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Abstract

A test proposed by Seid Hamid & von Rosen (2005b) is considered. The
critical point is calculated using a conditional approach. The condi-
tional distributions under the null and alternative hypotheses are shown
to be represented as sums of weighted central and non central chi-square
random variables, respectively. Under the null hypothesis, the Satterth-
waite approximation is used to a get an approximate critical point. An
approximate estimated power is given using a Satterthwaite kind of ap-
proximation together with some new ideas. A numerical example is
given to illustrate the results.
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1. Introduction

Quite often models that are proposed and fitted to data are ”incorrect” to
some extent and need to be treated carefully. Moreover, the models proposed
are usually based on several assumptions. An important part of modelling is
diagnosing the flaws in these models as well as checking if the assumptions are
true or rather check if the data violates the assumptions.

In most model fitting problems, whether they are linear or non linear, di-
agnosing the model or the model assumptions is performed by examining the
residuals. Residuals are also used to detect outliers and/or influential observa-
tions in the data. Residuals are the part of the data which is left unexplained
by the fitted model. They are defined as the difference between the observed
and fitted values:

ei = yi − ŷi.

However, in the Growth Curve Model which was introduced by Potthof & Roy
(1964) and is usually referred to us the Potthoff & Roy model, the ordinary
residuals which are defined as above consist of two parts. One part gives
information about the between individual structure. The second part gives
information about the within individual structure which in fact is a part of
the residual that tells us if the estimated model fits the data. This part can in
fact be shown to be the difference between the observed and estimated means.

Therefore, when dealing with the Growth Curve Model one should be careful
when examining the ordinary residuals. For example, the two parts mentioned
in the previous paragraph may happen to have opposite signs and could cancel
with each other and give an impression that the model fits the data well when
it in fact does not. That is why there is a need to define other residuals which
take the bilinear structure in the model into consideration. This has been
done by von Rosen (1995) and the residuals are presented below. First, let us
give the definition of the Growth Curve Model.

Let X : p × n and B : q × k be the observation and parameter matrices,
respectively, and let A : p×q and C : k×n be the within and between individual
design matrices, respectively. Suppose that q ≤ p and ρ(C) + p ≤ n, where
ρ(.) denotes the rank of a matrix. The Growth Curve model is given by

X = ABC + ε, (1.1)

where the columns of ε are assumed to be independently p-variate normally
distributed with mean zero and an unknown positive definite covariance matrix
Σ.

Taking the bilinear structure into account three residuals for the above
model were defined by von Rosen (1995):
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R1 = A(A′S−1A)−A′S−1X(I − C ′(CC ′)−C),

R2 = (I −A(A′S−1A)−A′S−1)X(I − C ′(CC ′)−C),

R3 = (I −A(A′S−1A)−A′S−1)XC ′(CC ′)−C,

where S = X(I − C ′(CC ′)−C)X ′.

In the same paper it was suggested that one can use one of the above
residuals or a combination of two to check the between and within individuals
assumptions. Specifically one can use R3, which is the difference between the
observed and estimated means, to check if the estimated model fits the data.
For detailed information about the interpretation of residuals in the Growth
and Extended Growth models we refer to Seid Hamid & von Rosen (2005a).

In this paper we are going to consider a statistic for testing the hypothesis
that the model fits the data which can formally be presented as:

Ho : B = 0
H1 : B 6= 0.

(1.2)

The test which is a function of R3 is proposed by Seid Hamid & von Rosen
(2005b) and is given as:

φ(X) = tr{XC ′(CC ′)−CX ′S−1A(A′S−1A)−A′S−1}. (1.3)

The hypothesis is rejected when φ(X) > c where c is obtained from

PHo(φ(X) > c) = α, (1.4)

where α is the desired level of significance.
By looking at the test given in (1.3), it is not easy to see that the test is

a function of the residual, R3. However, if one refers to the paper by Seid
Hamid & von Rosen (2005b) and looks at the steps they used in obtaining the
test, one could see that the test statistics is equivalent to

exp{−n
2 tr{S−1XC ′(CC ′)−CX ′}}

exp{−n
2 tr{S−1R3R′

3}}
, (1.5)

where the hypothesis is rejected for small values of the ratio, i.e., when the
values are close to zero. As we can see from the above expression, the numera-
tor is a function of the observed mean structure, XC ′(CC ′)−C. On the other
hand the denominator is a function of the residual, R3 which is obtained by
subtracting the estimated mean structure from the observed mean, i.e.,

R3 = XC ′(CC ′)−C −AB̂C.
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That means the test compares the observed mean and the residuals. In other
words, the test compares the observed and estimated means and rejects the
hypothesis when they are “close” to each other, i.e., when the residuals are
very “small”.

Unfortunately, the exact distribution for the test statistic given in (1.3) is
difficult to obtain. As a result, in practical situations one needs to come up
with other ways to calculate the critical point. Two suggestions were made
in Seid Hamid & von Rosen (2005b). The first one is to approximate the
density of the statistic using the first two moments. In this paper, we shall
discuss the second alternative which is based on conditioning using a natural
ancillary statistic. That is, we calculate the critical point for a given S, where
S = X(I−C ′(CC ′)−C)X ′ is an ancillary statistic for the parameter of interest,
B. We show that the resulting conditional distribution can be written as a
linear combination of independent chi-square random variables which allows
us to use existing results for such sums including a well known approximation
by Satterthwaite (1946).

Apart from a great simplification provided by conditioning, conditioning
like sufficiency and invariance, leads to a reduction of the data (Lehmann,
1986). When the problem involves ancillary statistics conditioning is appro-
priate since it makes the inference more relevant to the situation at hand.

Ancillary statistics is a statistics whose distribution doesn’t depend on the
parameter of interest. The term ancillary was first used by Fisher (1956) and
those statistics are referred as non-informative since they do not provide any
information about the parameter of interest.

In the presence of an ancillary statistics Z, i.e., a statistic with a distribu-
tion independent of the parameter, one can think of the observation X (with
distribution P) as obtained from a two-stage experiment (Lehmann, 1986):

i) Observe the ancillary statistic Z with distribution F .

ii) Given Z, observe a quantity X with distribution P (X|Z).

The resulting X is distributed according to the original distribution P . Under
these circumstances conditioning is appropriate since it makes the inference
more relevant to the situation at hand (Lehmann, 1986). It was also suggested
there that the above argument is valid even if the distribution of the ancillary
statistic depends on parameters other than the parameter of interest. Such
statistic is usually called S-ancillary or partial ancillary statistic. However,
in this paper we use the term ancillary even if the statistic depends on other
parameters. By ancillary we mean it is ancillary for the parameter of interest.

For more details about ancillary statistics we refer, among others, to papers
by Fisher (1956) and Basu (1964).
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The conditioning variables are not always restricted to ancillary statistics.
For brief discussions and further references about conditioning with variables
other than ancillary statistics and concepts of relevant subsets we refer to
Lehmann (1986).

Now let us come to the Growth Curve Model given in (1.1), S = X(I −
C ′(CC ′)−C) has a Wishart distribution with parameters Σ and n − ρ(C),
which is independent of the parameter of interest B, although it depends on
the covariance matrix Σ. This shows that S is ancillary for B. What we shall
do in this section is to find a critical point for the test defined in (1.3) by
conditioning on the ancillary statistic S.

It is important to note that our approach is different from other conditional
inferences in which conditioning is usually made at an early stage, mainly for
eliminating nuisance parameters, see for example Basu (1977). Whereas, in
this paper we condition after the test has been constructed using the restricted
followed by estimated likelihood approaches. Moreover, in most conditional
approaches, the statistic which is used for conditioning is a partial sufficient
statistic which gives the advantage that the resulting conditional distribu-
tion depends only on the parameter of interest, see Basu (1978) about partial
sufficiency. However, in our case, we have already eliminated the nuisance pa-
rameter using the restricted maximum likelihood approach. The main reason
for conditioning here, unlike most cases, is to make the distribution relatively
easier so that we could be able to calculate the critical point.

Moreover, S is ancillary for B and as a result it contains no information
about B. Consequently, we do not lose any information about B by con-
ditioning on S. In fact, by conditioning on S, we will reduce the data to
make the inference more relevant to the situation at hand without losing any
information about B.

Furthermore, in problems of testing Fisher (1956) uses ancillary statistics
for the determination of the true level of significance. He recommends that,
in the presence of ancillary statistics, the level of significance of a test should
be computed by refereing to the conditional sample space determined by the
set of all possible samples for which the value of the ancillary statistics is the
one presently observed, see Basu (1964).

2. The critical point: a conditional approach

Suppose the Growth Curve model given in (1.1) has been fitted to data and we
want to evaluate the model through the hypothesis presented in (1.2). A test
statistic was constructed by Seid Hamid & von Rosen (2005b) using restricted
likelihood followed by an estimated likelihood approach. The test statistic is
given in (1.3). The hypothesis is rejected when φ(X) > c, where c is calculated
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such that
PHo(φ(X) > c) = α, (2.1)

where α is the desired level for the test. As mentioned in the previous sec-
tion, obtaining the critical point from (2.1) requires the distribution of φ(X)
which unfortunately is difficult to obtain. In the same paper, two alternating
approaches in finding an approximate critical point, which could be applied in
practical situations, were suggested. What we present and discuss here is the
conditional approach and we will calculate a critical point for a given value of
S. That is to approximate c by c(S), where c(S) is obtained such that

PHo(φ(X|S) > c(S)) = α. (2.2)

The conditional distribution φ(X|S) is relatively easy to deal with. Moreover,
in the presence of an ancillary statistic, which is the case here, conditioning is
appropriate for the reasons explained in the previous section. The conditional
distribution is given in the theorem below as a weighted sum of independent
chi-square random variables which enables us to use existing results for such
a sum.

Theorem 2.1. Consider the hypothesis given in (1.2). Under the null hy-
pothesis the conditional test φ(X|S) can be described as

φ(X|S) ≡
∑

WiiΛii, (2.3)

where, W ′
iis are independently distributed as chi-square random variables with

ρ(C) degrees of freedom and Λ′iis are non negative constants which are func-
tions of S. The “≡” in equation (2.3) represents equivalence in distribution
and ρ(C) denotes the rank of the between individual design matrix C.

Proof. Consider the test given in (1.3) and condition on S. The conditional
test equals

φ(X|S) = tr{XC ′(CC ′)−CX ′S−1A(A′S−1A)−A′S−1}. (2.4)

Observe that the above expression is identical with that of φ(X) given in (1.3).
However, it is important to note that here S is no longer a part of the random
data instead it has become a constant.

Now let us assume, without loss of generality, that Σ = I. This is possible
due to the fact that the null distributions of both the conditional and uncon-
ditional tests given in (1.3) and (2.4), respectively, are independent of Σ. We
refer to Seid Hamid & von Rosen (2005b) for the proof.

Therefore, under the null hypothesis, i.e., when B = 0, we have

W = XC ′(CC ′)−CX ′ ∼ W (I, ρ(C)),
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where W (I, ρ(C)) represents a Wishart distribution with parameters I and
ρ(C). We may therefore rewrite φ(X|S) as

φ(X|S) = tr{WP},
where P = S−1A(A′S−1A)−A′S−1. P is a symmetric positive semi-definite
matrix, as a result we could decompose it as

P = ΓΛΓ′, (2.5)

where Γ is an orthogonal matrix, Λ is a diagonal matrix where the diagonal
elements Λii are the ith eigenvalues of P .

On the other hand W can be written as the sum of ρ(C) independent
random matrices as,

W =
ρ(C)∑

i=1

wiw
′
i, (2.6)

where wi ∼ Np(0, I), see Kollo & von Rosen (2005).
Consequently,

φ(X|S) ≡ tr{WΓΛΓ′}
≡ tr{WΛ},

where the last statement was possible since tr{AB} = tr{BA} for any two
matrices, the Wishart distribution is rotation invariant and Γ is an orthogonal
matrix which is independent of W . Now using the property of the trace
function we get

φ(X|S) ≡
∑

WiiΛii,

where the Wii’s are the diagonal elements of W . Moreover, using the represen-
tation in (2.6), it is possible to show that they are independently distributed
as a chi-square distribution with ρ(C) degrees of freedom. ¤

A weighted sum of independent chi-square random variables arise very fre-
quently in practical situations, see for example Johnson & Kotz (1968), Mathai
(1982) and Moschopoulos (1985). Exact distribution for the sum has been
given as an infinite series form in Kotz et al. (1967), Mathai (1982) and
Moschopoulos (1985) where in the latter the applications in different areas
such as queue type problems and engineering were given. It was mentioned
that their representation is computationally convenient since the coefficients
are easily computed by simple recursive relations.

However, the exact distribution is too complicated to be applied in practical
situations which brings a need for a good and reasonable approximation. Sev-
eral approximations has been proposed, see for example Moschopoulos (1985),
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where a series representation of the exact distribution is given and they sug-
gested that one can use a truncated version of the series where the truncation
error is readily obtainable.

However we are going to use the celebrated and well known Satterthwaite
approximation which will be presented briefly below. For more details about
the approximation and extension of the approximation to linear combination
of independent Wishart random variables see Statterthwaite (1949) and Tan
& Gupta (1983), respectively. In the latter paper, some Monte Carlo results
were given to demonstrate the closeness of the approximation and the studies
indicate that the approximation in general is quite good.

Let

Z =
p∑

i=1

aiσ
2
i χ

2
fi

,

where the χ2
fi

’s are independent chi-square random variables and the ai’s pos-
itive constants. The well known approximation of Z is given by (see Tan and
Gupta, 1983):

Z ∼ aχ2
f , (2.7)

a =
∑p

i=1 a2
i fiσ

4
i∑p

i=1 aifiσ2
i

, (2.8)

f =
(
∑p

i=1 aifiσ
2
i )

2

∑p
i=1 a2

i fiσ4
i

. (2.9)

The f and a in the above two equations are obtained by equating the first
two moments of both sides of equation (2.7). However, in practical situations
the σ2

i ’s are unknown. In this case, a and f are estimated by replacing the
σ2

i ’s by their estimates. This approximation is known as the Satterthwaite
approximation (Satterthwaite, 1946).

In our case, the distribution of φ(X|S) does not depend on the unknown
covariance matrix, consequently, the distribution of

∑
WiiΛii is free of any un-

known parameters. The resulting a and f , therefore, are free of any unknown
parameters. The distribution of

∑
WiiΛii is approximated by aχ2

f , where χ2
f

is a chi-square random variable with f degrees of freedom and a is a positive
constant. The unknown parameters a and f are then obtained by equating
the first two moments of

∑
WiiΛii and aχ2

f . We shall present this result in
the following theorem.
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Theorem 2.2. Consider the test statistic given in (1.3). Its distribution for
a given S can be approximated by that of aχ2

f where χ2
f is a chi-square random

variable with f degrees of freedom and a is positive constant. The constants a
and f are given by

a =
∑p

i=1 Λ2
ii∑p

i=1 Λii
, (2.10)

f =
ρ(C)(

∑p
i=1 Λii)2∑p

i=1 Λ2
ii

, (2.11)

where Λii are the eigen values given in Theorem 2.1, and ρ(C) is the degrees
of freedom of the chi-square random variables in Theorem 2.1, which is equal
to the rank of the between individual design matrix C.

The critical point c(S) can then be calculated from

PHo(aχ2
f > c(S)) = α.

It could also be of interest to calculate the power of the test which may be
used as a measure of performance for the test. What we shall do here is to
calculate the conditional power for a given S. That is the power is obtained
from

PH1(φ(X|S) > c(S)).

The distribution of φ(X|S), under the alternative hypothesis, is easier to han-
dle than the unconditional one because it can be written as a sum of weighted
non-central chi-square random variables. This fact is given in the following
theorem.

Theorem 2.3. Suppose φ(X|S) as given in (2.4). Let µ =
√

n Σ−
1
2 ABC,

where C is a matrix of full rank constructed from the linearly independent
columns of the between individual design matrix C. The distribution of φ(X|S)
under the alternative can be written as

φ(X|S) ≡
∑

TiiΛii; (2.12)

where Λii are positive constants, W ′
iis are independently distributed as a non-

central chi-square random variable with ρ(C) degrees of freedom and λi =∑ρ(C)
j=1 µ2

ij is the non-centrality parameter with µij as the (i, j)th element of µ.

Proof. Consider the conditional test given in (2.4). It can be rewritten as

φ(X|S) = tr{{Σ− 1
2 XC ′(CC ′)−CX ′Σ−

1
2 }{Σ 1

2 S−1A(A′S−1A)−A′S−1Σ
1
2 }},
(2.13)

where S is considered as a constant.
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Now consider the first part of the above expression. It is possible to show
that

W = Σ−
1
2 XC ′(CC ′)−CX ′Σ−

1
2 ∼ Wp(I, ρ(C),∆),

where ∆ = µµ′.
Let

P = Σ
1
2 S−1A(A′S−1A)−A′S−1Σ

1
2 .

P is a symmetric positive semi-definite matrix. As a result we can decompose
it as

P = ΓΛΓ′,
where Γ is an orthogonal matrix and Λ is a diagonal matrix where its diagonal
elements are the eigenvalues of P . Under the alternative hypothesis, φH1(X|S)
can therefore be written as

φ(X|S) = tr{WP}
= tr{WΛ}
=

∑
WiiΛii.

However, using a representation similar to (2.6) for W , it is possible to show
that W ′

iis are independently distributed as non-central chi-square with ρ(C)
degrees of freedom and non-centrality parameter λi =

∑ρ(C)
j=1 µ2

ij . ¤

As we can see from the above theorem, the distribution of the conditional
test under the alternative hypothesis depends on the covariance matrix Σ,
which in many practical situations is unknown. Consequently, an estimator is
needed to get an estimated power. A brief discussion about two alternative
estimators is given in the next section.

Theorem 2.3 also shows that the distribution of the conditional test depends
on the parameter B. It is important to note that this dependence is through
µ and hence through the non-centrality parameters λi’s.

The representation given in Theorem 2.3 enables us to use existing results
for a weighted sum of independent non-central chi-square random variables.
Linear combinations of non-central chi-square random variables were consid-
ered among others by Press (1966) and the exact distribution was given there.
It was also mentioned that this kind of distribution arises in classifying an
unknown vector into one of two multivariate normal populations with unequal
means and covariance matrices.

However, the distribution is too complicated to be used in practical appli-
cations although there exist several algorithms to numerically solve the series,
see for example Imhof (1961). Here we are going to use an approximation
similar to Satterthwaite’s approximation. This kind of approximation, as to
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our knowledge, has not been done for a weighted sum of non-central chi-square
random variables. Moreover, we shall show later that our approach is somehow
different and new ideas has been implemented to get the approximation.

Suppose

Z =
p∑

i=1

aiχ
2
fi,λi

,

where χ2
fi,λi

is distributed as non-central chi-square with fi degrees of freedom
and non-centrality parameter λi.

The idea is to approximate the distribution of Z by

Z ∼ aχ2
f,λ. (2.14)

In order that the approximate distribution is completely specified, we need
to specify the values of a, f and λ. If we want to use a similar approach
as in Satterthwaite (1946), the parameters will be obtained by equating the
first three moments on both sides of (2.14). However, this involves solving
three equations in a, f , and λ where one of the equations is a third degree
polynomial in all the three parameters.

Our approach is now presented shortly and involves decomposing the non-
central chi-square random variable into two independent components. One
part which is distributed as a non-central chi-square distribution with one
degree of freedom and non-centrality parameter λ. The second component is
distributed as a central chi-square distribution with f − 1 degrees of freedom.

Let xi ∼ N(µi, 1), i=1,2,...,f . Then it is well known that
∑

x2
i ∼ χ2

f,λ,

where λ2 =
∑

µ2
i .

We can make an orthogonal transformation (Rao, 1973) form x1, x2, ..., xf

to y1, y2, ..., yf such that y1, y2, ..., yf are independently normally distributed
with a unit variance and E(y1) = λ, and E(yi) = 0 for i = 2, 3, ..., f .

Therefore,
f∑

i=1

x2
i =

f∑

i=1

y2
i = y2

1 +
f∑

i=2

y2
i . (2.15)

Observe that y2
1 is a non-central chi-square random variable with 1 degree of

freedom and non-centrality parameter λ. Whereas,
∑f

i=2 y2
i is distributed as

central chi-square with f − 1 degrees of freedom. Moreover, it is important to
note that the two terms in (2.15) are independent.

Consequently, we can write χ2
f,λ as

χ2
f,λ = χ2

1,λ + χ2
f−1. (2.16)
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We can therefore write aχ2
f,λ and

∑p
i=1 aiχ

2
fi,λi

as

aχ2
f,λ = aχ2

1,λ + aχ2
f−1, (2.17)

p∑

i=1

aiχ
2
fi,λi

=
p∑

i=1

aiχ
2
1,λi

+
p∑

i=1

aiχ
2
fi−1. (2.18)

Now, a and f in (2.14) are obtained by equating the first two moments of aχ2
f−1

and
∑p

i=1 aiχ
2
fi−1. The non-centrality parameter λ will then be obtained by

equating the first moments of aχ2
1,λ and

∑p
i=1 aiχ

2
1,λi

, where a is replaced by
its estimator. The result for φ(X|S) is presented in the following theorem.

Theorem 2.4. The distribution of φ(X|S) under the alternative hypothesis
can be approximated by aχ2

f,λ, where a, f and λ are given by

a =
∑p

i=1 Λ2
ii∑p

i=1 Λii
,

f =
(ρ(C)− 1)[

∑p
i=1 Λii]2∑p

i=1 Λ2
ii

+ 1,

λ =
{∑p

i=1 Λii(1 + λi)}{
∑p

i=1 Λii}∑p
i=1 Λ2

ii

− 1,

where the Λii’s and λi’s are as given in Theorem (2.3), and ρ(C) is the degrees
of freedom of the non-central chi-square random variables, Wii’s.

The power of the test, under the alternative hypothesis, is then calculated
as

PH1(aχ2
f,λ > c(S)).

Observe that the test depends on B only through the non-central parameter
λ, and this non-centrality parameter increases the more B differs from zero.
We have shown this in the numerical example given in the next section. It is
also interesting to see that the power is a monotone function of λ.

3. Estimating Σ for power calculations

Theorem 2.3 shows that the distribution of the conditional test under the
alternative hypothesis depends on the unknown covariance matrix Σ. As a
result, the approximate distribution also depends on Σ, see Theorem 2.4. In
practical situations, one needs to find a reasonable estimator for Σ to obtain
an estimator for the approximate power.

One possible estimator for Σ is S/n. This estimator was obtained by maxi-
mizing the part of the likelihood, and was used to get the estimated likelihood
when defining the test in Seid Hamid & von Rosen (2005b). Moreover, it is
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possible to show that S provides sufficient information in absence of knowl-
edge about the parameter B. See a paper by Sprott (1975) on marginal and
conditional sufficiency. One can also use the unbiased estimator S/(n−ρ(C)).
Furthermore, the two estimators mentioned above are functions of the ancil-
lary statistic and are considered as constants.

However, for a completely specified alternative, S does not provide sufficient
information about Σ. Another estimator that might be used is

Σ̂ =
1
n
{S + (XC ′(CC ′)−C −ABC)(XC ′(CC ′)−C −ABC)′}. (3.1)

This estimator gives more information than S, provided that there is some
knowledge about B. This is particularly true when B is known. However,
using (3.1) as an estimator for Σ brings complications to the conditional ap-
proach which will not be discussed in this paper. Nevertheless, one can use
the estimate after the data has been obtained to get an estimate for the power.
This will be shown in the next section using a numerical example.

4. Numerical Illustration

In this section we give a numerical example to illustrate the results presented
in the previous sections. We consider the Potthoff & Roy (1964) data. This
data was considered by von Rosen (1995) to illustrate how one can use his
residuals. The data consist of dental measurements on eleven girls and sixteen
boys at four ages (8, 10, 12 and 14). Each measurement is the distance, in
millimeters, from the center of pituitary to pteryo-maxillary fissure. The data
is reproduced at the end of the paper.

Suppose the Potthoff & Roy model has been fitted to the data with the
assumption that the mean growth for both the girls and boys is linear. The
observation, design and parameter matrices are given by

X4×27 =




21 21 20.5 23.5 21.5 20 21.5 23 20 16.5
24.5 26 21.5 23 20 25.5 24.5 22 24 23
27.5 23 21.5 17 22.5 23 22,
20 21.5 24 24.5 23 21 22.5 23 21 19
25 25 22.5 22.5 23.5 27.5 25.5 22 21.5 20.5
28 23 23.5 24.5 25.5 24.5 21.5,

21.5 24 24.5 25 22.5 21 23 23.5 22 19
28 29 23 24 22.5 26.5 27 24.5 24.5 31
31 23.5 24 26 25.5 26 23.5,
23 25.5 26 26.5 23.5 22.5 25 24 21.5 19.5
28 31 26.5 27.5 26 27 28.5 26.5 25.5 26

31.5 25 28 29.5 26 30 25




,
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B =
(

b01 b02

b11 b12

)
, A =




1 8
1 10
1 12
1 14


 , and C2×27 =

(
111 016

011 116

)
.

Observe how we presented the observation matrix, commas are used to sepa-
rate the rows.

We are now interested to check the assumed linear curves for the mean
growth. That is to check if the growth for the mean can be regard as linear
for both the girls and the boys. The hypothesis can be formulated as

Ho : B = 0
H1 : B 6= 0.

The proposed conditional test is given by

φ(X|S) = tr{XC ′(CC ′)−CX ′S−1A(A′S−1A)−A′S−1}.
The hypothesis is rejected when φ(X|S) > c(S), where c(S) is obtained from

PHo(aχ2
f > c(S)) = α,

where a and f are as given in Theorem 2.2.
The observed value of the test for the above data is φ(x|s) = 175.12. There-

fore, we reject the hypothesis if c(s) is greater than 175.12.
The calculated values of a and f are 0.02 and 3, respectively. Suppose the

level of significance α = 0.05, c(s) is then obtained from

PHo(0.02χ2
3 > c(s)) = 0.05,

and the value of the c(s) obtained is 0.16, which is much smaller than the
observed value for the test. That is, the data gives strong evidence towards
rejecting the hypothesis that B = 0. Therefore, we conclude that linear growth
curves seem appropriate to describe the mean structure for both the girls and
the boys.

We would like to note that this conclusion was reached by Potthoff & Roy
when they analyzed the data for the first time. We could also see this by
looking at the residuals defined by von Rosen (1995). The residuals which are
obtained as a difference between the observed and estimated means are very
small which leads to the conclusion that the assumed linear curves seem to fit
the data well.

Let us now calculate the estimated power for the above test. First, we shall
replace the unknown covariance matrix Σ by 1

nS. That is the matrices µ and
13



P given in Theorem 2.3 become

µ =
√

nS−
1
2 ABC

P =
1
n

S−
1
2 A(A′S−1A)−A′S−

1
2

Recall that both the exact and approximate powers depend on B. This is also
true for the estimated power. That means we need to specify the value of B
under the alternative hypothesis. Suppose that we are testing the hypothesis
that B = 0 against the alternative

B =
(

7.43 5.84
0.48 0.83

)
.

The calculated values of a and f for the data under the alternative hy-
pothesis are 0.04 and 3, respectively. Note that these values do not depend
on the value of B and and hence remain the same for all B 6= 0. However,
the value of the non-centrality parameter depends on the choice of B. Recall
that the power actually is a monotone function of this non-centrality parame-
ter. This is also the case for the estimated power. For the data considered
and the above specified B, the value of the non-central parameter obtained is
λ = 10.07. Consequently, the estimated power of the test is calculated as

P = PB(0.04χ2
3,10.07 > c(s)),

where c(s) = 0.16. The estimated power obtained is 0.94 which is reasonably
high.

Let us try another alternative, say

B =
(

10.71 9.32
0.91 0.87

)
.

As mentioned above the values of a and f remain the same, i.e., a = 0.04 and
f = 4. However, we get λ = 21.11 which is larger than the value obtained
for the previous alternative. The estimated power for this alternative is 0.998
which, as expected, is larger than that of the previous alternative.

Suppose now that

B =
(

2.91 1.32
0.091 0.087

)
.

For this alternative, we get λ = 1.89 and the estimated power is 0.5, smaller
than the above two values.

We have tried B values very close to zero. We have seen that the power is
larger than the level of significance which shows that the test is unbiased for
this particular data. It could be interesting to show that this is always the
case.

14



We would like to note here that the above values are estimated values after
Σ has been replaced by 1

nS. However the fact that S gives all information
about Σ is no longer true when B has a specified value. Consequently, it is
possible to show that the above estimator underestimates the approximated
power and perhaps it is also true for the exact power too.

The estimator given (2.19) gives more information about Σ under the alter-
native hypothesis. Unfortunately, this estimator is no longer a function of only
the ancillary statistic which brings complications to the problem. However,
the estimate may be used at the last stage. That is, after the conditioning
has been done and after the data is observed. We have tried to calculate the
estimated power using (2.19) as an estimator for Σ, and found values which
are larger than the values found above, i.e., with Σ̂ = 1

nS. For example, for
the last alternative, i.e.,

B =
(

2.91 1.32
0.091 0.087

)
,

we obtained a = 5.01, f = 2 and λ = 1.02. The estimated power obtained
is 0.99 which is much larger than the previous value, which was 0.5. It is
also important to note that the estimated power now depends on B not only
through λ but also through a and f . As a result, the three parameters are
different for different B values specified in the alternative.

Finally let us consider another example. The data consists of four rows.
Each row consists of a random sample of 27 observations from a standard
normal distribution. Moreover, the rows are independent with each other.
Suppose that the first 11 observations belong to one group and the remaining
16 belong to another group. Consider each column as repeated measurements
from one individual. The design and parameter matrices for these data are
similar to that of the Potthoff & Roy’s data.

For this random data the observed value for the test statistic obtained is
φ(x|s) = 0.024. The values of a and f obtained are 0.09 and 3, respectively.
As a result, c(s) is calculated from

PHo(0.09χ2
3 > c(s)) = α.

For α = 0.05, c(s) = 0.70.
As we can see from the results above φ(x|s) = 0.024 < 0.70 = c(s). This

implies that there is no evidence to reject the hypothesis that B = 0. There-
fore, the assumption of linear growths for the means is not appropriate. That
is actually what we expected since each row is independently taken from a
standard normal distribution.
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5. Summary

Like in the univariate and ordinary multivariate models, ordinary residuals
have been used in checking the adequacy of models in repeated measures and
longitudinal analysis and specifically in the Growth Curve Model. However,
due to the bilinear structure in the model we believe one should decompose
the residuals and examine the different components separately. As to our
knowledge, the test considered in this paper is the first in using the right
residuals for checking if assumed growth curves fit the mean structures.

It would also be interesting to see various properties of the conditional test
presented in this paper. For the Potthoff & Roy model we have seen that the
estimated power is larger that the level of significance which was 0.05. We
have also tried different levels and found the same results. This indicates that
the test might be unbiased. In the future it would be interesting to check
if the test really is unbiased. We have also seen that the estimated power
obtained by using Σ̂ = 1

nS underestimates the approximate power. It could
be interesting to show that this is true for the exact power of the test.

Finally, we would like to mention that the approach utilized in this paper
could be extended to the Extended Growth Curve Model. Moreover, the
hypothesis could also be formulated in more general form so that it includes
a wide range of possibilities.
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Table 1. The Potthoff & Roy (1964) data

Age Age

Girl 8 10 12 14 Boy 8 10 12 14
1 21.0 20.0 21.5 13.0 1 26.0 25.0 29.0 31.0
2 21.0 21.5 24.0 25.5 2 21.5 22.5 23.0 26.5
3 20.5 24.0 24.5 26.0 3 23.0 22.5 24.0 27.5
4 23.5 24.5 25.0 26.5 4 25.5 27.5 26.5 27.0
5 21.5 23.0 22.5 23.5 5 20.0 23.5 22.5 26.0
6 20.0 21.0 21.0 22.5 6 24.5 25.5 27.0 28.5
7 21.5 22.5 23.0 25.0 7 22.0 22.0 24.5 26.5
8 23.0 23.0 23.5 24.0 8 24.0 21.5 24.5 25.5
9 20.5 21.0 22.0 21.5 9 23.0 20.5 31.0 26.0
10 16.5 19.0 19.0 19.5 10 27.5 28.0 31.0 31.5
11 24.5 25.0 28.0 28.0 11 23.0 23.0 23.5 25.0

12 21.5 23.5 24.0 28.0
13 17.0 24.5 26.0 29.5
14 22.5 25.5 25.5 26.0
15 23.0 24.5 26.0 30.0
16 22.0 21.5 23.5 25.0
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