisation of the marked non-homogeneous
Poisson point process PM(λm(·)) with the �rst moment intensity measure
λm(x) =

∑k0
k=1 mkpk(x), x ∈ X ⊆ Rd, and marks are independently placed at

x ∈ X0
m with the discrete distribution with the probabilities

qk(x) =
mkpk(x)∑k0

k′=1 mk′pk′(x)
, k = 1, ..., k0. (11)

Let Xr be a r.v. with the distribution Pr[·] and recall that T0
m(r,i) =

T0
m r {xri, r}. Then

prs(T0
m) = Er[I(f•(Xr,TM) = s) | TM = T0

m],

and
prs(T0

m(r,i)) = Er[I(f•(Xr,TM(r,i)) = s) | TM(r,i) = T0
m(r,i)]. (12)
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From (12) we can write the deviation of p̂CV
rs (T0

m) from prs(T0
m) as follows

p̂CV
rs (T0

m)− prs(T0
m)

=
1

mr

mr∑

i=1

(
I(f•(xri,T0

m(r,i)) = s)− prs(T0
m(r,i))

)

− 1
mr

mr∑

i=1

(prs(T0
m)− prs(T0

m(r,i))). (13)

The bias of the CV -estimator p̂CV
rs (T0

m) is equal to the last sum in (13) and
we call it the CV -bias. For kNN -classi�ers the bias has order O(m−1

r ), i.e.
the CV -estimators are asymptotically unbiased. This fact can be easily proved
in the case of 1NN -classi�er with the feature space X ⊆ Rd, d ≥ 1.

The terms in the �rst sum (13) are values of r.v.s with zero means. But
these r.v.s. are dependent and, therefore, it is not correct to use the ordinary
resampling methods for independent r.v.s. For example, if a kNN -classi�er
is used then the i-th term in the CV -estimator (7) is de�ned by the set of k
NN -points in T0

m(r,i) which are nearest to xri, i = 1, ..., mr. Some of these sets
with k NN -points can have nonempty intersections, i.e. they contain the same
points for di�erent xri1 and xri2 , i1 6= i2, therefore, these terms in (7) have to
be considered as values of dependent r.v.s.

Let B(x0, r0) = {x : x ∈ X ⊆ Rd, d(x0,x) ≤ r0}, d ≥ 1. By x(k)ri we
denote the training point which is the k-th closest to xri. The set of all balls
{B(xri, d(xri,x(k)ri)) : xri ∈ X0

m, i = 1, ...,mr, r ∈ K0} is a cover of X0
m and

in short we call it the kNN -scale. In Fig. 9 (left) a part of a 3NN -scale is
shown. If the balls related to terms in (7) are disjoint then from assumption
A1 it follows that the terms can be considered as values of independent r.v.s.
The idea, to use growing blocks for raster spatially dependent data, has been
suggested in Hall (1985) and it was elaborated to the case of sums of raster
m-dependent non-identically distributed r.v.s in Belyaev (1996), Ekstr�om and
Belyaev (2001).

The case with kNN -classi�ers (k > 1) essentially di�ers from the cases with
blocks based on raster data. In the case of the 1NN -classi�er we can handle
the di�culty with the dependency between terms in (7) by using resampling
from specially created clusters of points in the set Xm. Henceforth, we will
consider only the case of the 1NN -classi�er, f•1NN (·). In the general case of
kNN -classi�ers it is necessary to use resampling from sums of terms in (7)
related to a set of growing special blocks which are subsets of Xm. The idea,
to use resampling from growing blocks of terms in (7) in order to estimate the
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Figure 8: Four NN -clusters, Xm ⊂ R1. Arrows show the nearest neighbor
points.

Figure 9: In the left part of the �gure the 3NN -scale of circles, related to 3NN -
classi�ers de�ned in (4), is shown. In the right part of the �gure NN -clusters
are shown. They are formed by connected training points in a realisation of
Xm ⊂ R2.

c.d.f. of the deviations the CV -estimators from the true CC-probabilities has
to be elaborated. It will be done in a separate paper. Here, we concentrate on
the case with 1NN -classi�ers.

De�nition 3. Two points x′,x′′ ∈ Xm are called connected if at least one of
them is the NN -point to the other, i.e. one or both of the two following rela-
tions holds d(x′,x′′) = minx∈Xmrx′ d(x′,x) or d(x′,x′′) = minx∈Xmrx′′ d(x,x′′).
A set C is called NN -cluster if in any disjoint subsets C′, C′′, C = C′ ∪ C′′ there
are points x′ ∈ C′, x′′ ∈ C′′ which are connected, and if any point x ∈ Xm r C,
i.e. x is not in C, then x has no connection with points which are in C.

Typical NN -clusters are shown in the following Fig. 8, X0
m ⊆ R1, and

in Fig. 9 (right), X0
m ⊆ R2. Note that the NN -clusters can be considered as

random graphs without cycles.
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Let {Ch}1≤h≤nCL
be the division of the set Xm of the training points

without marks into nCL = nCL(X0
m) NN -clusters, Ch1 ∩ Ch2 = ∅, if h1 6=

h2, ∪nCL
h=1Ch = X0

m. Here, the numbering of NN -clusters is arbitrary and it
does not depend on shapes and positions of NN -clusters. From assumption
A1 it follows that all points in X0

m have di�erent components of their coordi-
nates. By M(Ch) we denote the random number of points in the NN -cluster
Ch. We can number these points as follows. Note that there are only two points
in any Ch which are nearest each other. We give them numbers 1 and 2 and
denote them by Xj

h = {Xj
h1, ..., X

j
hd}, j = 1, 2, X1

h1 < X2
h1. If there are other

points in Ch then they obtain numbers 3, ..., M(Ch) due to their distances from
X1

h, i.e. d(X1
h,X2

h) < d(X1
h,X3

h) < · · · < d(X1
h,XM(Ch)

h ). We call X1
h as the

root of Ch. We can use notation Ch(X1
h) and Ch(Xm) if we want to stress that

X1
h is the root point of Ch, and that Ch = Ch(Xm) ⊆ Xm.

Let us write {j1, j2} if Xj2
h is the nearest neighbor point to the point

Xj1
h . The list L(Ch) = {{1, 2}, {2, 1}, {3, j3}, ..., {M(Ch), jM(Ch))}} contains all

M(Ch) such pair of points' numbers. The lists L(C1), ..., L(CnCL) are invariant
w.r.t. the synchronic extensions or contractions of all coordinates of points in
Xm and the numbers M(Ch), h = 1, ..., nCL are also invariant. If m ⇒ ∞ then
the linear sizes of the NN -clusters Ch, h = 1, ..., nCL, tend to zero. In a neigh-
borhood of size O(m−1/d

· ) around any point x0 with p·(x0) =
∑k0

k=1 pk(x0) > 0
the training points can be considered as a realisation of the homogeneous Point
process P(λ(x0)) as m ⇒ ∞.

Due to the invariancy mentioned above, the distribution, of the number of
points in a randomly chosen NN -cluster, can be asymptotically approximated
by the distribution of a randomly chosen NN -cluster generated by the homo-
geneous Point process P(λ(x0)) with intensity λ(x0) ≡ 1. Let P(1) be the
homogeneous Poisson point process on the line R1. Then the mean number of
points in a randomly taken NN -cluster C is E[M(C)] = 3. If P(1) is de�ned on
the plane R2 then E[M(C)] = 2(6π + 2

√
3)/(3π) = 5.102... Here, E[ ] relates

to the Palm distributions, see Daley and Vere-Johens (1988). It is possible to
show that the variance of M(C) is �nite if P(1) is de�ned in Rd, d ≥ 1.

Henceforth, we consider Tm as a random training set. Let the 1NN -
classi�ers f•1NN (·,Tm(r,i)), i = 1, ...,mr, are used and prs(Tm), r, s ∈ K0, are
related cross-classi�cation probabilities. If Xri′ is connected with its NN -point
Xsi′′ then both Xri′ and Xsi′′ belong to the same NN -cluster and f•1NN (Xri′ ,
Tm(r,i′)) = s.

We prove that the CV -estimator p̂CV
rs has very small bias of order Op(m−1

r ),
m ⇒ ∞. Let Xm corresponds to the random set Tm. For each training point
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Xsj ∈ Xm, s ∈ K0, we de�ne the following open subset

U(Xsj ,Xm) = {x : d(x,Xsj) < min
Xs′j′∈XmrXsj

d(x,Xs′j′)}.

Note that these subsets are disjoint. If a point x ∈ U(Xsj , Xm) then the
distance from x to the point Xsj is less than the distance from x to any other
point Xs′j′ ∈ Xm. We call U(Xsj , Xm) the Voronoi cell related to Xsj (Okabe
et al. (1992)).

Let Xr be a r.v. with the distribution Pr[ ] independent of the random
training set Tm. The set Xm(r,i) = Xm rXri is also random, and we have

prs(Tm) =
ms∑

j=1

Pr[Xr ∈ U(Xsj ,Xm)], (14)

prs(Tm(r,i)) =
ms∑

j=1

Pr[Xr ∈ U(Xsj ,Xm(r,i))]. (15)

The di�erence of the indicators I(Xr ∈ U(Xsj , Xm(r,i)))− I(Xr ∈ U(Xsj , Xm))
can be non-zero almost surely only if Xr ∈ U(Xri, Xm). Hence, it follows that

| prs(Tm)− prs(Tm(r,i)) |≤ Pr[Xr ∈ U(Xri, Xm)]. (16)

We can write

Er[p̂CV
rs (Tm)] =

1
mr

mr∑

i=1

ms∑

j=1

Pr[Xr ∈ U(Xsj , Xm(r,i))]. (17)

From (13) - (17) we can estimate the CV -bias of the CV -estimator as follows

| Er[p̂CV
rs (Tm)]− prs(Tm) |=

∣∣∣∣∣
1

mr

mr∑

i=1

(prs(Tm(r,i))− prs(Tm))

∣∣∣∣∣

≤ 1
mr

mr∑

i=1

Pr[Xr ∈ U(Xri, Xm)] ≤ 1
mr

. (18)

From (18) we have that the bias of p̂CV
rs (Tm) is negligibly small and the random

parts of the deviations p̂CV
rs (Tm) − prs(Tm) characterize the accuracy of the

CV -estimators as m ⇒ ∞.
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Let C1, ...,CnCL(r) be the list of all NN -clusters containing one or more
training points with mark r, nCL(r) = nCL(r,Xm). Each NN -cluster Ch con-
tains Mrsh > 0 training points Xri from class r which have been recog-
nized as belonging to class s by the 1NN -classi�ers with the training sets
Xm(r,i), i = 1, ..., mr. We have

Mrs(Tm) =
nCL(r)∑

h=1

Mrsh, Mr·(Tm) =
k0∑

s=1

Mrs(Tm) =
k0∑

s=1

nCL(r)∑

h=1

Mrsh, (19)

where

Mrsh =
∑

i:Xri∈Ch

I(f•1NN (Xri,Tm(r,i)) = s)

=
∑

i:{Xri,Xsj}∈Ch

I(Xri ∈ U(xsj ,Xm(r,i))). (20)

From (19) and (20) we obtain that the CV -estimator can be written as follows

p̂CV
rs (Tm) =

Mrs(Tm)
Mr·(Tm)

=
nCL(r)∑

h=1

Mrsh

/
nCL(r)∑

h=1

Mr·h, (21)

where

Mr·h =
k0∑

s=1

Mrsh. (22)

We will now try to investigate the distribution of the normed deviations
√

nCL(r)(p̂CV
rs (Tm)− prs(Tm)) as m ⇒ ∞. (23)

We need some properties of NN -clusters. The justi�cation of them will be
easier if instead of Tm we will consider TM, generated, as it has been described
above, by the marked Poisson point process. The most of NN -clusters Ch′(XM)
in XM are identical with the NN -clusters Ch(Xm) in Xm. Here, we have that

∑

h

∑

h′
I(Ch(Xm) = Ch′(XM)) = nCL(Xm)+Op(

√
m·) = nCL(XM)+Op(

√
m·),

(24)
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and nCL(XM) = m·/µ(d) + op(
√

m·), m ⇒ ∞. Here, µ(d) is the mean number
of points in a randomly chosen NN -cluster generated by the homogeneous
Poisson point process P(1) in Rd. Hence, the c.d.f. of deviations

√
nCL(r)(p̂CV

rs (TM)− prs(TM)) (25)

approach in probability with the c.d.f. of deviations given in (23) as m ⇒ ∞.
Let M̃rsh be the random number of points in Ch(XM) with mark r which

have been recognised as belonging to class s, r, s ∈ K0 by the 1NN -classi�ers
with the training sets XM rXri. If TM = Tm and XM = Xm then M̃rsh =
Mrsh. In order to simplify the notations below we drop tilda over Mrsh,Mr·h, ...,
and instead of M̃rsh, M̃r·h, ... we will write Mrsh,Mr·h, ... . Then as in (21) we
can write

p̂CV
rs (TM) =

∑nCL(r)
h=1 Mrsh∑nCL(r)
h=1 Mr·h

, (26)

where Mr·h =
∑k0

s=1 Mrsh, nCL(r) = nCL(r,XM). Recall that the number of
points in each NN -cluster is not less than 2.

The r.v.s Mrsh, h = 1, ..., nCL(r,XM) can be considered as independent
r.v.s. It is easy to prove it in the case X ⊆ R1. We consider four sequentially
placed training points in XM without marks Xi+1 < Xi+2 < Xi+3 < Xi+4. If
Xi+2−Xi+1 < Xi+3−Xi+2 and Xi+4−Xi+3 < Xi+3−Xi+2 then {Xi+1, Xi+2}
and {Xi+3, Xi+4} belong to di�erent NN -clusters. From the absence of de-
pendency in the Poisson point processes the point Xi+4 will be a point of
regeneration and positions of all points Xi+4+j , j ≥ 1, will be independent of
the �past� before Xi+4. It follows that the number of points in the NN -cluster
started from Xi+3 is independent from contents all NN -clusters in the �past�.
Note that the linear sizes of NN -clusters can be dependent. From assumptions
A1 and A2 we conclude that all r.v.s Mrs(Ch(XM)), are independent.

In the general case let XM ⊆ Rd, d > 1, and let Ch be any NN -cluster.
Together with the points in Ch we consider all pairs of connected points which
are not in Ch and one point in each such pair is the nearest to a point in Ch.
Let set Sh be the union of all points in Ch and all such pairs of connected
points. From the properties of the Poisson point processes it follows that all
events de�ned on XMrSh and Ch are independent. From assumptions A1 and
A2 and the property that all NN -clusters contain not less than two points it
follows then that all events related to marks on Ch and on XM r Ch are also
independent. Therefore, the r.v.s Mrsh, h = 1, ..., nCL(r) = nCL(r,XM), are
independent.

Let µrs(m) = E[Mrsh] be the mean value of the number of points, in the
randomly placed NN -cluster Ch = Ch(X1

h), with mark r which has been classi-
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�ed by the 1NN -classi�er as having mark s. We will consider the centered r.v.s
M0

rsh = Mrsh−µrs(m), M0
r·h =

∑k0
s=1 Mrsh−µr·(m), µr·(m) =

∑k0
s=1 µrs(m),

and the following sums M0
rs· =

∑nCL
h=1 M0

rsh, M0
r·· =

∑k0
s=1 M0

rs·. We can rewrite
(26) as follows

p̂CV
rs (TM) =

µrs(m) + (1/nCL(r))M0
rs·

µr·(m) + (1/nCL(r))M0
r··

. (27)

All random root points X1
1, ...,X

1
nCL

are considered as a random subset
generated by the Poisson marked process PM(λ(m)). The numbers of marks
Mrsh and Mr·h in Ch(X1

h), h = 1, .., nCL are conditionally independent r.v.s
given their root points X′

h. The distributions of these numbers depend on the
positions of the root points. The distributions of the numbers M··h of all points
in Ch(X1

h), M··h =
∑k0

r=1

∑k0
s=1 Mrsh, are asymptotically the same as m ⇒ ∞.

These properties give us heuristical suggestion to investigate asymptotic
properties of the considered complex probability model of the training data
TM by applying some techniques from the renewal theory. We will consider
the additive process M··1 + · · · + M··h with independent r.v.s {M··h}h≥1 and
the time parameter h. Then nCL is the stopping time when M··1 + · · ·+M··nCL

is the number of all points in XM. The asymptotic distribution of each M··h
will be the same as if the NN -cluster Ch(X1

h) was generated by the Poisson
point process P(1) on Rd. Then it follows that the variances E[(M0

rs(Ch))2]
are uniformly bounded because Mrsh ≤ M··h. We can also use independency
of Mrsh1 ,Mrsh2 and I(nCL > h2), h1 < h2. Then we can obtain that

M̄0
rs· =

1
nCL(r)

M0
rs· = Op(m

− 1
2

r ) and M̄0
r·· =

1
nCL(r)

M0
r·· = Op(m

− 1
2

r ). (28)

From (27) and (28) it follows that p̂CV
rs (TM) is a consistent estimator for

pCV
rs (TM),

p̂CV
rs (TM)− pCV

rs (TM)
p→ 0, m ⇒ ∞. (29)

From (27) we have

E
[
p̂CV

rs (TM)− µrs(m)
µr·(m)

]

= E
[
µr·(m)M̄0

rs· − µrs(m)M̄0
r··

µr·(m)(µr·(m) + M̄0
r··)

− µr·(m)M̄0
rs· − µrs(m)M̄0

r··
µ2

r·(m)

]

= E
[
M̄0

r·(µrs(m)M̄0
r·· − µr·(m)M̄0

rs·)
µ2

r·(m)(µr·(m) + M̄0
r··)

]
. (30)
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By applying the Schwartz inequality to (30) we obtain
∣∣∣∣E

[
p̂CV

rs (TM)− µrs(m)
µr·(m)

]∣∣∣∣

≤
(

E
[
(M̄0

r··)2

µ2
r·(m)

]
E

[(
µr·(m)M̄0

rs· − µrs(m)M̄0
r··

µr·(m)(µr·(m) + M̄0
r··)

)2
])1/2

. (31)

Note that ∣∣∣∣
µr·(m)M̄0

rs· − µrs(m)M̄0
r··

µr·(m)(µr·(m) + M̄0
r··)

∣∣∣∣ ≤ 1

and it tends to 0 in probability as m ⇒ ∞. Hence, the expectation of second
factor in (31) also tends to zero by the Lebesque dominated convergence the-
orem. By applying the mentioned above technique of the renewal theory we
can obtain that E[(M̄0

r··)2] = O(m−1
r ) as m ⇒ ∞. Hence, we have that

√
mr E

[
p̂CV

rs (TM)− µrs(m)
µr·(m)

]
→ 0, m ⇒ ∞. (32)

From (28) we obtain the following asymptotic expansion of (27)

p̂CV
rs (TM) =

µrs(m)
µr·(m)

+
1

µr·(m)

(
M̄0

rs· − M̄0
r··

µrs(m)
µr·(m)

)
+ Op(m−1

r ). (33)

We have that M̄r· = µr(m)+op(1) and nCL(r) = mr
µr·(m)(1+op(1)), as m ⇒ ∞.

From (18), (24)-(27), (32) and (33) we can write the normed deviations of
interest in the following asymptotic form

√
nCL(r) (p̂CV

rs (TM)− prs(TM))

=
√

nCL(r)

(
1

µr·(m)

(
M̄0

rs· − M̄0
r··

µrs(m)
µr·(m)

)

−
(

E[p̂CV
rs (TM)]− µrs(m)

µr·(m)

)
+

(
E[p̂CV

rs (TM)]− prs(TM)
))

=
nCL(r)∑

h=1

1√
nCL(r)

(
1

M̄r·
(M0

rsh −M0
r·hp̂CV

rs (TM))
)

+ Op(m
−1/2
· )

=
m·/µ(d)−f(m)∑

h=1

M0
rsh −M0

r·h
µrs(m)
µr·(m)√

m·/µ(d) µr·(m)
+ Op(m

−1/2
· ), (34)
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where f(·) is a function, f(m)/
√

m· →∞ and f(m·)/m· → 0, m ⇒ ∞.
All terms in the last sum are independent and asymptotically uniformly

small in probability as m ⇒ ∞. The numbers of points M··h in Ch(X1
h), h =

1, ..., nCL, have uniformly integrable second moments and their distributions
can be asymptotically considered as if the r.v.s M··h correspond to NN -clusters
generated by the homogeneous Poisson point process P(1). The Lindeberg as-
sumption can be obtained by using the inequalities (M0

rsh)2 ≤ M2
··h, (M0

r·h)2 ≤
M2
··h, h = 1, ..., nCL. The deviation from the case of triangular array of inde-

pendent r.v.s, caused by the presence of random root points X1
h, h = 1, ..., nCL,

is non-essential and the consistency of resampling method as m ⇒ ∞ follows
from a slight extension of Corollary 3 in Belyaev (2003b). These assertions
are given here without detailed proofs and they have to be considered by the
reader as heuristical arguments which lead us to estimating the distribution of
the normed deviations by resampling the terms in the last sum in (34). Note
that the last two sums in (34) are approaching in probability asm ⇒ ∞. Hence,
we can simulate resampling from the terms 1√

nCL(r)M̄r·
(M0

rsh−M0
r·hp̂CV

rs (T0
m))

in the sum preceding the last sum in (34). Recall that we consider the training
set T0

m as a value of TM, i.e. as if the event TM = T0
m was occurred.

Let C0
1, ..., C

0
n0 be the NN -clusters containing training points in X0

m, which
have mark r ∈ K0, n0 = nCL(r,X0

m). The resampling method we want to use
can be described as follows. Let mrsh and mr·h be values of r.v.s Mrsh and
Mr·h, h = 1, ..., n0, respectively, when TM = T0

m. Let {j?b
1n0 , ..., j?b

n0n0}, b =
1, ..., B, be values of B independently simulated realisations of i.i.d. ran-
dom variables J?b

hn0 , h = 1, ..., n0, uniformly distributed on {1, ..., n0}. For
each b we calculate n0 values n?b

hn0 of r.v.s N?b
hn0 =

∑n0

i=1 I(J?b
in0 = h). Note

that
∑n0

h=1(n
?b
hn0 − 1) = 0, E[N?b

hn0 ] = 1, E[(N?b
hn0 − 1)2] = 1 − 1/n0, and

E[(N?b
h1n0 − 1)(N?b

h2n0 − 1)] = −1/n0. Then we have

n0∑

h=1

(n?b
hn0 − 1)mrs·(m) =

n0∑

h=1

(n?b
hn0 − 1)mr··(m) = 0. (35)

Let Cj?b
1n0

, ...,Cj?b
n0n0

be the bth resampled copy of NN -clusters. The related
copy of the CV -estimator pCV ?b

rs (T0
m) is de�ned as follows

p̂CV ?b
rs (T0

m) =

∑n0

h=1 mrsj?b
hn0∑n0

h=1 mr·j?b
hn0

. (36)
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From (35) and (36) we have

p̂CV ?b
rs (T0

m) =
m̄rs·(m) + m̄0?b

rs·
m̄r··(m) + m̄0?b

r··
, (37)

where m̄rs·(m) = 1
n0

∑n0

h=1 mrsh, m̄r··(m) =
∑k0

s=1 m̄rs·(m), and

m̄0?b
rs· =

1
n0

n0∑

h=1

(n?b
hn0 − 1)mrsh

p→ 0,

m̄0?b
r·· =

1
n0

n0∑

h=1

(n?b
hn0 − 1)mr·h

p→ 0,

as m ⇒ ∞. The asymptotic expansion of (37) can be written as follows

p̂CV ?B
rs (T0

m)

=
m̄rs·(m)
m̄r··(m)

+
1

m̄r··(m)

(
m̄0?b

rs· − m̄0?b
rs·

m̄rs·(m)
m̄r··(m)

)
+ Op(m−1

· )

= p̂CV
rs (T0

m) +
1
n0

n0∑

h=1

(n?b
hn0 − 1)

1
m̄r··(m)

(
mrsh −mr·hp̂CV

rs (T0
m)

)

+ Op(m−1
r ), m ⇒ ∞. (38)

Hence, from (38) we obtain that
√

n0(p̂CV ?
rs (T0

m)− p̂CV
rs (T0

m))

=
√

n0

n0∑

h=1

(n?b
hn0 − 1)

1
m̄r··(m)

(mrsh −mr·hp̂CV
rs (T0

m))

+ Op(m
−1/2
· ), m ⇒ ∞. (39)

The sum in (39) corresponds, asymptotically as m ⇒ ∞, to resampling terms
from the sums in (34). By the Central Resampling Theorem, Belyaev (2003b,
Corollary 3), we obtain that asymptotically the d.f.s of independently simu-
lated deviations

√
n0(p̂CV ?b

rs (T0
m)− p̂CV

rs (T0
m)), b = 1, ..., B, (40)
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approach in probability the d.f.s of deviations (34) as m ⇒ ∞. This result
gives solution of consistent estimation accuracy of CV -estimators of cross-
classi�cation probabilities pCV

rs (T0
m) when 1NN -classi�ers are used. We have

used only the original training set in order to discover the deviations which
one can meet if other training sets would occur at her/his disposal.

We �nish this section with a verbal description of the suggested clustered
resampling method. Suppose that it was decided to use a feature space X ⊆ Rd

with a distance function d(·, ·) and there is a training set T0
m. Suppose that the

1NN -classi�ers were used in order to obtain the CV -estimators p̂CV
rs (T0

m) of
the CC-probabilities prs(T0

m). We have to �nd numbers mrsh,mr·h, r, s ∈ K0

of cross-classi�ed numbers

mrsh =
∑

i:xri∈Ch

I(f•1NN (xri,T0
m(r,i)) = s), mr·h =

k0∑

s=1

mrsh, (41)

where Ch, h = 1, ..., nCL(r) are the all NN -clusters in T0
m which contain points

with mark r. Then we simulate B À 1 resampling copies of CV -estimators
(36) and �nd di�erences

p̂CV ?b
rs (T0

m)− p̂CV
rs (T0

m), r, s ∈ K0, b = 1, ..., B. (42)

Note that we can simultaneously calculate values (42) for several pairs rj , sj , j =
1, 2, ..., k0. The obtained lists of di�erences (42) mimic deviations of the CV -
estimators from true CC-probabilities if other, independent and identically
distributed as T0

m, training sets would be used. If B pairs of di�erences

{p̂CV ?b
rs1

(T0
m)− p̂CV

rs1
(T0

m), p̂CV ?b
rs2

(T0
m)− p̂CV

rs2
(T0

m)}1≤b≤B

were simulated then this list can be used to estimate the correlation between
deviations

p̂CV
rs1

(Tm)− prs1(Tm) and p̂CV
rs2

(Tm)− prs2(Tm),

where we consider training set Tm as random. For justi�cation of this fact it
is possible to use a multidimensional variant of the Central Limit Resampling
Theorem, Belyaev (2004).

The d.f. based on deviations (42) gives us information how typical devi-
ations can be if other identically distributed with T0

m training sets would be
used. It is worth noting that our result is asymptotic. For a given m it is pos-
sible to have such training sets that give via resampling rather good estimates
of accuracy, but it is also possible to meet training sets that give much less
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accurate estimates of accuracy. The probabilities to meet such �bad� training
sets are vanishing as m ⇒ ∞. It is still an open problem to �nd out how large
the numbers m1, ..., mk0 have to be in order to be sure to have su�ciently ac-
curate estimators of the true d.f.s of deviations CV -estimators from theoretical
(unknown) values.

We want to emphasize that in (42) we have only used the original training
set T0

m. We are not able to simulate independent copies of training sets which
have the same distributions as the original training set because we do not
know the true distributions Pr[ ], r ∈ K0. The suggested resampling from NN -
clusters helps to handle with this di�culty. In the next section we consider
two numerical examples.

5 Numerical experiments
The asymptotic analysis, developed in Section 4 for 1NN -classi�ers, shows
that it is possible to obtain consistent estimates of the accuracy of the CV -
estimators p̂CV

rs (T0
m) by using resampling from NN -clusters. Here, we illustrate

how the suggested type of resampling works. We use simulated data because
then we can see how the estimated typical distribution of deviations of the CV -
estimators p̂CV

rs (T0
m) deviates from the true typical distribution of deviations.

In order to avoid large computing time and the complexity of needed pro-
grams the one-dimensional Euclidean feature space X = R1 and the set with
three classes K0 = {1, 2, 3} had been considered. Here, we present selected
results of two experiments.

In Experiment 1, one original training set T0
m1

and a series of indepen-
dent training sets Ts

m1
, m1 = {m11,m12,m13}, s = 1, ..., B1, B1 = 3300,

s = 1, ..., B1, B1 = 3300, were simulated with m11 = 500, m12 = 400, and
m13 = 300 which are numbers of simulated real-valued independent nor-
mally distributed r.v.s belonging to classes 1, 2 and 3. Their mean values
are µ11 = 1, µ12 = 5, µ13 = 9 and variances σ2

11 = 3, σ2
12 = 2, σ2

13 = 1,
respectively.

Similarly in Experiment 2, one original training set T0
m2

and a series of in-
dependent training sets Ts

m2
, with m2 = {m21,m22,m23}, s = 1, ..., B2, B2 =

2300, m21 = 400, m22 = 600, and m23 = 300 were simulated. The para-
meters of the normal distributions were µ21 = 1, µ22 = 5, µ23 = 2.75, and
σ2

21 = 0.125, σ2
22 = 9, σ2

23 = 0.25.
The probability densities of the related normal distributions N(µij , σ

2
ij), i =

1, 2, j = 1, 2, 3, are shown in Fig. 10. For each simulated training set Ts
mi

, i =
1, 2, we simulated N = 10000 values of i.i.d. N(µij , σ

2
ij)-distributed r.v.s,
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Figure 10: Probability densities of N(1, 3), N(5, 2), N(9, 1) in Experiment 1
(left) and N(1, 0.125), N(5, 9), N(2.75, 0.25) in Experiment 2 (right).

i = 1, 2, j = 1, 2, 3. The 1NN -classi�er was applied to each of these values and
the frequencies p̂rs(Ts

mi
) of cross-classi�cations were calculated.

The di�erences p̂rs(Ts
mi

) − prs(Ts
mi

) decrease to zero as N increases to
in�nity. N = 10000 is su�ciently large and we used the frequencies p̂rs(Ts

mi
)

as the true values of prs(Ts
mi

), r, s ∈ K0. For each Ts
mi

also the CV -estimates
have been computed. We have M1 = 3300 and M2 = 2300 pairs of the true
values and the CV -estimates for the confusion matrices P(Ts

mi
) = (prs(Ts

mi
))

in the two experiments. Two pairs of the true values and the CV -estimates of
confusion matrices related to two simulated training set are shown in Table 2.

Table 2. True confusion matrices and their CV -estimators

Experiment 1
True CV -estimator


0.8661 0.1339 0.0000
0.1650 0.7751 0.0599
0.0000 0.0721 0.9279







0.8860 0.1140 0.0000
0.1600 0.7875 0.0525
0.0000 0.0667 0.9333







0.8536 0.1461 0.0003
0.1678 0.7746 0.0576
0.0003 0.0923 0.9074







0.8640 0.1360 0.0000
0.1750 0.7475 0.0775
0.0033 0.1033 0.8933




Experiment 2
True CV -estimator


0.8720 0.1196 0.0084
0.0830 0.7756 0.1414
0.0233 0.2896 0.6871







0.8650 0.1275 0.0075
0.0783 0.7817 0.1400
0.0067 0.3000 0.6933







0.8655 0.1167 0.0178
0.0816 0.7761 0.1423
0.0247 0.3078 0.6675







0.8475 0.1325 0.0200
0.0917 0.7683 0.1400
0.0333 0.2500 0.7167



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We observe that the true values and the CV -estimators of confusion ma-
trices are essentially depending on the related training sets Ts

mi
. We com-

pute the lists of deviations {p̂CV
rs (Ts

mi
) − p̂rs(Ts

mi
)}1≤s≤Bi , i = 1, 2, and the

list of deviations {p̂CV ?b
rs (T0

mi
) − p̂CV

rs (T0
mi

)}1≤s≤Bi by using the suggested re-
sampling from the list of NN -clusters C0

1, ...,C
0
n0

CL(r)
related to the original

training set, T0
mi

, i = 1, 2. Besides that we have computed the list of devi-
ations {p̂CV ∗b

rs (T0
mi

) − p̂CV
rs (T0

mi
)}1≤s≤Bi , i = 1, 2, B1 = B2 = 3000, where

p̂CV ∗b
rs (T0

mi
) is obtained as the bth copy of resampled terms in (7), i.e.

p̂CV ∗b
rs (T0

mi
)− p̂CV

rs (T0
mi

) =
1

mr

mr∑

h=1

(n?
hmr

− 1)I(f•1NN (xrh,T0
mi(r,h)) = s). (43)

Then the following three d.f.s were found

F i
T rs(z) =

1
Mi

Mi∑

s=1

I(p̂CV
rs (Ts

mi
)− prs(Ts

mi
) ≤ x), (44)

F̂ i
Crs(z,T0

mi
) =

1
Bi

Bi∑

b=1

I(p̂CV ?b
rs (T0

mi
)− pCV

rs (T0
mi

) ≤ z), (45)

F̂ i
Srs(z,T0

mi
) =

1
Bi

Bi∑

b=1

I(p̂CV ∗b
rs (T0

mi
)− pCV

rs (T0
mi

) ≤ z). (46)

Fig. 11 illustrates results of Experiment 1. These three d.f.s, corresponding
to a simulated original training set T0

m1
, are shown in Fig. 11. The line of

F̂ 1
Crs(z) related to resamplings from NN -clusters is tagged by arrows “ ← CR”,

and “CR → ”. The line of F̂ 1
Srs(z) related to resamplings from single training

points is tagged by arrows “ ← SR”, and “SR → ”. The d.f. of interest F 1
Trs(z)

is shown by a line without tags. We see that the resampling from NN -clusters
in this example gives a very good estimate of F 1

Trs(z).
Resampling from the list of all terms in (7) gives the d.f. F̂ 1

Srs(z,T0
mi

)
which has worse accuracy, i.e. it underestimates the probability to have larger
deviation of the CV -estimator from the true cross-classi�cation probability.
One can say that F̂ 1

Srs
(z,T0

mi
) is �over-optimistic�. Our extensive simulations

show that resampling from the list of all terms in (7) in the most of cases gives
the �over-optimistic� estimates (46) for the distributions of true deviations (44).

It is necessary to know that the accuracy of the approximation essentially
depends on the original training set. If the numbers m1, ..., mk0 are not su�-
ciently large then the estimators (45) and especially (46) can essentially deviate
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Figure 11: True distribution functions of p̂CV
rs (Tm1)−p11(Tm) and its estimates

p̂?CV
11 (Tmi) − p̂CV

11 (Tmi), and p̂∗CV
11 (Tmi) − p̂CV

11 (Tmi), obtained in Experiment
1, by resampling from the related sets of 1NN -clusters (shown by “ ← CR”,
“CR → ”) and by resampling from terms in (7) (shown by “ ← SR”, “SR →
”).

from the true distribution of interest (44). Fig. 12 and 13 illustrate that the
accuracy of the estimators (45) and (46) essentially depends on the training
sets. Most of the estimates (46) are over-optimistic.

In Fig. 13 (Experiment 2) you can see that both estimates (45) and (46)
have a stepwise shape on the left tails and they are not accurate. This character
of estimates caused by the presence of too small number of those training points
in class 3 which have been classi�ed as belonging to class 1. There were only
a few such points in Experiment 2.

We conclude that the results of extensive simulations correspond the theory
considered in Section 4. The resampling from NN -clusters can be used if there
are many cross-classi�ed training points in all classes. The question of how
large the numbers m1, ...,mk0 of training points should be has to be considered
as a separate complex problem. We can only say that several hundreds of
training points in each class usually can give satisfactory estimators to the
true distributions of deviations p̂CV

rs (T0
m) − prs(T0

m). We also stress that the
usage of a thoroughly prepared training set is an essential and necessary part
for obtaining objective results.
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Figure 12: True distribution functions of p̂CV
11 (Tmi)−p11(Tmi) and p̂CV

33 (Tmi)−
p33(Tmi) in Experiment 1 (i = 1, left) and in Experiment 2 (i = 2, right),
respectively, and their estimates obtained by resamplings from the related sets
of NN -clusters and �over-optimistic� estimates obtained by resampling from
single terms (43) (gray lines).
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Figure 13: True distribution functions of p̂CV
32 (Tmi)−p32(Tmi) and p̂CV

31 (Tmi)−
p31(Tmi) in Experiment 1 (i = 1, left) and in Experiment 2 (i = 2, right),
respectively, and their estimates obtained by resamplings from the related sets
of NN -clusters and from single terms in (43).

All illustrating calculations and �gures have been obtained by using a series
of programs developed by the author of this paper. The programs are based
on the language of Mathematica 5.1.

6 Discussion
The NN -classi�ers can be used in many applications. The suggested methods
of consistent estimation of the classi�ers' accuracy show the crucial importance
of training sets. In the case with remotely sensed data the process of creating
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training sets is very labor-intensive if satellite sensors have a high resolution,
e.g. if the pixel size is 1m × 1m. In this case it is necessary to have the
additional information on the shape of individual tree crowns in the plots and
the more exact coordinates of their positions have to be known as well. The
creation of training sets can be realized only if some appropriate computer-
intensive methods will be developed. In the case when the remotely sensed data
obtained by high resolution sensors it is necessary to investigate the in�uence
of fractal properties of crown boundaries and the porosity of crowns when the
re�ection from ground grass will be an essential part in the registered energies
of the light re�ected from tree crowns.

Application of NN -classi�ers in the analysis of biomedical raster data in
non-invasive medicine is potentially useful. Such type of data are obtained
and transformed into digital images during the analysis of patients by various
methods of tomography, Korn et al. (1996). Sophisticated sensors in the
optical tomography (OCT) are developed to register the re�ected lazer light
during the observation of the eye's retina, Ja�e and Caprioli (2004). The
obtained digital images are essential for correct diagnosis. Methods of creating
training sets in the biomedical applications have to be developed. The creation
of training sets in the biomedical application substantially di�ers from the
approach considered in Section 2 due to the absence of data similar to the �eld
data. Thoroughly collected biomedical data bases and anatomical knowledge
can be used to create training sets. If elaborated training sets will be developed
then the NN -classi�ers can be e�ciently used to create digital images which
will obviously show di�erent types of tissue, e.g. the di�erent types of tumors,
and it will help to make more precise diagnoses.
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