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Abstract

Regime-switching GARCH (generalized autoregressive conditionally
heteroscedastic) model incorporates the idea of Markov switching into
the somehow restrictive GARCH model, which significantly extends
GARCH models. However, the statistical inference for this model is
rather difficult due to the dependence to the whole regime path. In this
paper, we obtain the consistency of the quasi-maximum likelihood esti-
mators, by transforming it to an infinite order ARCH model. Simulation
studies to illustrate asymptotic behavior of the estimators and a model
specification problem are presented.
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1 Introduction

The regime-switching GARCH (generalized autoregressive conditionally het-
eroskedastic) model studied by Cai (1994), Hamilton and Susmel (1994), Gray
(1996) and Francq et al. (2001) combined the seminal work of Engle (1982)
and Bollerslev (1986) for GARCH and Hamilton (1989) for Markov switch-
ing models. The main idea is that the set of parameters of GARCH model
is determined by some unobservable regimes, where the switch of regimes is
governed by a Markov chain. Empirical results show that it gives more rea-
sonable volatility fit than the ordinary (single-regime) GARCH model (Gray,
1996, among others). Also, the strong persistence of ordinary (single regime)
GARCH processes frequently observed (e.g., Lamoureux and Lastrapes, 1990)
can be possibly explained by changes of regimes instead of the integrated
GARCH (IGARCH) models. We further note that the regime-switching
GARCH model can also be considered as an extension of the hidden Markov
model (HMM), which is popular in various fields such as engineering, genetic
biology and statistics. For HMM, readers are referred to the monograph by
MacDonald and Zucchini (1997).

The statistical inference for regime-switching GARCH model, however,
is rather difficult mainly because observation at every time point depends
all previous regimes due to the autoregressive structure of GARCH equation,
which causes the likelihood intractable when the sample size is only moderately
large. Gray (1996) proposed a reduced regime-switching model in which the
previous regime is integrated out at every step and hence the regime path
dependence problem is overcome. Klaassen (2002) modified it by making use
of more information from observations and showed superiority in prediction.

Compared with the large empirical literature, there are only few theoretical
results. Cai (1994) gave a sufficient and necessary condition for the station-
arity of regime-switching ARCH model. This result is extended to GARCH
case by Francq et al. (2001), where they also proved the consistency of the
maximum-likelihood estimator (MLE) in ARCH case. Xie and Yu (2005) ob-
tained the consistency of quasi-MLE (QMLE) for reduced regime-switching
GARCH model generalized from Gray (1996). They also illustrated the as-
ymptotic behavior of QMLE through simulation study.

In this paper, we will consider the consistency of the QMLE of general
regime-switching GARCH model. Motivated from Berkes et al. (2003), we
will write the GARCH as an ARCH(∞) representation and then use similar
technique to Xie and Yu (2005). Simulation studies to illustrate asymptotic
behaviors of QMLE will also be presented. Similar to Xie and Yu (2005), it
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is of interest to analyze the stationarity of estimators if we use an ordinary
GARCH model to fit data generated from regime-switching models.

We give the model and the alternative form in Section 2. Our main result
is stated in Section 3. In Section 4 we give simulation studies. Section 5
includes a few discussions.

2 The model and the alternative form

The general Regime-switching GARCH(p,q) process {Yt}t∈Z satisfies

Yt = (ht)1/2ηt,

ht = ω(Rt) +
q∑

i=1

αi(Rt)Y 2
t−i +

p∑

j=1

βj(Rt)ht−j , (1)

where {ηt} is a sequence of independent and identically distributed (i.i.d.)
random variables with zero mean and unit variance. {Rt} is a Markov chain
with finite state (regimes, in econometric literature) space E = {1, 2, ..., d}.
We assume that αi(s) ≥ 0, 1 ≤ i ≤ q, βj(s) ≥ 0, 1 ≤ j ≤ p and ω(s) > 0
given {Rt = s}, s ∈ E, in order to ensure an almost surely strictly positive
conditional variance ht. Suppose that {ηt} and {Rt} are independent and
that the Markov chain is stationary, irreducible and aperiodic with station-
ary distribution π(s) := P (R1 = s), 1 ≤ s ≤ d and transition probabilities
p(k, l) := P (Rt = l|Rt−1 = k). Also note that π(s) > 0, s ∈ E, under assump-
tions.

From (1) we can see that the conditional variance ht depends on the present
regime Rt, and the whole regime path as well, through ht−j . Thus, the number
of possible regime paths grows exponentially with t. This leads to an enormous
numbers of paths up to t, and the likelihood becomes intractable very quickly.
To avoid this problem, we will formulate the GARCH equation as ARCH
analogous to Berkes et al. (2003).

First, we will give a sufficient and necessary condition for the existence
of a strictly stationary solution for our model, following from Brandt (1986),
Bougerol and Picard (1992) and Francq et al. (2001, Theorem 1).

Write (assuming min(p, q) ≥ 2, adding zero coefficients if necessary)

τ t = (β1(Rt) + α1(Rt)η2
t , β2(Rt), ..., βp−1(Rt)) ∈ Rp−1,

ξt = (η2
t , 0, ..., 0) ∈ Rp−1,
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and
λt = (α2(Rt), ..., αq−1(Rt)) ∈ Rq−2.

Define the square matrix At of size (p + q − 1) in block form as

At =




τt βp(Rt) λt αq(Rt)
Ip−1 0 0 0
ξt 0 0 0
0 0 Iq−2 0


 ,

where Ip−1 and Iq−2 are the identity matrices of size p−1 and q−2, respectively.
Let

Bt = (ω(Rt), 0, ..., 0)T ∈ Rp+q−1

and
Xt = (ht+1, ..., ht−p+2, Y

2
t , ..., Y 2

t−q+2)
T ∈ Rp+q−1.

Then Yt is a solution of (1) if and only if Xt is a solution of

Xt+1 = At+1Xt + Bt+1, t ∈ Z. (2)

The following lemma is adapted from Brandt (1986) and Francq et al.
(2001), also see Bougerol and Picard (1992).

Lemma 1 For some operator norm of matrices, suppose that E(log+ ‖ A0 ‖)
is finite, where log+ x = log x if x > 1 and 0 otherwise. Define the top
Lyapunov exponent γ for {At}t∈Z as

γ = inf
{

E
1

n + 1
log ‖ A0A−1...A−n ‖, n ∈ N

}
.

Then, equation (2) has a strictly stationary solution if and only if γ < 0.
Moreover, the stationary solution is unique, ergodic, and defined by

Xt =
∞∑

k=0

AtAt−1 · · ·At−k+1Bt−k.

We are now in a position to give a representation of GARCH equation
from Berkes et al. (2003, Theorem 2.4). We will state it as a lemma.

Lemma 2 For a strictly stationary and ergodic solution of (1), assume
E log h0 finite and η2

0 non-degenerate. Then

ht = c0(Rt) +
∑

1≤i≤∞
ci(Rt)Y 2

t−i, ∀ t ∈ Z (3)
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with probability one and this representation is unique, where, by defining

At(x) = α1(Rt)x + α2(Rt)x2 + ... + αq(Rt)xq

and
Bt(x) = 1− β1(Rt)x− β2(Rt)x2 − ...− βp(Rt)xp,

the coefficients

c0(Rt) =
ω(Rt)
Bt(1)

and

cn(Rt) =
dn

dxn

(At(x)
Bt(x)

)

x=0

1 ≤ n ≤ ∞.

From now on, we will focus on model (3) and assume the process {Yt}t∈Z
strictly stationary and ergodic.

Now, suppose that we are given a realization {y1, ..., yn}, while the Markov
chain {Rt} is not observed. The parameters to be estimated from {yt} are
usually chosen to be

θ := {p(k, l), ω(s), αi(s), βj(s), k 6= l, 1 ≤ k, l, s ≤ d, 1 ≤ i ≤ q, 1 ≤ j ≤ p}.

The parameter space Θ, a subset of Rd2+pd+qd contains parameters satisfied
assumptions we made and also the true parameter θ0. As Leroux (1992,
pp.135) pointed out, the stationary distribution π(s), 1 ≤ s ≤ d will not affect
the estimation. Here we assume orders p, q and d are known. See Rydén
(1995) and Francq et al. (2001) for order selection.

As usual we use QMLE for GARCH and regime-switching GARCH models.
Assume that ηt is standardly normally distributed for this moment. We get
the likelihood function (rt denotes the value of Rt):

pθ(y1, ..., yn) =
∑

(r1,...,rn)∈En

π(r1)

{
n∏

t=2

p(rt−1, rt)

} {
n∏

t=1

frt(y1, ..., yt)

}
, (4)

where

frt(y1, ..., yt) =
1

(2πhrt(y1, ..., yt−1))1/2
exp{− y2

t

2hrt(y1, ..., yt−1)
},

and the conditional variance process follows

hrt(y1, ..., yt−1) = c0(rt) +
∑

1≤i≤t−1

ci(rt)y2
t−i,
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start with
hr1 = c0(r1), hr2(y1) = c0(r2) + c1(r2)y2

1

and continue recursively. Recursive formula for {ci} are available in Berkes et
al. (2003, pp.210-211).

We can write (4) as a product of matrices. Define vector 1 = (1, ..., 1)T ∈
Rd, p = (π(1)f1(y1), ..., π(d)fd(y1))T ∈ Rd and matrix Mθ(y1, ..., yt) =



p(1, 1)f1(y1, ..., yt) p(2, 1)f1(y1, ..., yt) ... p(d, 1)f1(y1, ..., yt)
p(1, 2)f2(y1, ..., yt) p(2, 2)f2(y1, ..., yt) ... p(d, 2)f2(y1, ..., yt)
... ... ...
p(1, d)fd(y1, ..., yt) p(2, d)fd(y1, ..., yt) ... p(d, d)fd(y1, ..., yt)


 ,

then the likelihood is

pθ(y1, ..., yn) = 1T

{
n∏

t=2

Mθ(y1, ..., yt)

}
p, (5)

which we can maximize numerically.
Because the indices of the states of the Markov chain can be permuted

without changing the law of the model, the parameters are not strictly iden-
tifiable. So we will introduce one identifiability condition.

Identifiability Condition: For all θ ∈ Θ, if pθ(Yt|Yt−1, Yt−2, ...) = pθ0
(Yt| Yt−1,

Yt−2, ...), Pθ0
− a.s., then θ = θ0.

Here pθ(Yt|Yt−1, Yt−2, ...) is the density of Yt given Yt−1, Yt−2, ... . Simi-
larly define pθ(Yt|Yt−1, ..., Y1). (Let pθ(Yt|Yt−1, ..., Y1) = pθ(Y1) when t =
1). Let gθ(Yt|Yt−1, Yt−2, ...) and gθ(Yt|Yt−1, ..., Y1) be their corresponding
logarithms. The existences of pθ(Yt|Yt−1, Yt−2, ...) and the expectation of
gθ(Yt|Yt−1, Yt−2, ...) with respect to Pθ0

can be shown as in Leroux (1992).

3 The main result

We will prove the consistency of QMLE here. Our method is benefited from
Francq et al. (2001) and Xie and Yu (2005) .

Lemma 3 Let p̃θ(.) be the density of (Y1, ..., Yn) given {Y0, Y−1, ...}. Then
for all θ ∈ Θ ,

lim
n→∞

1
n

log pθ(Y1, ..., Yn) = lim
n→∞

1
n

log p̃θ(Y1, ..., Yn|Y0, Y−1, ...)

= Eθ0
log gθ(Yt|Yt−1, ...). (6)
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Proof. First, note that

log p̃θ(Y1, ..., Yn|Y0, Y−1, ...) =
n∑

t=1

gθ(Yt|Yt−1, Yt−2, ...) (7)

and

log pθ(Y1, ..., Yn) =
n∑

t=1

gθ(Yt|Yt−1, ..., Y1).

Write

1
n

n∑

t=1

gθ(Yt|Yt−1, ..., Y1)

=
1
n

n∑

t=1

gθ(Yt|Yt−1, Yt−2, ...)

+
1
n

n∑

t=1

{gθ(Yt|Yt−1, ..., Y1)− gθ(Yt|Yt−1, Yt−2, ...)}. (8)

Analogous to Karlin and Taylor (1975, pp.502), define

φN (y0, y−1, ...) = sup
l≥N

|gθ(y0|y−1, ..., y−l)− gθ(y0|y−1, y−2, ...)|,

and
ZN

t = φN (Yt, Yt−1, ...).

Then {ZN
t } is stationary, ergodic, and E[|ZN

t |] < ∞. We have

lim sup
n→∞

∣∣∣∣∣
1
n

n∑

t=1

{gθ(Yt|Yt−1, ..., Y1)− gθ(Yt|Yt−1, Yt−2, ...)}
∣∣∣∣∣

≤ lim sup
n→∞

1
n

n∑

t=1

∣∣gθ(Yt|Yt−1, ..., Y1)− gθ(Yt|Yt−1, Yt−2, ...)
∣∣

≤ lim sup
n→∞

1
n

n∑

t=N+1

ZN
t = E[ZN

1 ].

But as N → ∞, ZN
1 → 0, and the interchange of limit and expectation can

be justified to give limN→∞E[ZN
1 ] = 0. So the second term on the right-hand

side of (8) goes to zero as n → ∞. And the second equality in (6) follows by
applying ergodic theorem, which completes the proof. ¤
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We will next compare the likelihood pθ(Y1, ..., Yn) with the one evaluated
at the true parameter θ0, pθ0

(Y1, ..., Yn). Define

On(θ) =
1
n

log
pθ(Y1, ..., Yn)
pθ0

(Y1, ..., Yn)
,

and the following lemma follows from Lemma 3, Jensen’s inequality and iden-
tifiability assumption.

Lemma 4 For all θ ∈ Θ, with probability one,

lim
n→∞On(θ) ≤ 0

and the limit is almost surely equal to zero if and only if θ = θ0.

Lemma 5 For any θ1 ∈ Θ, θ1 6= θ0, there exists a neighborhood V (θ1) of θ1

such that
lim sup

n→∞
sup

θ∈V (θ1)

On(θ) < 0 a.s.

Proof. The proof is similar to Francq et al. (2001, Lemma 4) and Xie and
Yu (2005, Lemma 3) and omitted here.

Lemma 5, together with the identifiability condition, proved the strong
consistency of the QMLE over any compact subset containing θ0.

Theorem 1 Suppose that Θ∗ is a compact subset of Θ and θ0 ∈ Θ∗; (θ̂n) is
a QMLE sequence satisfying almost surely

pˆθn
(Y1, ..., Yn) = sup

θ∈Θ∗
pθ(Y1, ..., Yn) ∀ n.

Then (θ̂n) tends almost surely to θ0 as n →∞.

4 Simulation

In our simulation studies we will illustrate the consistency, investigate asymp-
totic normality of QMLE and analyze a model specification problem. The
most commonly used two-regime switching model is applied.

7



Given the recursive form of likelihood (5), we can numerically maximize
it directly, following the suggestion of MacDonald and Zucchini (1997, pp.78-
79). During the estimation, besides the standard constraints 0 ≤ p(k, l) ≤
1,

∑
k 6=l p(k, l) ≤ 1, αi(s) ≥ 0, βj(s) ≥ 0, and

∑q
i=1 αi(s) +

∑p
j=1 βj(s) ≤ 1, we

also impose ω(s) ≥ 0.001 to avoid the underflow of numerical algorithm, and
ω(1) ≤ ω(2) ≤ ... ≤ ω(d) for identifiability. Several randomly chosen starting
point set are used to pursue the global maxima.

4.1 Consistency

In the first experiment to verify the consistency of QMLE, we generate 100
independent series from model (1), each with size 5000. The true model has
two regimes. The corresponding parameters are same as in Xie and Yu (2005):
ω(1) = 1, α1(1) = 0.4, β1(1) = 0.2 and ω(2) = 20, α1(2) = 0.2, β1(2) = 0.4.
The transition probabilities are set to p(1, 2) = 0.1 and p(2, 1) = 0.1. Table 1
summarizes the true values and the mean and standard deviation of estimators.

Table 1. True values and the mean and standard deviation of QMLE
of regime-switching GARCH model

ω̂(1) α̂1(1) β̂1(1) ω̂(2) α̂1(2) β̂1(2) p̂(1, 2) p̂(2, 1)
True 1 0.4 0.2 20 0.2 0.4 0.1 0.11
mean 1.015 0.419 0.213 17.112 0.219 0.424 0.096 0.093
sd. 0.11 0.058 0.039 3.13 0.038 0.085 0.009 0.011

4.2 Asymptotic normality

Although the consistency of QMLE of our model is fairly satisfying from Table
1, we should bear in mind that we need distributional property of the estimates
to utilize the information of standard deviations. With the second experiment,
we want to examine the asymptotic behavior through simulation. There is
no theoretical result available in the literature by now, even for the regime-
switching ARCH model. Bickel et al. (1998) proved the asymptotic normality
of MLE for general HMM model. However, their results cannot be readily
extended to regime-switching GARCH model. By their simulation study, Xie
and Yu (2005) conjectured that the asymptotic distribution of QMLE is indeed
normal for the reduced regime-switching GARCH model.

First, note that by taking away the GARCH effect, i.e., letting p = 0 in
model (1), our model is same as the reduced regime-switching model of Xie
and Yu (2005). So, we will only consider regime-switching GARCH model
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here. We adapt the same parameter values as in first experiment. The QQ-
plots with 0-1 line are shown in Figure 1. They rather conform to normal
distribution. The P-values of Kolmogorov-Smirnov goodness-of-fit test verify
our observation from QQ-plots. They are all above 0.1,2 and the hypothesis
of normal cannot be rejected in a reasonable level. Still, we can expect better
conformity to normal distribution if we increase the length of sequences to,
for example, 10000, from our experience of the improvement already achieved
by increasing the length from 2000 to 5000. But we compromise for the vast
time-consumption on computation and give up trying.
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Figure 1: The QQ-plot of QMLE for regime-switching GARCH model with
0-1 line: A1–A8 represent estimators of ω(1), ω(2), α1(1), β1(1), α1(2), β1(2),
p(1, 2) and p(2, 1), respectively.

4.3 A model specification problem

Xie and Yu (2005) observed that when we fit an ordinary GARCH to a regime-
switching model, the estimated ω̂ and the amount of

∑q
i=1 α̂i+

∑p
j=1 β̂j change

quite regularly along different scale of transition probabilities, which is in-
consistent to our previous common knowledge which believes that

∑q
i=1 α̂i +∑p

j=1 β̂j is always close to unit in that case. We want to investigate if it still
holds true for our model.

2The P-value is calculated using the approximation of Dallal and Wilkinson (1986), which
is most accurate for P-value less than 0.1. So these P-values are all set to 0.5 in statistical
software S-plusr, with which we carry out our analysis.
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Table 2 gives the estimate when data come from two regimes ARCH model.
The true parameters have been used by Francq et al. (2001) and Xie and Yu
(2005): ω(1) = 1, α1(1) = 0.6, ω(2) = 100, α1(2) = 0, p(1, 2) = p(2, 1) = 0.01.
Then we change pair of p(1, 2) and p(2, 1) to (0.1,0.1), (0.2,0.2) and (0.5,0.5).
We generate 100 independent series with size 1000 for each parameter set and
apply to them the ordinary GARCH(1,1) model. The estimates for ω and sum
of GARCH parameters are summarized. The conclusion is similar to Xie and
Yu (2005): while p(1, 2) and p(2, 1) are small, α̂+ β̂ is close to 1, the so-called
non-stationary region. However, as p(1, 2) and p(2, 1) increase, the estimates
move from the non-stationary region to approximately the average of these
two regimes, which is far from non-stationary. Table 3 gives us similar result
when the data are from two-regime switching GARCH model.

Table 2. Estimate result fitting ordinary GARCH(1,1) model for data
from two-regime ARCH model with different transition probabilities,
where ω̂, α̂ and β̂ are estimators of parameters of the ordinary GARCH
model

(p(1, 2) p(2, 1)) (0.01,0.01) (0.1,0.1) (0.2,0.2) (0.5,0.5)
ω̂ 0.6695 8.5987 22.3172 41.0445

α̂+β̂ 0.9994 0.9587 0.7046 0.4205

Table 3. Estimate result fitting ordinary GARCH(1,1) model for data
from two-regime GARCH model with different transition probabilities

(p(1, 2) p(2, 1)) (0.01,0.01) (0.1,0.1) (0.2,0.2) (0.5,0.5)
ω̂ 0.3192 2.621 5.8904 10.0464

α̂+β̂ 0.9918 0.8683 0.6498 0.429

5 Discussion

Regime-switching GARCH is a desirable model in that along the line of
HMM it incorporates the idea of regime-switching into the somehow restric-
tive GARCH, which significantly extends GARCH model. Moreover, not only
the parameters in GARCH equation but also the structure of GARCH model
and error distribution can be specified to depend on regimes, c.f. Gray (1996)
and the review by Hamilton and Raj (2002). However, because of the regime
path dependence problem, only regime-switching ARCH (e.g., Cai (1994) and
Hamilton and Susmel (1994)) or some kind of reduced GARCH model (Gray
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(1996) and Klaassen (2002)) is feasible in practice. To author’s best knowl-
edge, there was even no algorithm available for computation of likelihood (4) in
general case. In this paper, benefited from the transform proposed by Berkes
et al. (2003), we rewrite the GARCH model as an ARCH(∞) form, which
makes the maximization of the likelihood possible. The consistency of the
QMLE is obtained.

Asymptotics is another issue we are interested in. We can see from the
simulation study that the asymptotic normality for regime-switching GARCH
model is quite promising. However we see no promise for the theoretical
proof along the line we did for consistency. Bickel et al. (1998) obtained the
asymptotic normality for general HMM, but the independence of observations
given the unobserved regime is crucial in their framework and can not be
relaxed to include our model. This remains an open problem.

As for the model specification problem, we observed that if the two regimes
of true process switch to each other rather often, the sequence will be taken as
a stationary (ordinary) GARCH model, while it is non-stationary if regimes
seldom switch. This implies that even a stationary GARCH process can actu-
ally results from a regime-switching GARCH model, which we seldom realized
before.
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