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Abstract

Statistics for testing different hypotheses in the Growth and Extended
Growth Curve models are proposed. The tests are constructed using
the restricted maximum likelihood approach followed by an estimated
likelihood ratio. They are all functions of the residuals in the respec-
tive models. This property makes them more reasonable and natural
and gives the advantage of being easy to apply. Moreover, the tests
have resemblance with the Lawley-Hotelling’s trace test for the classi-
cal MANOVA model. We interpret the tests in accordance with the
interpretation of the residuals of the models. We also show that the
distribution of the tests under the corresponding null hypotheses does
not depend on the unknown covariance matrix. Conditional and uncon-
ditional expectations for the tests are given.
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1. Introduction

Fitting a model to data is an important part of understanding different phe-
nomena around us. Models are used in predicting and making important deci-
sions. One can follow two approaches in constructing a statistical model. The
first approach is to assume a predefined model and check if the constructed
model describes the situation well. The second one is to fit a model based on
the observed data. In either case we need to assess the constructed model and
see how well it fits to the data. The most common and natural approach for
doing that is by looking at differences between observed and estimated values,
i.e., by looking at the residuals which represent what is left unexplained after
fitting a model.

In univariate model fitting problems, the resulting residuals are also uni-
variate and it is relatively easy to examine them. In fact, there has been many
discussions regarding the residuals and many different types of residuals have
been defined and studied, see for example Sen & Srivstava (1990). However,
in the classical multivariate case, there has been few studies regarding the
residuals although most tests which have been proposed for this model are in
some way functions of the residuals. See Srivastava & Khatri (1979) for some
proposed tests.

When it comes to the Growth Curve Model (GMANOVA model), the model
has more structure on the mean than the ordinary MANOVA model which
makes things even more complicated. The Growth Curve Model was intro-
duced by Potthoff & Roy (1964) and studied by many authors including Rao
(1965), Khatri (1966) and von Rosen (1989). There is a book by Kshirsagar
& Smith (1995), and for a review of the model we refer to von Rosen (1991).
The model is also treated in Kollo & von Rosen (2005).

Definition 1.1. Let X : p×n and B : q×k be the observation and parameter
matrices, respectively, and let A : p×q and C : k×n be the within and between
individual design matrices, respectively. Suppose that q ≤ p and ρ(C)+p ≤ n,
where ρ(.) denotes the rank of a matrix. The Growth Curve model is given by

X = ABC + ε, (1.1)

where the columns of ε are assumed to be independently p-variate normally
distributed with mean zero and an unknown positive definite covariance matrix
Σ.

Inspired from univariate models diagnostics for the multivariate models have
been studied, and ordinary residuals have been used as diagnostic tools for
validating the models. However, it is only recently that diagnostics for the
Growth Curve Model has been considered, see for example Liski (1991), Pan
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& Fang (1995, 1996) and von Rosen (1995). There is a book by Pan & Fang
(2002) about statistical diagnostics for the Growth Curve Model which also
gives a very good background about the model.

Although, diagnostics for the Growth Curve Model has been considered,
there has been no studies connecting those studies with the residuals in the
model. Moreover, due to the bilinear structure in the model the ordinary
residuals in the model have different components. Therefore, one needs to
investigate those components if one wants to develop diagnostic tools based on
the residuals in the model. Residuals for model, taking the bilinear structure
into consideration, were defined by von Rosen (1995):

Rg1 = A(A′S−1A)−A′S−1X(I − C ′(CC ′)−C); (1.2)

Rg2 = (I −A(A′S−1A)−A′S−1)X(I − C ′(CC ′)−C); (1.3)

Rg3 = (I −A(A′S−1A)−A′S−1)XC ′(CC ′)−C, (1.4)

where S = X(I − C ′(CC ′)−C)X ′. Observe that there are three different
residuals.

The result was then extended to a special case of the Extended Growth
Curve Model by Seid Hamid & von Rosen (2005a). Their approach is some-
what different and seems more natural than the one in von Rosen (1995).

The Extended Growth Curve Model was introduced by von Rosen (1989)
although a canonical form was considered by Banken (1984). A special case of
the model which was considered by Seid Hamid & von Rosen (2005a) together
with the assumptions made in their paper is given below. We have used
the same notations as in that paper except that we have added “e” in the
subscripts for the residuals to identify them from those in the Growth Curve
Model where we have used “g” instead.

Definition 1.2. Let X : p × n, A1 : p × q1, A2 : p × q2, B1 : q1 × k1,
B2 : q2 × k2, C1 : k1 × n, C2 : k2 × n. Suppose that q1, q2 ≤ p, ρ(C1) + p ≤ n
and C(C ′

2) ⊆ C(C ′
1), where ρ(.) and C(.) represent the rank and the column

space of a matrix, respectively. Then the Extended Growth Curve Model is
defined by

X = A1B1C1 + A2B2C2 + ε, (1.5)

where ε is as in Definition 1.1.

In addition to the nested subspace condition included in the above defin-
ition, it was assumed that there were two groups, Group I and Group II. It
was also supposed that the individuals in Groups I and II follow linear and
quadratic mean structures, respectively. Moreover, it was assumed that the
growth curve of the individuals in the second group consists of a linear term
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in addition to the intercept and quadratic terms. Note that it is possible to
have subgroups under both groups.

In Seid Hamid & von Rosen (2005a), four residuals were defined for this
model by decomposing the space orthogonal to the space generated by the
design matrices. Moreover, some properties of the residuals and a natural
interpretation together with an explanation as to how one can use them for
validating the fitted model were also given there. The residuals are presented
below:

Re1 = (I − T1)X(I − C ′
1(C1C

′
1)
−C1); (1.6)

Re2 = T1X(I − C ′
1(C1C

′
1)
−C1); (1.7)

Re3 = T1X(C ′
1(C1C

′
1)
−C1 − C ′

2(C2C
′
2)
−C2); (1.8)

Re4 = (T1 + T2 − I)XC ′
2(C2C

′
2)
−C2, (1.9)

where

T1 = I −A1(A′1S
−1
1 A1)−A′1S

−1
1 ; (1.10)

T2 = I − T1A2(A′2T
′
1S

−1
2 T1A2)−A′2T

′
1S

−1
2 ; (1.11)

S1 = X(I − C ′
1(C1C

′
1)
−C1)X ′; (1.12)

S2 = S1 + T1XC ′
1(C1C

′
1)
−C1(I − C ′

2(C2C
′
2)
−C2) (1.13)

×C ′
1(C1C

′
1)
−C1X

′T ′1.

There has been some studies regarding hypotheses tests in the Growth
Curve Model given in Definition 1.1. However, there has not been any studies
what so ever connecting the tests in this model with the residuals.

This paper is a continuation of the papers by von Rosen (1995) and Seid
Hamid & von Rosen (2005a) where it was suggested that one can use the
residuals for validating the fitted model. As to our knowledge, no one else has
tried to use the residuals in this model to check the adequacy of the model
although it is the most convenient and natural way of doing it.

Here we take the next step and use the residuals for validating the model
via hypothesis testing. We consider the two models given in Definitions 1.1
and 1.2. The aim is to formulate reasonable and practical hypotheses, say
for example, checking the adequacy of the model. Then, we construct test
statistics using the restricted followed by the estimated likelihood approaches.
That is by maximizing a part of the likelihood function which is independent
of the parameters of interest in order to estimate the covariance matrix, Σ.
The estimated likelihood which is obtained by replacing Σ by its estimator
is then maximized under Ho and Ho ∪ H1, where Ho and H1 are the null
and alternative hypotheses, respectively. More details about the restricted
maximum likelihood approach can be found in Patterson & Thompson (1971)
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and Searle et al. (1992). For the Growth Curve Model, the method has been
discussed in Pan & Fang (2002).

As expected, the tests turn out to be a function of the residuals defined
in von Rosen (1995) and Seid Hamid & von Rosen (2005a) for the models
given in Definitions 1.1 and 1.2, respectively. This desirable characteristic of
the tests makes them reasonable and natural and gives the advantage of being
easy to apply and to interpret. More easy than, for example the likelihood
ratio tests.

Moreover, it is quite fascinating to see how the tests use relevant residuals
to test a specific hypothesis. This can clearly be seen in the Extended Growth
Curve Model, where a particular residual is used in testing a particular hy-
pothesis.

In order that the tests can be used in practice, we should be able to calculate
the critical points. This requires the knowledge of the distributions. Unfor-
tunately, the distributions are difficult to obtain. However, we show that
the distributions under the corresponding null hypotheses are independent
of the unknown covariance matrix Σ. Moreover, we suggest two reasonable
approaches to get critical points for the tests.

The test statistic in (2.12), later given in the paper, is similar to the trace
test suggested by Khatri (1966) and is usually known as the Lawley-Hotelling
trace test for the Growth Curve Model. However, there is no explanation
why Khatri made his suggestion and no one has tried to study the Sh and Se

matrices involved and see if they really are the variation matrices due to the
hypothesis and the error as they are called by Khatri (1966) and many others,
for example, Kariya (1978), Fujikoshi (1974) and Yanagihara (2001). That is
one of the reasons why we should study the structure in the residuals which
in turn helps us understand the structure of the tests.

We would like to note that, one arrives at the test given in (2.12) if one
considers the Lawley-Hotelling trace test for the classical MANOVA model
and use the transformation suggested by Potthoff & Roy (1964) with G=S.
Moreover, according to Potthoff & Roy the choice of G=S seems to be ap-
propriate for reasons we will explain later in the paper. It is also important
to mention that the test given in (2.12) reduces to the Lawley-Hotelling trace
test for the classical multivariate linear model. Because of these facts and due
to the resemblance between the structure of the matrices involved in our tests
and the Sh and Se matrices given in Potthoff and Roy (1964), we may say
that our tests are Lawley-Hotelling trace tests.
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2. Hypothesis testing via residuals, the Growth Curve Model

Suppose that the Growth Curve Model given in Definition 1.1 has been fitted
to data and we would like to know if the estimated model fits the data. In
this section we formulate the hypothesis and propose suitable statistics for
testing this hypothesis. We use the restricted maximum likelihood followed by
estimated likelihood approaches to construct test, see Searle et al. (1992) for
more details about the procedure. First we write the likelihood as a product of
two terms and maximize the second part of the likelihood to get an estimator
for the covariance matrix Σ. We use that information to get the estimated
likelihood which is then maximized under Ho and Ho ∪H1, where Ho and H1

are the null and alternative hypotheses, respectively. We discuss why the tests
appear natural and reasonable as well as are easy to apply in practice. We
also try to interpret them in connection with the corresponding interpretation
for the residuals given in Seid Hamid & von Rosen (2005a).

Let us suppose that we have fitted a Growth Curve Model and we would
like to test if the estimated growth curve fits the data. The hypothesis can be
formulated as follows,

Ho : B = 0
H1 : B 6= 0.

(2.1)

Now consider the likelihood function for the Growth Curve Model which is
given by

L = α|Σ|−n/2 exp{−1
2
tr{Σ−1(X −ABC)(X −ABC)′}}, (2.2)

where α = (2π)−np/2. We can rewrite the above likelihood function as a
product of two terms

L = α exp{−1
2
tr{Σ−1(XC ′(CC ′)−C −ABC)(XC ′(CC ′)−C −ABC)′}}

×|Σ|−n/2 exp{−1
2
tr{Σ−1S}}, (2.3)

where S = X(I − C ′(CC ′)−C)X ′. Note that the likelihood can be decom-
posed into two parts such that the resulting two components are themselves
likelihood functions. This will give an unbiased estimator for the covariance
matrix, however, we will obtain the same test statistic by using the decompo-
sition given in (2.3).

Let us proceed by taking the second part of the likelihood which is given by

|Σ|−n/2 exp{−1
2
tr{Σ−1S}}. (2.4)
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Maximize the above expression to get an estimator for the covariance matrix
Σ which is given by

Σ̂ =
1
n

S. (2.5)

We refer to Srivastava & Khatri (1979) to see how the estimator is obtained.
Once again, consider the likelihood function but this time use the estimator

of the covariance matrix instead of the covariance matrix itself. The likelihood
reduces to the following expression

EL = α1|S|−
n
2 e−

n
2

tr{S−1(XC′(CC′)−C−ABC)(XC′(CC′)−C−ABC)′}, (2.6)

where α1 = nn/2(2πe)−np/2 and EL stands for estimated likelihood.
The next is to maximize the expression in (2.6) under the Ho and Ho ∪H1.

Under Ho, B = 0, the maximum of the estimated likelihood equals

α1|S|−n/2 exp{−n

2
tr{S−1XC ′(CC ′)−CX ′}}. (2.7)

Under Ho ∪ H1, the maximum can be obtained by replacing the observed
mean structure ABC by its estimated maximum likelihood estimator which is
given by

AB̂C = A(A′S−1A)−A′S−1XC ′(CC ′)−C.

The above expression is the estimated mean structure, which in fact is also
the maximum likelihood estimator of the mean structure. For different ways
of maximizing the likelihood function for the Growth Curve Model we refer
to Srivastava & Khatri (1979) and Kollo & von Rosen (2005). Therefore, the
maximum of (2.6) under the alternative becomes

α1|S|−
n
2 e−

n
2

tr{S−1(XC′(CC′)−C−AB̂C)(XC′(CC′)−C−AB̂C)′}. (2.8)

Throughout the paper Go is a matrix of full rank spanning the orthogonal
complement to the column space of G. We can rewrite the residual Rg3 given
in (1.4) as follows:

Rg3 = SAo(Ao′SAo)−Ao′XC ′(CC ′)−C. (2.9)

Moreover, it is possible to show that the residual Rg3 can be written as the
difference between the observed and estimated mean structures, i.e.,

Rg3 = XC ′(CC ′)−C −AB̂C.

Now define a test statistic by taking the ratio between (2.7) and (2.8), which
can be written as

exp{−n
2 tr{S−1XC ′(CC ′)−CX ′}}

exp{−n
2 tr{S−1Rg3R′

g3}}
, (2.10)
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and the hypothesis is rejected for small values of the ratio. Note also that the
ratio has values between zero and one. We can also use the test statistic which
is obtained by taking the logarithm of the ratio. The test can be shown to be
equivalent with

tr{S−1XC ′(CC ′)−CX ′} − tr{S−1Rg3R
′
g3}, (2.11)

except that now we reject the hypothesis for large values of the above ex-
pression. The desired test which is given in the next proposition can then
be reached by using the expression in (2.9) for Rg3 and using the fact that
tr(AB) = tr(BA) for any two matrices A and B of proper sizes.

Proposition 2.1. Suppose that the Growth Curve Model given in Definition
1.1 has been fitted to data and suppose that the hypothesis given in (2.1) is to
be tested. A test statistic is given by

φ1(x) = tr{XC ′(CC ′)−CX ′S−1A(A′S−1A)−A′S−1}. (2.12)

The hypothesis is rejected when φ1(x) is large.

Observe that the test given in Proposition 2.1 is always greater or equal to
zero. Moreover, it is possible to see from the equivalent expression in (2.10)
that the numerator is a function of the observed mean structure, XC ′(CC ′)−C.
On the other hand the denominator is a function of the residual, Rg3 which
is obtained by subtracting the estimated mean structure from the observed
mean. That means the test compares the observed mean and the residuals. In
other words, the test compares the observed and estimated means and rejects
the hypothesis when they are ”close” to each other, i.e., when the residuals
are very ”small”. This characteristic of the test statistic we believe is very
desirable and what makes the test natural, since it is a well known fact that
comparing the observed and estimated values is the proper way to evaluate
the estimated model.

In order that the test should be useful in practice one needs to know how
large the value of the test statistic should be for the hypothesis to be rejected,
i.e., we should be able to calculate the critical points. This requires the knowl-
edge of the distribution of the test statistic which unfortunately is difficult to
obtain. However, we suggest two alternative approaches which we believe are
very important and useful as well as reasonable. The first one is to use a
conditional test which is obtained by conditioning on the ancillary statistic,
S. A detailed discussion of the test is presented in Seid Hamid & von Rosen
(2005b). The second approach would be to approximate the density of the
test based on moments.

Furthermore, under the null hypothesis the distribution of the test statistic
is independent of Σ which is not obvious. This fact is shown in the following
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theorem. An important consequence of the theorem is that under the null
hypothesis one can, without loss of generality, assume that Σ = I. As a
result, the critical points are free of any unknown parameter. On the other
hand, the distribution of the test under the alternative hypothesis depends on
Σ. That means the power of the test depends on both Σ and B. However,
one can use 1

nS instead of Σ to get an estimate of the power of the test which
could be used as a measure of performance.

Theorem 2.2. Consider the hypothesis in (2.1). Under the null hypothe-
sis the distribution of the test given in (2.12) is independent of the unknown
covariance matrix Σ.

Proof. Let Ao be a matrix of full rank spanning the orthogonal complement
to the space generated by the columns of A. We can write the test φ1(x) as

φ1(x) = tr{XC ′(CC ′)−CX ′S−1} − tr{XC ′(CC ′)−CX ′Ao(Ao′SAo)−1Ao′}.
The first term in the above expression is invariant under the transformation
Σ−

1
2 X. It is therefore possible to replace X by Σ−

1
2 X which shows that the

distribution of first term in (2.13) is independent of Σ. For the second term,
we can rewrite it as

tr{C ′(CC ′)−CX ′Ao(Ao′SAo)−1Ao′X}.
Now, let us write Ao′X as

(Ao′ΣAo)
1
2 (Ao′ΣAo)−

1
2 Ao′X.

Observe that we can rewrite (Ao′ΣAo)
1
2 (Ao′SAo)−1(Ao′ΣAo)

1
2 as

((Ao′ΣAo)−
1
2 Ao′X(I − C ′(CC ′)−C)X ′Ao(Ao′ΣAo)−

1
2 )−1.

Consequently, it remains to show that the distribution of (Ao′ΣAo)−
1
2 Ao′X is

independent of Σ. However, the expression is a linear function of a multivariate
normal random variable, and as a result, it is enough to show that the mean
and dispersion matrices are independent of Σ.

Under the null hypothesis E[X] = ABC = 0 which implies

E[(Ao′ΣAo)−
1
2 Ao′X] = 0.

Moreover,

D[(Ao′ΣAo)−
1
2 Ao′X] = (Ao′ΣAo)−

1
2 Ao′ΣAo(Ao′ΣAo)−

1
2 = I.

¤
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In the following theorem both the conditional and unconditional expecta-
tions for the test given in (2.12) are presented. One can see from the theorem
that both types of expectations consist of two parts: one part which is inde-
pendent of B, which in fact is the expected value of the test under the null
hypothesis. The other part is an ”increasing” function of B. That means the
“more” B differs from 0, the more likely the hypothesis is to be rejected. In
other words, it shows that the power of the test increases as B “increases”.

Theorem 2.3. Let φ1(x) be as given in Proposition 2.1 and let E[φ1(x)|S] be
the conditional expectation given S , then we have

E[φ1(x)] = βρ(C)ρ(A) + βtr{ABC(ABC)′Σ−1},
E[φ1(x)|S] = tr{ρ(C)ΣS−1A(A′S−1A)−A′S−1 + ABC(ABC)′S−1}, (2.13)

where β = (n− ρ(C)− 1)−1 and ρ(.) is the rank of a matrix.

Proof. The expression inside the trace function in (2.12) is the product of two
independent terms. We can therefore write the expectation as

E[φ1]tr{E[XC ′(CC ′)−CX ′]E[S−1A(A′S−1A)−A′S−1]}. (2.14)

Observe that the first expectation on the right hand side of the above expres-
sion is the expectation of a noncentral Wishart random variable. Therefore,

E[XC ′(CC ′)−CX ′] = ρ(C)Σ + ABC(ABC)′.

For the second expectation, we write the expression in its canonical form to
get

E[S−1A(A′S−1A)−A′S−1] = βΣ−1A(A′Σ−1A)−A′Σ−1.

More on the canonical representation can be found in Seid Hamid (2001). The
desired result can then be established after realizing that

tr{A(A′Σ−1A)−A′Σ−1} = ρ(A)

and
A′Σ−1A(A′Σ−1A)−A′ = A′.

For the second statement, one can take out the second part of the expression
which is a function of S. It remains to find the expected value of a noncentral
Wishart variable which was given above. Moreover, it is important to note
that

A′S−1A(A′S−1A)−A′ = A′,

which completes the proof. ¤
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Corollary 2.4. Consider the hypothesis given in (2.1). Under the null hy-
pothesis, the expectations in Theorem 2.3 reduce to

E[φ1(x)] = βρ(C)ρ(A)

E[φ1(x)|S] = ρ(C)tr{S−1A(A′S−1A)−A′S−1},
where β is as given in Theorem 2.3.

Observe that the test could also be applied in the classical multivariate
model since the Growth Curve Model given in Definition 1.1 reduces to this
model when A = I. The test statistic then reduces to

tr{S−1XC ′(CC ′)−CX ′}, (2.15)

which is equivalent to the well known Lawley-Hotelling trace test or sometimes
called the generalized Hotelling’s test, which once again confirms that our test
is a natural extension of the Lawely-Hotelling trace test to the Growth Curve
Model.

Potthoff & Roy (1964) suggested that one can use the Lawley-Hotelling
trace test for the classical multivariate linear model and use a transformation
which is based on a constant G to get the trace test for the Growth Curve
Model, i.e., they transformed X to XG−1P ′(PG−1P ′)−1. One suggestion they
made was to choose G as an estimate of Σ but they also made it clear that
in order for the test to perform better one should choose G such that it is
independent of X. Now, if we look at the Lawley-Hotelling trace test for
the classical multivariate linear model and use the transformation suggested
by Potthoff & Roy (1964) with G = S, we will arrive at the test given in
Proposition 2.1. Moreover, the choice of G seems appropriate since we can
think of our problem as that of fitting a Growth Curve Model for the mean
and S is independent of the mean.

As a final part of this section we would like to remind the reader that we
have not assumed anything as to the linearity of the growth curves of the
individuals involved in this model. This indicates that the methods utilized
and hence the test defined can also be applied when the growth curves are
polynomial of any degree. The only important thing that matters is that the
degree of the polynomial should be the same for all individuals.

3. Hypothesis testing via the residuals, Extended Growth Curve
Model

In this section we formulate practical hypotheses for the Extended Growth
Curve Model given in Definition 1.2 and then construct tests using the re-
stricted followed by estimated likelihood approaches. This model is more
structured and we have more residuals than before. As a result, there are
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more hypotheses to formulate and test. We define four hypotheses which we
believe are important and practical, and discuss them separately.

Before defining the possible hypotheses, we would like to note that we have
used the same assumptions as in Seid Hamid & von Rosen (2005a). That
is, we have, without loss of generality, assumed that there are two groups
denoted by Group I and Group II and that the individuals in Groups I and II
follow a linear and quadratic mean structure, respectively. Moreover, it is also
supposed that there is a linear term in the growth curves of the individuals
in Group II. See the paper by Seid Hamid & von Rosen (2005a) for notations
and a detailed explanation of the situation.

Let us look at the following hypotheses, more details about the tests will
be given later.

i) Ho: The estimated model fits the data

ii) Ho: The estimated linear growth curve fits the data for group I

iii) Ho: The estimated quadratic growth curve fits the data in group II

iv) Ho: The quadratic term in the growth curves is significant.

We write the likelihood function as a product of three independent terms.
Depending on which hypothesis is considered, we maximize a certain part of
the likelihood to get an estimator for the covariance matrix which then replaces
the covariance matrix to give the estimated likelihood.

Consider the Extended Growth Curve Model given in Definition 1.2. We
can rewrite it as

X = A1(B11 : B12)
(

C11

C12

)
+ A2B2C2 + ε

= A1B11C11 + A1B12C12 + A2B2C2 + ε,

(3.1)

where B1 = (B11 : B12) and C ′
1 = (C ′

11 : C ′
12). If we want to consider the two

groups separately, the model reduces to

X1 = A1B11C
1
11 + ε1 (3.2)

and
X2 = A1B12C

2
12 + A2B2C22 + ε2 (3.3)

for Group I and Group II, respectively. Here X1 and C1
11 are matrices consist-

ing of the first n1 columns of X and C11, respectively. The matrices X2, C2
12

and C22 consist of the last n2 columns of X, C12 and C2, respectively.
Observe that C12 = C2. Moreover it is possible to show that

C ′
11(C11C

′
11)

−C11 = C ′
1(C1C

′
1)
−C1 − C ′

2(C2C
′
2)
−C2. (3.4)
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Suppose that we would like to test the first hypothesis given above against
a two sided alternative. We can formulate it as follows

Ho : B1 = 0, B2 = 0,

H1 : B1 6= 0, B2 6= 0.
(3.5)

Now consider the likelihood function for the Extended Growth Model which
is given by

L = γ|Σ|−n
2 e−

1
2
tr{Σ−1(X−(A1B1C1+A2B2C2))(X−(A1B1C1+A2B2C2))′}, (3.6)

where γ = (2π)−np/2. The likelihood can be rewritten as a product of three
terms,

L = L1 × L2 × L3, (3.7)

where,

L1 = γ exp{−1
2
tr{Σ−1(XC ′

2(C2C
′
2)
−C2 − (A1B12C12 + A2B2C2))

× (XC ′
2(C2C

′
2)
−C2 − (A1B12C12 + A2B2C2))′}},

L2 = exp{−1
2
tr{Σ−1(X(C ′

1(C1C
′
1)
−C1 − C ′

2(C2C
′
2)
−C2)− (A1B11C11))

× (X(C ′
1(C1C

′
1)
−C1 − C ′

2(C2C
′
2)
−C2)− (A1B11C11))′}},

L3 = |Σ|−n
2 exp{−1

2
tr{Σ−1X(I − C ′

1(C1C
′
1)
−C1)X ′}}.

Let us now consider the product of the last two expressions and use equation
(3.4). Put S1X(I −C ′

1(C1C
′
1)
−C1)X ′ as in (1.12), then maximize the product

to get an estimator for the covariance matrix Σ. The maximum estimated
likelihood (maximum EL) estimator equals

nΣ̂ = S1 + (XC ′
12(C12C

′
12)

−C12 −A1B̂11C11)

×(XC ′
12(C12C

′
12)

−C12 −A1B̂11C11)′, (3.8)

where B̂11 is the maximum EL estimator of B11. In fact it is possible to show
that it is also the maximum likelihood estimator. We refer to the paper by
von Rosen (1989) for the maximum likelihood estimators and one can use his
approach to maximize the estimated likelihood.

Let B̂1, B̂11 and B̂12 be the maximum EL estimates of B1, B11 and B12,
respectively and let B̂1 = (B̂11 : B̂12). Consequently, it is possible to show
that the residual Re3 can be written as

Re3 = XC ′
12(C12C

′
12)

−C12 −A1B̂11C11. (3.9)
12



Therefore the maximum estimated likelihood estimator of Σ equals

Σ̂ =
1
n

S2,

where S2 is as given in (1.13).
In the same way as we did for the Growth Curve Model, we replace Σ in

(3.6) by its estimator, 1
nS2, to get the estimated likelihood, EL, and then

maximize EL under Ho and Ho ∪H1. The maximum of the EL under Ho and
Ho ∪H1 are respectively given by

γ1|S2|−
n
2 exp{−n

2
tr{S−1

2 XC ′
1(C1C

′
1)
−C1X

′}} (3.10)

and

γ1|S2|−
n
2 exp{ − n

2
tr{S−1

2 (XC ′
1(C1C

′
1)
−C1 − (A1B̂1C1 + A2B̂2C2))

× (XC ′
1(C1C

′
1)
−C1 − (A1B̂1C1 + A2B̂2C2))′}},

(3.11)

where γ1 = nn/2(2πe)−np/2. Note that we can rewrite Re3 and Re4 as follows:

Re3 = S1A
o
1(A

o
1
′S1A

o
1)
−Ao

1
′X(C ′

1(C1C
′
1)
−C1 − C ′

2(C2C
′
2)
−C2), (3.12)

Re4 = S2A
o(Ao′S2A

o)−AoXC ′
2(C2C

′
2)
−C2, (3.13)

where Ao
1 and Ao are matrices of full rank spanning the orthogonal com-

plements of the column spaces of the matrices A1 and A = (A1 : T1A2),
respectively.

Moreover, it is possible to show that Re34, which denotes the sum of the
residuals Re3 and Re4, can be written as a difference between the observed
and estimated means, i.e.,

Re34 = XC ′
1(C1C

′
1)
−C1 − (A1B̂1C1 + A2B̂2C2).

Now as in the previous section a test statistic is defined by taking the ratio
between (3.10) and (3.11). The statistics is given by

exp{−n
2 tr{S−1

2 XC ′
1(C1C

′
1)
−C1X

′}}
exp{−n

2 tr{S−1
2 R34R′

34}}
, (3.14)

where the hypothesis is rejected when the value of the ratio is small, i.e, close
to zero. Note that the ratio has values between zero and one. One can also
define an equivalent test by taking the logarithm of the test. This test statistic
can be shown to be equivalent with

tr{S−1
2 XC ′

1(C1C
′
1)
−C1X

′} − tr{S−1
2 R34R

′
34}, (3.15)

We now reject the hypothesis for large values of (3.15).
13



Consider the first term in the above expression and write it as a sum of two
terms as follows:

tr{S−1
2 XC ′

1(C1C
′
1)
−C1X

′} = tr{S−1
2 XC ′

12(C12C
′
12)

−C12X
′}

+ tr{S−1
2 XC ′

2(C2C
′
2)
−C2X

′}, (3.16)

where C12 is as in (3.1). Similarly, use the expressions (3.12) and (3.13) for
Re3 and Re4, respectively, and write the second term in (3.15) as

tr{S−1
2 R34R

′
34} = tr{XC ′

12(C12C
′
12)

−C12X
′S−1

2 A1(A′1S
−1
2 A1)−A′1S

−1
2 }

+ tr{XC ′
2(C2C

′
2)
−C2X

′S−1
2 A(A′S−1

2 A)−A′S−1
2 }.

(3.17)
By subtracting (3.17) from (3.16) we get a test which will be given in the

next proposition. Here it is important to note that the column spaces of
(A1 : A2) and (A1 : T1A2) are identical. This fact has been used in Seid
Hamid (2001) when defining the residuals for the Extended Growth Curve
Model.

Proposition 3.1. Suppose that the Extended Growth Curve Model given in
Definition 1.2 has been fitted to data and consider the hypothesis given in (3.5).
A test statistic is given by

φ2(x) = tr{XC ′
11(C11C

′
11)

−C11X
′S−1

2 A1(A′1S
−1
2 A1)−A′1S

−1
2 }

+ tr{XC ′
2(C2C

′
2)
−C2X

′S−1
2 A(A′S−1

2 A)−A′S−1
2 }, (3.18)

where A = (A1 : T1A2). The hypothesis is rejected when the value of φ2(x) is
large.

The test given above is always greater or equal to zero. Moreover, it is
possible to see from the expression in (3.14) that the numerator is a function
of XC ′

1(C1C
′
1)
−C1 which is the observed mean. On the other hand, in the

denominator we have a function of Re34 which is the residual obtained by
subtracting the estimated mean from the observed mean. This shows that the
test compares the observed and estimated means and rejects the hypothesis
when the difference between them is “small”, in other words, when the residual
R34 is “small”.

The distribution of the test under the null hypothesis is independent of the
unknown covariance matrix Σ. This fact is stated in the following theorem
without a proof. However, similar proofs are given later and by combining
these results one may verify the theorem.

Theorem 3.2. Consider the hypothesis given in (3.5). Under the null hypoth-
esis the distribution of the φ2(x) is independent of the unknown covariance
matrix Σ.

14



The above theorem shows that under the null hypothesis we can, without
loss of generality, assume that Σ = I. As a result, the critical points are free of
any unknown parameter. However, as in φ1(x), the power of the test depends
of the unknown covariance matrix. One can, therefore, use an estimator of Σ
to get the estimated power.

The conditional and unconditional expectations of φ2(x) are given bellow.
The theorem is stated without a proof. However, we show later that φ2(x) is
the sum of the two tests given in Propositions 3.5 and 3.9.

Theorem 3.3. Let φ2(x) be as given in Proposition 3.1. Let A = (A1 : A2),
µl = A1B11C11 and µq = A1B12C12 + A2B2C2. Then,

E[φ2(x)] = λρ(C11)ρ(A1) + λtr{µlµ
′
lΣ
−1}+ ρ(C2){λρ(A1)

+ δ(ρ(A)− ρ(A1))}+ tr{µqµ
′
q{λ(I − ΣPl) + δΣPlPqPl}},

E[φ2(x)|S2] = {ρ(C11) + ρ(C2)}tr{S−1
1 A1(A′1S

−1
1 A1)−A′1S

−1
1 }

+ tr{[µlµ
′
l + µqµ

′
q]S

−1
2 },

where λ = (n− ρ(C1)− 1)−1, δ = (n− ρ(C2)− 1)−1 and

Pl = Ao
1(A

o
1
′ΣAo

1)
−Ao

1
′,

Pq = A2(A′2PlA2)−A′2.

Corollary 3.4. Consider the hypothesis given in (3.5). Under the null hy-
pothesis, the two expectations given in Theorem 3.3 reduce to

E[φ2(x)] = λρ(C11)ρ(A1) + ρ(C2){λρ(A1) + δ(ρ(A)− ρ(A1))},
E[φ2(x)|S2] = {ρ(C11) + ρ(C2)}tr{S−1

1 A1(A′1S
−1
1 A1)−A′1S

−1
1 },

where λ and δ are as given in Theorem 3.3.

Observe that we have replaced S−1
1 by S−1

2 to get the second expression in
the above corollary. This was possible due to the fact that A1S

−1
1 = A1S

−1
2 .

Suppose that we are interested in just Group I and that we would like to
test if the linear growth curve fits the data for Group I. We can approach
this in two different ways. The first approach is to reduce the model to this
group as in (3.2). As one can see the model reduces to the Growth Curve
Model which we discussed in the previous section. We are going to discuss
the second approach which is better than the first one in the sense that we
use more information to estimate the covariance matrix which should give a
better estimator which in turn gives a better test statistic.
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Consider the hypothesis that the estimated linear growth curve fits the data,
which can be formulated as

Ho : B11 = 0,

H1 : B11 6= 0.
(3.19)

Let us start by looking at the likelihood function given in (3.6). Maximize
the part of the likelihood which is denoted by L3 to get an estimator for the
covariance matrix, which equals nS1. As usual, replace the covariance matrix
in the likelihood by its estimator to get the estimated likelihood function and
then maximize the estimated likelihood under Ho and Ho ∪ H1. The test
is then constructed by taking the logarithm of the ratio multiplied by some
constant, as in the previous cases. Similarly, it is possible to show that the
resulting test is equivalent to the one given in Proposition 3.3 below. However,
it is important to observe that one can replace S1 by S2 and vice versa due to
the fact that A′1S

−1
1 = A′1S

−1
2 .

Proposition 3.5. Suppose that the Extended Growth Curve Model has been
fitted to data. Let the hypothesis to be tested be given by (3.19). A test statistic
is given by

φ3(x) = tr{XC ′
11(C11C

′
11)

−C11X
′S−1

1 A1(A′1S
−1
1 A1)−A′1S

−1
1 }. (3.20)

The hypothesis is rejected when the value of φ3(x) is large.

Observe that the test given above can be written as a ratio of functions
of the observed and estimated mean for the individuals in Group I. The test,
therefore, compares these two values and rejects the hypothesis when the dif-
ference between them is small.

The test given in (3.20) is always greater or equal to zero. Moreover, it is
shown in the following theorem that the distribution of the test under the null
hypothesis is independent of the unknown covariance matrix Σ. However, as
in the previous two tests, the distribution under the alternative will depend
on Σ. We suggest that Σ could be replaced by its estimator 1

nS1 to get the
estimated power.

Theorem 3.6. Let the hypothesis to be tested be given in (3.19). The dis-
tribution of φ3(x) under the null hypothesis is independent of the unknown
covariance matrix Σ.

Proof. We can rewrite φ3(x) as

φ3(x) = tr{XC ′
11(C11C

′
11)

−C11X
′S−1

1 }
− tr{XC ′

11(C11C
′
11)

−C11X
′Ao

1(A
o
1
′S1A

o
1)
−Ao

1
′}.
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The first term in the above expression is invariant under the transformation
Σ−

1
2 X. One can therefore replace X in the expression with Σ−

1
2 X which shows

that the distribution is independent of Σ. The second term can be written as

tr{C ′
11(C11C

′
11)

−C11X
′Ao

1(A
o
1
′S1A

o
1)
−Ao

1
′XC ′

11(C11C
′
11)

−C11}.
It remains to show that the distribution of Ao

1
′XC ′

11(C11C
′
11)

−C11 is inde-
pendent of Σ. This can be shown by using calculations similar to those used
earlier when proving Theorem 2.2. However, it is important to note that,
under the null hypothesis

E[Ao
1
′XC ′

11(C11C
′
11)

−C11] = 0.

¤
In the following theorem, both conditional and unconditional expectations

are given. Both types of expectations consist of two parts. One is independent
of the parameter B11. The second one is an “increasing” function of the para-
meter. As a result, the more B11 differs from 0, the more likely the hypothesis
is to be rejected. This indicates that the power of the test “increases” with
B11.

Theorem 3.7. Let φ3(x) be as given in Proposition 3.5 and let λ and µl be
as given in Theorem 3.3. Then,

E[φ3(x)] = λρ(C11)ρ(A1) + λtr{µlµ
′
lΣ
−1},

E[φ3(x)|S1] = tr{ρ(C11)ΣS−1
1 A1(A′1S

−1
1 A1)−A′1S

−1
1 + µlµ

′
lS
−1
1 },

Proof. The proof is similar with that of Theorem 2.3. The only difference is
that we have C11 and S1 instead of C and S. It is important to note that

E[XC ′
11(C11C

′
11)

−C11] = A1B11C11.

¤
Corollary 3.8. Consider the hypothesis given in (3.19) and let λ be as given
in Theorem 3.3. Under the null hypothesis, the two expectations given in
Theorem 3.7 reduce to

E[φ3(x)] = λρ(C11)ρ(A1),

E[φ3(x)|S1] = ρ(C11)tr{S−1
1 A1(A′1S

−1
1 A1)−A′1S

−1
1 },

If we are interested in Group II and want to test the hypothesis that the
estimated quadratic growth curve fits the data in Group II. We can also do
it in two different ways. The first one is to use the model given in (3.3) and
reduce the problem to the Growth Curve Model case. As in the previous case,
the second alternative that we shall discuss is better for the same reasons
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mentioned earlier. The approach is to look at the likelihood function given in
(3.6) and maximize |Σ|−n

2 L1 × L2 to get an estimator for Σ and update the
likelihood based on the estimator and proceed as before. One can show that
the test constructed is identical to the one given in the following proposition.

Proposition 3.9. Suppose the Extended Growth Curve Model has been fitted
to data. Consider the following hypothesis

Ho : B11 = 0, B2 = 0,

H1 : B11 6= 0 , B2 6= 0.

Let A = (A1 : T1A2), then a test statistic is given by

φ4(x) = tr{XC ′
2(C2C

′
2)
−C2X

′S−1
2 A(A′S−1

2 A)−A′S−1
2 }, (3.21)

and the hypothesis is rejected when the value of φ4(x) is large.

The above test, like the previous tests, is greater or equal to zero. More-
over, it is shown in the following theorem that its distribution under the null
hypothesis will not depend on Σ. This shows that, under the null hypothesis,
we can assume that Σ = I. As a result, the critical points will not depend
on Σ. However, the power of the test depends on Σ. One can use 1

nS2 as an
estimator of Σ to get the estimated power.

Theorem 3.10. Consider the hypothesis given in Proposition 3.9. The dis-
tribution of φ4(x) under the null hypothesis does not depend on the unknown
covariance matrix Σ

Proof. Consider the expression in (3.21) and write it as

φ4(x) = tr{XC ′
2(C2C

′
2)
−C2X

′S−1
2 A1(A′1S

−1
2 A1)−A′1S

−1
2 }

+ tr{XC ′
2(C2C

′
2)
−C2X

′S−1
2 T1A2(A′2T

′
1S

−1
2 T1A2)−A′2T1S

−1
2 .}

Let us denote the two terms in the above expression by I and II, respectively.
For the term denoted by I, we can replace S−1

2 by S−1
1 . The expression can

then be rewritten to give a similar expression as in (2.13). One can then use
similar arguments to show that its distribution is independent of Σ. On the
other hand, the term denoted by II can be written as the difference between
two terms as follows:

II = tr{XC ′
2(C2C

′
2)
−C2X

′G1(G′
1W2G1)−1G′

1}
− tr{XC ′

2(C2C
′
2)
−C2X

′G2(G′
2W2G2)−1G′

2}, (3.22)

where

Gr+1 = Gr(G′
rAr+1)o, G0 = I,

Wr+1 = X(I − C ′
r(CrC

′
r)
−Cr)X ′.
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Such approaches have been discussed in a more general form in von Rosen
(1990). For special cases like the above one, we refer to Seid Hamid (2001).

The two terms in (3.22) can be rewritten as

tr{C ′
2(C2C

′
2)
−C2X

′G1(G′
1W2G1)−1G′

1X}
and

tr{C ′
2(C2C

′
2)
−C2X

′G2(G′
2W2G2)−1G′

2X}.
We want to show that the distributions of the above two expressions under
the null hypothesis are independent of Σ. It is equivalent if we show that the
distributions of G′

1X and G′
2X under the null hypothesis are independent of

Σ.
Now write G′

1X as

(G1ΣG′
1)

1
2 (G1ΣG′

1)
− 1

2 G′
1X

′,

it remains to show that the distribution of (G1ΣG′
1)
− 1

2 G′
1X

′, which is a linear
function of a multivariate normal random variable, is independent of Σ. Be-
cause of normality, it is enough to show that the mean and dispersion matrices
are independent of Σ.

Under the null hypothesis, B2 = 0. Moreover, G′
1A1 = Ao

1
′A1 = 0. Conse-

quently, we have

E[(G1ΣG′
1)
− 1

2 G′
1X] = (G1ΣG′

1)
− 1

2 G′
1(A1B1C1 + A2B2C2) = 0.

Furthermore,

D[G1ΣG′
1)
− 1

2 G′
1X] = (G1ΣG′

1)
− 1

2 G′
1ΣG1(G1ΣG′

1)
− 1

2 = I.

Finally, similar calculations can be used to show that the distribution of G′
2X

is independent of Σ. ¤
As mentioned earlier for the previous tests, the expectations given in The-

orem 3.11 have two components where one part is an “increasing” function
of the parameters of interest. Moreover, one can decompose each component
into two different parts, a linear and a quadratic part. This is because we
have assumed that the quadratic growth curves for the individuals in Group
II consist of a linear term.

Theorem 3.11. Let φ4(x) and A be as in Proposition 3.9. Let λ, δ, Pl, Pq

and µq be as given in Theorem 3.3. Then

E[φ4(x)] = ρ(C2){λρ(A1) + δ(ρ(A)− ρ(A1))}+ tr{µqµ
′
q{λ(I − ΣPl)

+ δΣPlPqPl}},
E[φ4(x)|S2] = tr{ρ(C2)ΣS−1

2 A(A′S−1
2 A)−A′S−1

2 + µqµ
′
qS
−1
2 },
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Proof. We can write the expectation in the first statement as a product of two
terms

E[φ4(x)] = tr{E[XC ′
2(C2C

′
2)
−C2X

′]E[S−1
2 A(A′S−1

2 A)−A′S−1
2 ]}, (3.23)

The matrix XC ′
2(C2C

′
2)
−C2X

′ has a non-central Wishart distribution , and
therefore, we have the following

E[XC ′
2(C2C

′
2)
−C2X

′] = ρ(C2)Σ + µqµ
′
q. (3.24)

The second expectation on the right hand side of (3.23) can be written as

E[S−1
2 A1(A′1S

−1
2 A1)−A′1S

−1
2 ] + E[S−1

2 T1A2(A′2T
′
1S

−1
2 T1A2)−A′2T

′
1S

−1
2 ].
(3.25)

Consider the first term on the right hand side. We can replace S2 by S1 as
mentioned earlier, see Seid Hamid (2001). Using similar methods as before,
one can then show that

E[S−1
2 A1(A′1S

−1
2 A1)−A′1S

−1
2 ] = λΣ−1A1(A′1Σ

−1A1)A′1Σ
−1. (3.26)

For the second term in (3.25), we can use the same method as in (3.22) and
write it as

E[G1(G′
1W2G1)−1G′

1]−E[G2(G′
2W2G2)−1G′

2], (3.27)

The two expectations in (3.27) are relatively easy to compute since W2 is a
Wishart random variable and the expression in (3.27) equals

δG1(G′
1ΣG1)−1G′

1A2(A′2G1(G′
1ΣG1)−1G′

1A2)−A′2G1(G′
1ΣG1)−1G′

1.

Now replace G1 in the above expression by Ao
1 which gives

E[S−1
2 T1A2(A′2T

′
1S

−1
2 T1A2)−A′2T1S

−1
2 ] = δPlPqPl. (3.28)

The desired result can then be reached by combining the results in (3.24),
(3.26) and (3.28), but first observe that the column spaces of the matrices
(A1 : A2) and (A1 : T1A2) are identical, and that tr{ΣPlPqPl} = ρ(A)−ρ(A1).

For the conditional expectation, one can easily show that the statement
holds after taking out the second part of the expression which is a function of
S2. ¤

Corollary 3.12. Let the hypothesis to be tested be as given in Proposition 3.9.
Under the null hypothesis the two expectations in Theorem 3.11 reduce to

E[φ4(x)] = ρ(C2){λρ(A1) + δ(ρ(A)− ρ(A1))},
E[φ4(x)|S2] = ρ(C2)tr{S−1

2 A(A′S−1
2 A)−A′S−1

2 },
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The test given in Proposition 3.9 compares the observed and estimated
means for the individuals in Group II and rejects the hypothesis when the
difference between them is small. That is when the residual, Re4 is small.
Observe also that the tests φ3(x) and φ4(x), respectively, are equivalent to
the first and second terms of the test given in (3.18). This shows that φ2(x),
as expected, combines both information for testing the hypothesis that the
overall estimated model fits the data. Moreover, one can combine the proofs
of Theorems 3.6 and 3.11 to prove Theorem 3.3.

Finally, suppose that we want to check if the quadratic term in the growth
curves of the individuals in the second group is significant, i.e., if we should
keep the quadratic term or not. We can formulate the hypotheses as

Ho : B2 = 0
H1 : B2 6= 0.

(3.29)

Let us, for the last time, consider the likelihood function given in (3.6) and
maximize the product, L2 × L3, to get the estimator S2 of nΣ. Update the
likelihood and proceed as usual by taking the maximum of the estimated like-
lihood under Ho and Ho∪H1. The test is then defined by taking the logarithm
of the ratio between them where the hypothesis rejected for large values. The
test can be shown to be equivalent with the one given in Proposition 3.13 by
using tr(AB) = tr(BA) several times and the fact that

I −A1(A′1S
−1
2 A1)−A′1S

−1
2 T1A2(A′2T

′
1S

−1
2 A2T1)−A′2T

′
1S

−1
2

+ S2A
o(Ao′S2A

o)Ao′,
(3.30)

where Ao and T1 are as mentioned before.
Note that the two terms on the right hand side of (3.30) are orthogonal

to each other. We refer to Seid Hamid (2001) for further explanations of
decompositions of the spaces involved in defining the residuals.

Proposition 3.13. Suppose that the Extended Growth Curve Model has been
fitted to data and consider the hypothesis given in (3.29). A test statistic is
given by

φ5(X) = tr{XC ′
2(C2C

′
2)
−C2X

′S−1
2 T1A2(A′2T

′
1S

−1
2 A2T1)−A′2T

′
1S

−1
2 }. (3.31)

The hypothesis is rejected when the value of φ5(x) is large.

The above test is always greater or equal to zero. Moreover, the ratio of
the EL under Ho and Ho ∪H1 can be written as

exp{−n
2 tr{S−1

2 Rl
e4R

l
e4
′}}

exp{−n
2 tr{S−1

2 Re4R′
e4}}

, (3.32)
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where,
Rl

e4 = (I −A1(A′1S
−1
2 A1)−A′1S

−1
2 )XC ′

2(C2C
′
2)
−C2, (3.33)

and the hypothesis is rejected when the value of the ratio in (3.32) is small.
If we look at Rl

e4 carefully, we understand that it is the residual Re4 obtained
if we fitted a linear growth curve instead of a quadratic one for individuals
in Group II. As expected, the test compares this value and the value of Re4

given in (1.9). That means the test checks if the contribution of the quadratic
term is significant by comparing these two values. If values of Re4 are small
compared to the values of Rl

e4, the value of the test statistic will then be large
which leads to the rejection of the hypothesis which means that there is a need
to keep the quadratic term since its contribution is significant.

The distribution of φ5(x) under the null hypothesis is independent of Σ.
This is given in the following theorem without a proof.

Theorem 3.14. Suppose the hypothesis to be tested is as given in (3.29).
Under the null hypothesis, the distribution of the φ5(x) is independent of Σ.

The conditional and unconditional expectations of the φ5(x) are given in the
following theorem which is stated without a proof because similar calculations
have been made earlier in this section. As one can see from the theorem, the
expectations have two parts. The first part is independent of B2, whereas,
the second one is an ”increasing” function of the parameter. Moreover, it is
important to note that the terms involved are the quadratic components of
the expectations given in Theorem 3.11 which is quite natural, because, here
we are only interested in the quadratic term.

Theorem 3.15. Suppose φ5(x) is as given in (3.31) and let δ be as given in
Theorem 3.3. Then

E[φ5] = ρ(C2)δρ(A2) + δtr{(A2B2C2)(A2B2C2)′Σ−1},
E[φ5|S2] = tr{ρ(C2)ΣS−1

2 T1A2(A′2T
′
1S

−1
2 A2T1)−A′2T

′
1S

−1
2

+ (A2B2C2)(A2B2C2)′S−1
2 }.

Corollary 3.16. Consider the hypothesis in (3.29). Under the null hypothesis
the two expectations in Theorem 3.15 reduce to

E[φ5] = δρ(C2)ρ(A2),

E[φ5|S2] = ρ(C2)tr{S−1
2 T1A2(A′2T

′
1S

−1
2 A2T1)−A′2T

′
1S

−1
2 }.

We would like to note that the individuals in Groups I and II do not have
to follow a linear and a quadratic mean structure. The methods utilized
can easily be modified if the mean structures follow any other polynomials.
The only necessary assumption is the nested subspace condition mentioned in
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Definition 1.2 which was used in defining the residuals. We refer the reader to
Seid Hamid & von Rosen (2005a) to see where they have used this assumption
when defining the residuals. Moreover, one can use similar approaches to
extend the results in this section to the general Extended Growth Curve Model
except that it may not be possible to get nice expressions for the residuals as
well as the tests.

4. Concluding remarks

Tests for checking the adequacy of the model for the Growth and Extended
Growth Curve models have been proposed. The tests were constructed using
the restricted followed by estimated likelihood approaches. The covariance
matrix Σ was estimated from one part of the likelihood function, then Σ was
replaced by its estimator to get the estimated likelihood. The tests were
then defined by taking the logarithm of the ratio between the maximum of
the estimated likelihood under the null and alternative hypotheses. We have
presented a summary of the tests together with their decision rules in Table
1.

The tests turned out to be functions of the residuals defined utilizing the
bilinear structures in the corresponding models. This enabled us to study
the structure behind the tests and interpret them in accordance with the
interpretation given by Seid Hamid & von Rosen (2005a). Moreover, we have
discovered resemblance between our tests and the Lawley-Hotelling’s trace test
for the classical multivariate linear model.

In practice, we need to find the critical points for all the tests constructed
in this paper so that we could actually be able to use them. This requires the
knowledge of the distribution of the tests which, unfortunately, are difficult
to obtain. However, one can use several approaches to calculate the critical
points. One is to condition on an ancillary statistic, this approach will be
considered in our forthcoming paper. The distribution for the conditional tests
is relatively easy to deal with. Moreover, conditioning reduces the inference
to the situation at hand. Furthermore, we don’t lose any information about
the parameters of interest since the statistics we condition on is ancillary.
Another alternative approach is to approximate the density for the tests using
the first two moments. Such approach has been utilized by von Rosen (1995)
when he approximated the densities for the three residuals he defined for
the Growth Curve Model. In this paper we have given both the conditional
and unconditional expectations for the tests. They all have two components:
one part which is independent of the parameters of interest and a second
component which in some sense is an “increasing” function of the parameter
of interest.
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We have also shown that, under the null hypotheses, the distribution of the
five tests proposed in this paper are all independent of the unknown covariance
matrix Σ. As a result, the critical points are free of any unknown parameter.
Unfortunately, we can not say the same thing about the distributions under
the alternative hypotheses. Consequently, the powers of the tests depend on
both the parameters of interest and Σ. We have suggested that an appropriate
estimator for Σ can be used to get the estimated powers which could be used
as a measures of performance of the tests.

As a final part of the paper we would like to note that the hypothesis given
in (2.1) can be formulated in its general form, i.e.

Ho : FBG = 0,

H1 : FBG 6= 0,

where F and G are any two matrices. This kind of general formulation can
for example be used if one is interested in comparing two growth curves which
could be done by choosing suitable elements for the matrices F and G. Simi-
larly, the hypotheses given for the Extended Growth Curve Model can also be
formulated in a more general form.

Table 1. Hypotheses in two GMANOVA Models and corresponding tests
with their decision rules.

Model Hypothesis Test Decision rule

Growth Curve Model Ho : B = 0 φ1(x) reject when
X = ABC + ε H1 : B 6= 0 φ1(x) is large

H0 : B1 = 0, B2 = 0 φ2(x) reject when
H1 : B1 6= 0, B2 6= 0 φ2(x) is large

Extended Growth
Curve Model Ho : B11 = 0 φ3(x) reject when

H1 : B11 6= 0 φ3(x) is large

X = A1B1C1 + A2B2C2 + ε H0 : B11 = 0, B2 = 0 φ4(x) reject when
= A1B11C11 + A1B12C12 H1 : B11 6= 0, B2 6= 0 φ4(x) is large

+A2B2C2 + ε Ho : B2 = 0 φ5(x) reject when
H1 : B2 6= 0 φ5(x) is large
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