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Abstract

The regime-switching GARCH model combines the idea of Markov
switching and GARCH model, which also extends Hidden Markov mod-
els. The statistical inference for this model, however, is rather difficult
because the observations depend on the whole regime history. In this
paper, we consider a reduced regime-switching GARCH model, that
is, the past regimes are integrated out at every step and observations
then depend only on the current regimes. We prove the consistency of
maximum likelihood estimators for this model. Simulation studies to
illustrate consistency, asymptotic normality of the proposed estimators
and a model specification problem are also presented.
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1 Introduction

A general hidden Markov model (HMM) is a discrete time model for depen-
dent observations {Yt}t∈N, where the dependence is modelled through an unob-
served Markov chain {Xt} such that the Yt’s are independent given {Xt} and
the distribution of Yt depends on Xt only. Hidden Markov models have been
popular in the last decade to model weakly dependent sequences in various
fields such as speech processing, genetics and biochemistry, financial economics
and so on. We refer to the monograph by MacDonald and Zucchini (1997) for
comprehensive treatments and references therein.

The statistical inference of HMMs refers back to 1960’s (Baum and Petrie,
1966; Petrie, 1969). In the former paper Baum and Petrie obtained the consis-
tency and asymptotic normality of the maximum-likelihood estimator (MLE)
when {Yt} take values in a finite set. For the general HMM, Leroux (1992)
proved the consistency of the MLE under mild conditions. In a series of pa-
pers (Rydén, 1994; Bickel and Ritov, 1996; Bickel et al., 1998), consistent
and (locally) asymptotically normal estimators were obtained. Their results
were further extended to state space model (i.e. with continuous state space
Markov chain) (Jensen and Petersen, 1999) and separable and compact state
space, possibly non-stationary HMM (Douc and Matias, 2001).

The autoregressive conditional heteroscedastic (ARCH) model proposed by
Engle (1982) (generalized later to GARCH by Bollerslev (1986)) has also been
used widely in econometric society for last two decades to capture the time
varying variance (see, among others, the review by Bollerslev et al., 1992).
Combining the idea of HMM, Hamilton and Susmel (1994) and Cai (1994)
proposed the regime-switching ARCH model, i.e., an ARCH model with pa-
rameters driven by an unobserved Markov chain with finite states (or regimes
in econometric literature). The regime-switching GARCH model has also been
considered by Gray (1996), Francq et al. (2001) and Klaassen (2002). Their
empirical results show that the regime-switching model outperforms the ordi-
nary (single regime) GARCH model in model interpretation and forecasting.
In addition, the strong persistence usually observed in GARCH model (see,
Engle et al., 1987, 1990, among others) can be explained by regime-switching.

Concerning the theoretical results of the regime-switching (G)ARCH
model, Cai (1994) gave a sufficient and necessary condition for the stationar-
ity of a regime-switching ARCH model. This result was extended to GARCH
case by Francq et al. (2001), where they also proved the consistency of the
maximum likelihood estimator (MLE) in ARCH case. However, by introduc-
ing the GARCH component into the model, a likelihood will depend on the
entire regime path due to the recursive structure of GARCH equation (see
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Equations (2) and (3) below). This causes an likelihood intractable quickly
when the length of observations increases.

In order to overcome the regime path dependence problem while pre-
serving the essential taste of GARCH model, Gray (1996) proposed a re-
duced regime-switching GARCH(1,1) model in the framework of a general-
ized regime-switching model. In the reduced model, the past regimes are
integrated out at every step and the observations then depend only on the
current regime. In this paper we will consider the reduced regime-switching
GARCH(p, q) model. The consistency of the MLE of this model is proved.

In our simulation study, we will illustrate the consistency and asymptotic
normality of MLE for our model. In another numerical simulation, we are
interested in the persistence of model if an ordinary GARCH model is wrongly
specified to data generated from regime-switching GARCH models.

Our paper is organized as follows. Section 2 formulates the model and the
likelihood. We prove the consistency of MLE in Section 3. The simulation
studies are presented in Section 4. The paper ends with some discussions in
Section 5.

2 The model and likelihood

The general Regime-switching GARCH(p, q) process {Yt}t∈Z satisfies

Yt = (ht)1/2ηt,

ht = ω(Xt) +
q∑

i=1

αi(Xt)Y 2
t−i +

p∑

j=1

βj(Xt)ht−j , (1)

where {ηt} is a sequence of independent and identically distributed (i.i.d.)
random variables with zero mean and unit variance, ht is the conditional
variance of Yt given information up to time t− 1, and {Xt} is a Markov chain
with finite state space E = {1, 2, ..., d}. The standard assumptions for the
model include:

(M1) {ηt} and {Xt} are independent;
(M2) Parameters αi(s), 1 ≤ i ≤ q, and βj(s), 1 ≤ j ≤ p are nonnegative

and ω(s) are positive, given {Xt = s}, s ∈ E, in order that the conditional
variances ht are almost surely strictly positive;

(M3) The Markov chain {Xt} is irreducible and aperiodic, hence stationary.

Denote the stationary distribution as π(s) := P (X1 = s), 1 ≤ s ≤ d
and transition probabilities as p(k, l) := P (Xt = l|Xt−1 = k). Note that
π(s) > 0, s ∈ E under assumptions.
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In this model, sequence {Yt} is not conditionally independent even given
the Markov chain {Xt}, which is the key difference from general HMMs. The
Markov chain {Xt} is unobservable and its transition probabilities and sta-
tionary distribution are unknown. Our aim is to draw statistical inference
only based on the observed {Yt}.

Now, suppose that we are given a realization {y1, ..., yn}, while the noise ηt

and the Markov chain Xt are unobservable. The parameters to be estimated
from yt are usually chosen to be

θ := {p(k, l), ω(s), αi(s), βj(s), k 6= l, 1 ≤ k, l, s ≤ d, 1 ≤ i ≤ q, 1 ≤ j ≤ p},
which contains the transition probabilities of the Markov chain and parameters
of the GARCH equation (1). The stationary distribution π(s), 1 ≤ s ≤ d are
not included since asymptotically the stationary distribution will not affect the
estimation (see equation (11) below). We assume that p, q and d are known
and will not discuss order selection in this paper. Readers who are interested in
this issue are referred to Rydén (1995) for hidden Markov models and Francq
et al. (2001) for regime-switching ARCH models.

In this paper, we consider the MLE for regime-switching GARCH models
and its asymptotic properties. Assume that ηt is standard Gaussian. From (1),
by summing up the probability density over all possible paths of the Markov
chain, we get the likelihood function (xt denotes the value of Xt)

pθ(y1, ..., yn) =
∑

(x1,...,xn)∈En

π(x1)

{
n∏

t=2

p(xt−1, xt)

}{
n∏

t=1

fx1,...,xt(y1, ..., yt)

}
,

(2)
where

fx1,...,xt(y1, ..., yt) =
1

(2πhx1,...,xt(y1, ..., yt−1))1/2
exp{− y2

t

2hx1,...,xt(y1, ..., yt−1)
},

and the conditional variance process follows

hx1,...,xt(y1, ..., yt−1) = ω(xt) +
q∑

i=1

αi(xt)y2
t−i

+
p∑

j=1

βj(xt)hx1,...,xt−j (y1, ..., yt−j−1), (3)

starting with

hx1 = ω(x1), hx1,x2(y1) = ω(x2) + α1(x2)y2
1 + β1(x2)hx1
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and continuing recursively.
From (2), it follows, which was also pointed out by Cai (1994), Hamilton

and Susmel (1994) and Francq et al. (2001) among others, that the likelihood
becomes intractable very quickly as n increases, mainly because of the recur-
sive structure in (3)— hx1,...,xt depends on the whole regime path through
hx1,...,xt−j and further on. Because the number of possible regime paths grows
exponentially with t, this leads to an enormous number of addends in (2).

To avoid the path dependence problem, we propose a reduced regime-
switching GARCH(p, q) model, inspired from Gray (1996). We replace equa-
tion (1) by

Yt = (ht)1/2ηt,

ht = ω(Xt) +
q∑

i=1

αi(Xt)Y 2
t−i + EX̃t−1




p∑

j=1

βj(Xt)ht−j


 , (4)

where the expectation is across the regime path X̃t−1 := {Xt−1, Xt−2, ...}, con-
ditional on available information. (M1), (M2) and (M3) are assumed for this
model. Note that actually we only need to integrate out the single regime Xt−1

at time point t since recursively ht−1 is already independent of X̃t−2. As Gray
(1996) illustrated, for p = q = 1, since Yt (∆rt in his context) was essentially
a mixture of distributions with respect to different regimes (with time-varying
mixing parameters), it was natural to consider to take expectation of individ-
ual conditional variances over regimes. This averaged variance was used as
the lagged conditional variance in constructing conditional variance of next
time period, and the path dependence problem was overcome while the es-
sential nature of GARCH process was reserved. Here we extend this idea to
GARCH(p,q) model and use p previous averaged conditional variance in the
GARCH equation (4).

Now, the likelihood for this model can be written as

pθ(y1, ..., yn) =
∑

(x1,...,xn)∈En

π(x1)

{
n∏

t=2

p(xt−1, xt)

} {
n∏

t=1

fxt(y1, ..., yt)

}
, (5)

where fxt(.) only depends on the current regime xt and the conditional variance
entering fxt(.) is (4) instead of (3). Similar to the case of general HMM
(MacDonald and Zucchini, 1997, pp.78-79), we can write (5) as a product of
matrices due to this simplified structure.

Define vector 1 = (1, ..., 1)T ∈ Rd, p = (π(1)f1(y1), ..., π(d)fd(y1))T ∈ Rd

and matrix
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Mθ(y1, ..., yt)

=




p(1, 1)f1(y1, ..., yt) p(2, 1)f1(y1, ..., yt) ... p(d, 1)f1(y1, ..., yt)
p(1, 2)f2(y1, ..., yt) p(2, 2)f2(y1, ..., yt) ... p(d, 2)f2(y1, ..., yt)
... ... ...
p(1, d)fd(y1, ..., yt) p(2, d)fd(y1, ..., yt) ... p(d, d)fd(y1, ..., yt)


 ,

then the likelihood can be written as

pθ(y1, ..., yn) = 1T

{
n∏

t=2

Mθ(y1, ..., yt)

}
p, (6)

which can be computed numerically, by using, e.g., the so-called forward-
backward algorithm.

To calculate fs(y1, ..., yt), s = 1, ..., d, write the conditional variance as
ht(s) given Xt = s, since from (4) it depends on the regimes only through Xt.
Then

fs(y1, ..., yt) = (2πht(s))−1/2 exp{−y2
t /(2ht(s))},

and

ht(s) = ω(s) +
q∑

j=1

αj(s)y2
t−j +

p∑

j=1

βj(s)h
′
t−j ,

where h′t−j denotes the conditional variances that have been taken expectation
over all regime path and are path-independent. Recall that we only need
to integrate out one regime at each step, for example, Xt−1 for h′t due to
the recursive structure. Let λst = P (Xt = s|It−1). Then we have h′t =∑d

s=1 λstht(s). Making use of Bayesian rule, it is not difficult to obtain (cf.
Gray (1996))

λst =
d∑

j=1

p(j, s)
fj(y1, ..., yt−1)λj,t−1∑d

k=1 fk(y1, ..., yt−1)λk,t−1

,

which is of the recursive form too.

3 Consistency of the MLEs

In this section, we will give conditions and the main theorem for the consis-
tency of MLEs for the reduced regime-switching GARCH model. Our method
is benefited from Francq et al. (2001).
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First, we assume that

(A1) {Yt}t∈Z in model (4) is strictly stationary and ergodic. In addition,
the unconditional variance of Yt is finite.

Following Brandt (1986) and Bougerol and Picard (1992), Francq et al.
(2001, Theorem 2) gave a sufficient and necessary condition for the existence
of a second-order stationarity solution of (1). However, their result does not
hold for our model (4). It is of interest to find a similar condition for the
reduced regime-switching GARCH model and we leave it as a separate work.

The parameter space Θ is defined as the subset of Rd2+pd+qd of the param-
eters satisfying (M2), (M3) and (A1). Assume also that the true parameter
value θ0 belongs to Θ.

Because the indices of the states of the Markov chain can be permuted
without changing the law of the model, the parameters are not strictly iden-
tifiable up to permutation. Hence, it is necessary to introduce a condition
for identifiability. Define pθ(Yt|Yt−1, Yt−2, ...) as the conditional density of Yt

given all previous observations, {Yt−1, Yt−2, ...}, and pθ(Yt|Yt−1, ..., Y1) given
{Yt−1, Yt−2, ..., Y1}. When t = 1, pθ(Yt|Yt−1, ..., Y1) becomes pθ(Y1), the un-
conditional density of Y1. Let gθ(Yt|Yt−1, Yt−2, ...) and gθ(Yt|Yt−1, ..., Y1) be
the corresponding logarithms. We also define the conditional likelihood func-
tion based on all observations from infinite past, pθ(y1, ..., yn|y0, y−1, ...) sim-
ilar to (5).

(A2) Identifiability Condition: For any θ1 and θ2 ∈ Θ and all Yt, Yt−1, ...,
if pθ1

(Yt|Yt−1, Yt−2, ...) = pθ2
(Yt| Yt−1, Yt−2, ...), Pθ0

− a.s., then θ1 = θ2.

After describing all assumptions, we are now in a position to state our
main theorem.

Theorem 1 For the reduced regime-switching GARCH model (4), assume
(A1) and (A2). Suppose that Θ∗ is a compact subset of Θ and θ0 ∈ Θ∗;
(θ̂n) is an MLE sequence, satisfying almost surely

pˆθn
(Y1, ..., Yn) = sup

θ∈Θ∗
pθ(Y1, ..., Yn) ∀ n.

Then (θ̂n) tends almost surely to θ0 as n →∞.

First, we will give some lemmas. For a general strictly stationary and
ergodic sequence {Zt}t∈Z, suppose that the density of Zt depends on parameter
ψ in some Euclidean space Ψ and let the true parameter be ψ0.
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Lemma 1 For the sequence {Zt}t∈Z, the likelihood of (Z1, ..., Zn) is asymptot-
ically equivalent to the likelihood conditioning observations from infinite past
with probability one, i.e., for all ψ ∈ Ψ, with probability one we have

lim
n→∞

1
n

log pψ(Z1, ..., Zn) = lim
n→∞

1
n

log pψ(Z1, ..., Zn|Z0, Z−1, ...)

= Eψ0
gψ(Zt|Zt−1, ...), (7)

provided that

Eψ0
|gψ(Zt|Zt−1, Zt−2, ...)| < ∞, ∀ψ ∈ Ψ, (8)

where gψ(Zt|Zt−1, Zt−2, ...) is similarly defined as gθ(Yt|Yt−1, Yt−2, ...) for
{Yt}.

Proof. First, note that

log pψ(Z1, ..., Zn|Z0, Z−1, ...) =
n∑

t=1

gψ(Zt|Zt−1, Zt−2, ...) (9)

and

log pψ(Z1, ..., Zn) =
n∑

t=1

gψ(Zt|Zt−1, ..., Z1).

Write

1
n

n∑

t=1

gψ(Zt|Zt−1, ..., Z1)

=
1
n

n∑

t=1

gψ(Zt|Zt−1, Zt−2, ...)

+
1
n

n∑

t=1

{gψ(Zt|Zt−1, ..., Z1)− gψ(Zt|Zt−1, Zt−2, ...)}. (10)

Analogous to Karlin and Taylor (1975, pp.502), define

φN (z0, z−1, ...) = sup
l≥N

|gψ(z0|z−1, ..., z−l)− gψ(z0|z−1, z−2, ...)|,

and
ZN

t = φN (Zt, Zt−1, ...).

7



Under assumptions on {Zt}, {ZN
t } is stationary, ergodic, and E[|ZN

t |] < ∞.
We have

lim sup
n→∞

∣∣∣∣∣
1
n

n∑

t=1

{gψ(Zt|Zt−1, ..., Z1)− gψ(Zt|Zt−1, Zt−2, ...)}
∣∣∣∣∣

≤ lim sup
n→∞

1
n

n∑

t=1

∣∣∣gψ(Zt|Zt−1, ..., Z1)− gψ(Zt|Zt−1, Zt−2, ...)
∣∣∣

≤ lim sup
n→∞

1
n

n∑

t=N+1

ZN
t = E[ZN

1 ].

But as N →∞, ZN
1 → 0, and the interchange of limit and expectation can

be justified to give limN→∞E[ZN
1 ] = 0. So the second term on the right-hand

side of (10) goes to zero as n →∞. And the second equality in (7) follows by
applying ergodic theorem, which completes the proof. ¤

We will next compare the likelihood pψ(Z1, ..., Zn) with the one evaluated
at the true parameter ψ0, pψ0

(Z1, ..., Zn). Define

On(ψ) =
1
n

log
pψ(Z1, ..., Zn)

pψ0
(Z1, ..., Zn)

,

and we have the following lemma.

Lemma 2 For the sequence {Zt} and parameter space Ψ, in addition to (8),
assume also that the identifiability condition (A2) holds. Then for all ψ ∈ Ψ,
with probability one,

lim
n→∞On(ψ) ≤ 0

and the limit is almost surely equal to zero if and only if ψ = ψ0.

Proof. From Lemma 1 and Jensen’s inequality,

limn→∞On(ψ) = Eψ0
log

pψ(Zt|Zt−1, Zt−2, ...)

pψ0
(Zt|Zt−1, Zt−2, ...)

≤ log Eψ0

pψ(Zt|Zt−1, Zt−2, ...)

pψ0
(Zt|Zt−1, Zt−2, ...)

= 0.

By the identifiability condition, this limit equals to zero if and only if ψ = ψ0.
¤
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Now consider the reduced regime-switching GARCH model (4). (8) is
satisfied for our model under (A1) and standard Gaussian ηt since the condi-
tional distribution in (8) is now just a mixture of normal. Hence Lemma 1
and Lemma 2 hold for {Yt} and Θ. By similarly defining

On(θ) =
1
n

log
pθ(Y1, ..., Yn)
pθ0

(Y1, ..., Yn)
,

we have

Lemma 3 For the reduced regime-switching GARCH model (4), assume (A1)
and (A2). Then, for any θ1 ∈ Θ, θ1 6= θ0, there exists a neighborhood V (θ1)
of θ1 such that

lim sup
n→∞

sup
θ∈V (θ1)

On(θ) < 0 a.s.

Proof. First, define the matrix norm ‖ . ‖ as the sum of all element of the
matrix. Making use of the product of matrices (6), we have

min
j

π(j)fj(Y1)

∥∥∥∥∥
n∏

t=2

Mθ(Y1, ..., Yt)

∥∥∥∥∥ ≤ pθ(Y1, ..., Yn)

=

∥∥∥∥∥

{
n∏

t=2

Mθ(Y1, ..., Yt)

}
p

∥∥∥∥∥ ≤ max
j

π(j)fj(Y1)

∥∥∥∥∥
n∏

t=2

Mθ(Y1, ..., Yt)

∥∥∥∥∥ .

Hence, it is straightforward to obtain

lim
n→∞

1
n

log pθ(Y1, ..., Yn) = lim
n→∞

1
n

log

∥∥∥∥∥
n∏

t=2

Mθ(Y1, ..., Yt)

∥∥∥∥∥ . (11)

Next, let Vr(θ1) be the open sphere with center θ1 and radius 1/r and define

Sr
2,n = sup

θ∈Vr(θ1)

∥∥∥∥∥
n∏

t=2

Mθ(Y1, ..., Yt)

∥∥∥∥∥ .

Because this matrix norm is multiplicative, we have, for θ ∈ Vr(θ1)

sup
θ

∥∥∥∥∥
n+k∏

t=2

Mθ(Y1, ..., Yt)

∥∥∥∥∥ ≤ sup
θ

∥∥∥∥∥
n∏

t=2

Mθ(Y1, ..., Yt)

∥∥∥∥∥·sup
θ

∥∥∥∥∥
n+k∏

t=n+1

Mθ(Y1, ..., Yt)

∥∥∥∥∥ ,

that is

log Sr
2,n+k(Y1, ..., Yn+k) ≤ log Sr

2,n(Y1, ..., Yn) + log Sr
n+1,n+k(Y1, ..., Yn+k)
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for any positive integers n(≥ 2), k and r. From the Kingman’s ergodic theorem
(1973) for the subadditive processes we can readily get

lim
n→∞

1
n

log Sr
2,n(Y1, ..., Yn) = λr(θ1) := inf

n>1

1
n

Eθ0
log Sr

2,n(Y1, ..., Yn), Pθ0
−a.s.

Recall that almost surely

λ(θ0) := lim
n→∞

1
n

log

∥∥∥∥∥
n∏

t=2

Mθ0
(Y1, ..., Yt)

∥∥∥∥∥

= inf
n>1

1
n

Eθ0
log

∥∥∥∥∥
n∏

t=2

Mθ0
(Y1, ..., Yt)

∥∥∥∥∥ .

Thus, from Lemma 2 and (11), there exists ε > 0 and nε ∈ N such that

1
nε

Eθ0
log

∥∥∥∥∥
nε∏

t=2

Mθ1
(Y1, ..., Yt)

∥∥∥∥∥ < λ(θ0)− ε.

The dominated convergence theorem shows that, for r large enough,

λr(θ1) ≤ 1
nε

Eθ0
log Sr

2,nε
(Y1, ..., Ynε) < λ(θ0)− ε

2
.

¤
Proof of Theorem 1. Suppose that θ̂n didn’t tend to θ0 with probability
one as n →∞, i.e., for arbitrarily large integer M , there exist a δ > 0 and at
least one n∗, n∗ ≥ M such that |θ̂n∗ − θ0| > δ with positive probability. By
Lemma 3, it follows that pˆθn∗

(Y1, ..., Yn∗) is strictly less than pθ0
(Y1, ..., Yn∗)

with positive probability. However, with probability one, we have

pˆθn
(Y1, ..., Yn) = sup

θ∈Θ∗
pθ(Y1, ..., Yn) ≥ pθ0

(Y1, ..., Yn)

for all n. The contradiction gives our result. ¤

4 Simulation studies

In our simulation studies we will illustrate the consistency and asymptotic
normality of the MLE of model (4), and present a model specification prob-
lem. The most commonly used two-regime switching model is considered.
During the estimation, in addition to the standard constraints 0 ≤ p(k, l) ≤
1,

∑d
l=2 p(k, l) ≤ 1, αi(s) ≥ 0, βj(s) ≥ 0, 1 ≤ i ≤ q, 1 ≤ j ≤ p, 1 ≤
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k, l, s ≤ d and
∑q

i=1 αi(s) +
∑p

j=1 βj(s) ≤ 1, 1 ≤ s ≤ d, we also assume
ω(s) ≥ 0.001, 1 ≤ s ≤ d to avoid the underflow of the numerical algorithm,
and ω(1) ≤ ω(2) ≤ ... ≤ ω(d) for identifiability. Several randomly chosen
starting point set are used to pursue the global maxima.

4.1 Consistency and asymptotic normality

In the first experiment, 100 independent series from model (4), each with
length 10000, are generated. The true model has two regimes with parameters
: ω(1) = 1, α1(1) = 0.4, β1(1) = 0.2, and ω(2) = 20, α1(2) = 0.2, β1(2) = 0.4.
The transition probabilities between these two regimes are set to be p(1, 2) =
p(2, 1) = 0.1. These parameters are chosen such that they are fairly away from
the boundary of parameter space.

Table 1: The mean, bias and standard deviation of MLE for model (4)

ω̂(1) α̂1(1) β̂1(1) ω̂(2) α̂1(2) β̂1(2) p̂(1, 2) p̂(2, 1)
mean 0.959 0.406 0.205 20.329 0.192 0.4004 0.0997 0.102
bias 0.041 -0.006 0.005 -0.329 0.008 -0.0004 0.0003 -0.002
std. 0.259 0.044 0.03 1.808 0.030 0.057 0.009 0.014

Table 1 summarizes the mean, bias and standard deviation of the MLE for
the reduced regime-switching GARCH model. The biases are all well close to
zero, which illustrates the result for consistency.

Next we want to shed a few light on the asymptotic normality issue. Bickel
et al. (1998) proved the asymptotic normality of MLE for general HMM
model. Their results, however, cannot be readily extended to regime-switching
GARCH model. We will first consider the case where p = 0 in model (4), i.e.,
no GARCH effects exist. It is worth noting that by taking away the GARCH
effect, our model is same as the one Francq et al. (2001) considered. Douc
et al. (2004) showed the normality of MLE for the regime-switching ARCH
model in a more general autoregressive model, making use of the uniform
exponential forgetting of the initial distribution for the hidden Markov chain
conditional on the observations (see Douc et al. (2004) for details).

We obtain MLEs for 100 independent series, each with length 10000, from
model (4) with the same parameter values as Francq et al. (2001), i.e., p = 0,
ω(1) = 1, ω(2) = 20, α1(1) = 0.4, α1(2) = 0.2 and p(1, 2) = p(2, 1) = 0.1. The
Quantile-Quantile (QQ) plots together with 0-1 line are presented in Figure 1.
The P-values of ks.gof (Kolmogorov-Smirnov goodness-of-fit) test with null
hypothesis normal are 0.804, 1.097, 0.15, 0.445, 1.049, and 0.64 for estimators
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of ω(1), α1(1), ω(2), α1(2), p(1, 2) and p(2, 1) respectively.(The P-value is
calculated using the approximation of Dallal and Wilkinson (1986), which is
most accurate for P-value less than 0.1. So these P-values are all set to 0.5 in
statistical software S-plusr, with which we carry out our analysis.)

-2 -1 0 1 2

0.9
0

0.9
5

1.0
0

1.0
5

1.1
0

A1

-2 -1 0 1 2
0.3

0
0.3

5
0.4

0
0.4

5

A2

-2 -1 0 1 2

18
.5

19
.0

19
.5

20
.0

20
.5

21
.0

21
.5

A3

-2 -1 0 1 2

0.1
4

0.1
6

0.1
8

0.2
0

0.2
2

0.2
4

0.2
6

A4

-2 -1 0 1 2

0.0
8

0.0
9

0.1
0

0.1
1

0.1
2

A5

-2 -1 0 1 2

0.0
85

0.0
90

0.0
95

0.1
00

0.1
05

0.1
10

0.1
15

A6
Figure 1: The QQ-plot of MLE for regime-switching ARCH model with 0-1 line: A1–
A6 represent estimators of ω(1), α1(1), ω(2), α1(2), p(1, 2) and p(2, 1), respectively.

For the asymptotic normality of the reduced regime-switching GARCH
model, we adopt the same settings as the first experiment for consistency. The
QQ-plots with 0-1 line are shown in Figure 2, where the P-values of ks.gof test
are 0.458, 0.587, 0.161, 0.609, 0.593, 0.128, 0.839 and 1.018 respectively.

4.2 A model specification problem

From existing literature on regime-switching model, we are seemingly im-
pressed that if we specify an ordinary GARCH model to sequences generated
from regime-switching GARCH models, the obtained estimates are typically
close to non-stationary region, i.e., the sum of GARCH parameters is larger
than or equal to unity (

∑q
j=1 αj +

∑p
k=1 βk w 1). For instance, Francq et al.

(2001, pp.198) stated that ’..., for a series with at least two GARCH regimes,
the standard GARCH parameter estimates are generally explosive (..., and)
close to the nonstationary region.’ However, we observe here that this state-
ment depends crucially on the scale of transition probabilities between regimes.

We first adopt the parameter values used by Francq et al. (2001): ω(1) = 1,
α1(1) = 0.6, ω(2) = 100, α1(2) = 0, p(1, 2) = p(2, 1) = 0.01. Then we
change the pair of transition probabilities (p(1, 2), p(2, 1)) to (0.1, 0.1), (0.2,
0.2) and (0.5, 0.5). From each parameter set, we generate 100 independent
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Figure 2: The QQ-plot of MLE for regime-switching GARCH model with 0-1
line: B1–B8 represent estimators of ω(1), ω(2), α1(1), β1(1), α1(2), β1(2),
p(1, 2) and p(2, 1), respectively.

Table 2: Estimated parameters of standard GARCH(1,1) model fitted to two-
regime ARCH(1) models with different transition probabilities, where ω, α
and β are model parameters of standard GARCH(1,1) model.

(p(1, 2), p(2, 1)) (0.01, 0.01) (0.1, 0.1) (0.2, 0.2) (0.5,0.5)
ω̂ 0.9907 8.9981 24.294 46.9367

α̂+β̂ 0.9991 0.9458 0.6717 0.3505

series of length 1000 and apply to them the standard GARCH(1,1) model.
The estimate ω̂ and sum of estimated GARCH parameters are summarized in
Table 2.

We can see clearly from Table 2 that when p(1, 2) and p(2, 1) are small,
it is true that the estimates are close to non-stationary region. In fact, there
are 97 estimate with α̂ + β̂ equal exactly to unity. If we relax the restriction
that α + β ≤ 1, the sum will be generally large than unity. However, when
the transition probabilities increase, they move more and more away from
the non-stationary region, to, maybe not so surprising, seemingly the average
of these two regimes. Note that this result still holds with other settings of
parameters (other than transition probabilities), higher order GARCH models
or longer sequence. Table 3 gives us similar result when the data are from
two-regime switching GARCH model. A possible explanation is that when the
transition probabilities are large, the average effect of these regimes dominates
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Table 3: Estimated parameters of standard GARCH(1,1) model fitted to two-
regime GARCH(1,1) models with different transition probabilities

(p(1, 2), p(2, 1)) (0.01, 0.01) (0.1, 0.1) (0.2, 0.2) (0.5, 0.5)
ω̂ 0.6012 4.412 7.227 11.0346

α̂+β̂ 0.9803 0.7452 0.5703 0.3709

the sequence. Then it will be more stationary and the parameters tend to mean
of parameters of all regimes. However, while regimes seldom switch to each
other, there is significant structure change in the sequence and the sequence
is more likely to be treated as non-stationary.

5 Discussions

The regime-switching GARCH model can be considered as an extension of
HMM with dependent conditional distribution of {Yt} given the regimes {Xt}.
One problem with this extension is that the observations at any time point
will then depend on the whole regime path due to the recursive structure
of GARCH equation. It causes an intractable likelihood for the full model
and the statistical inference is difficult. Francq et al. (2001) obtained the
consistency of the MLE and some empirical results only in case that p = 0,
i.e., taking away the GARCH part of the model. Cai (1994) and Hamilton and
Susmel (1994) also only used regime-switching ARCH models. Gray (1996)
proposed a reduced regime-switching GARCH(1,1) model, which integrated
out the previous regime path at every step. It is hence tractable for estimation
while keeps the parsimony style and preserves the essential nature of GARCH
model. We generalized their model to GARCH(p, q) in this paper and proved
the consistency of the MLE for this model. Lemma 1 itself is also of interests.

Another problem with the extension is that observations are then not in-
dependent given the regimes. Many results for HMM, e.g., the asymptotic
normality of MLE, don’t hold for the regime-switching GARCH model. The
framework of Bickel et al. (1998) for asymptotic normality of HMM is not
easy to extend to include this model. Douc et al. (2004) obtained the asymp-
totic normality for a class of autoregressive models with Markov regime, which
includes HMM and regime-switching ARCH model as special cases. However,
they instantly use the Markov property of {Xt, Yt, ..., Yt−r+1} (assume an r-
th order ARCH model), which doesn’t hold for GARCH models. Frow our
numerical experiments, we conjecture in this paper that the MLE of the re-

14



duced regime-switching GARCH model is asymptotically normal distributed,
but we need to find other approach to theoretically prove it, which will be a
challenging but rewarding task in the future.

In a model specification problem, we observed that wrongly specifying
an ordinary GARCH model to series with (at least) two GARCH regimes
will result in persistent, explosive estimates, if the transition probabilities
between these regimes are quite small. However, regime-switching GARCH
models (with larger transition probabilities) can also produce less persistent
sequences. This implies that a GARCH model whose parameter is far from the
non-stationary region could also come from a regime-switching model, which
we didn’t realize before and could lead to interesting applications.
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