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1 Introduction

This paper is a follow up paper of Nahtman (2005). In that paper random
factors in linear models were considered under the condition that the factors
were permutation invariant. The main idea is to fully couple the experimental
design to the modelling part, which among others includes knowledge of how
to incorporate designs which are invariant under some kind of permutations.
Concerning estimation MLEs are since long time available (e.g. see Anders-
son (1975)). A commonly applied design is a design which is invariant under
the exchange of factor levels. Moreover, besides the design being exchange-
able we often have some linear restrictions on the factor. For example, the
restriction which puts the sum of factor levels to 0, which among others does
not violate the assumption of exchangeability. However, one factor is fairly
straight-forward to study but our aim is to study interactions. We will limit
the study to K−way tables which immediately leads to that we are going to
study marginal permutations (see Nahtman (2005)).

The best way to describe invariance properties of random factors, including
interactions, is via their covariance matrices. Because of invariance it appears
that the natural quantities to study are the eigenvalues and eigenvectors. It is
easy to imagine that restrictions on the factor levels will lead to singular co-
variance matrices with eigenvalues equal to 0. The corresponding eigenvectors
then tell us what kind of restrictions can be imposed on the factors.

In the present paper we are going to study shift invariance. This leads
to covariance matrices with Toeplitz structures. Statistical inference in linear
models under Toeplitz structured covariance matrices has previously been con-
sidered by Olkin and Press (1969). In particular shift invariance implies that
covariance matrices are build up with the help of Kronecker products, i.e. have
block Toeplitz structures. It is interesting to note that in practise shift invari-
ance is natural but that this property is not always taken into account when
modelling data. Eigenvalues and eigenvectors of Toeplitz matrices are known.
We start with this observation. Later results are extended to the study of
higher order interactions of factors and block Toeplitz structures. In Section
2 spectral properties of symmetric Toeplitz matrices are given, Section 3 con-
nects shift invariance with Toeplitz covariance matrices, Section 4 considers
the reparametrization of factors and in particular we present detailed results
for n = 4, 5, 6, 7, 8, where the size of the covariance matrix is n×n, in Section
5 the most general results are given and finally in Section 6 t-shift invariance
is briefly considered. The whole area is new. To connect shift invariance with
Toeplitz covariance matrices, which spectrum will guide us what kind of re-
strictions can be assumed to hold, has not been studied before. Therefore, in
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particular in Section 4 as well as in the appendices we present many details.

2 Preliminaries and definitions

Some definitions and useful results from matrix theory are outlined.
An n× n matrix T of the form

T =




t0 t1 t2 · · · t1
t1 t0 t1 · · · t2

t2 t1 t0
. . .

...
...

. . . . . . . . . t1
t1 t2 · · · t1 t0




= Toep(t0, t1, t2, . . . , t1) (2.1)

is called a symmetric circular Toeplitz matrix. The matrix T depends on
[n/2] + 1 parameters, where [•] stands for the integer part, and ti,j = t|i−j|,
i, j = 1, . . . , n.

A symmetric circular matrix SC(n, k) is defined in the following way:

SC(n, k) = Toep(
n︷ ︸︸ ︷

0, . . . , 0︸ ︷︷ ︸
k

, 1, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
k−1

), (2.2)

where k ∈ {1, . . . , [n/2]}. For notational convenience denote SC(n, 0) = In.
The matrix SC(n, k) has components (i,j) which equal 1 if |i − j| = k or

|i− j| = n− k, k = 1, . . . , [n/2]. Notice that

a0In +
[n/2]∑

i=0

aiSC(n, i) = 0, (2.3)

implies that a0 = . . . = a[n/2] = 0, i.e. In, SC(n, 1), . . . , SC(n, [n/2]) are linearly
independent. Lemma 2.1, given below, establishes the known fact that these
matrices commute. It is easy to see that

Toep(t0, t1, t2, . . . , t1) =
[n/2]∑

i=0

tiSC(n, i). (2.4)

The spectral properties of symmetric circular Toeplitz matrices can be found
in Davis (1979) or Basilevsky (1983). We present some additional results
concerning multiplicities of the eigenvalues of such matrices.

Let λh, h = 1, . . . , n, be an eigenvalue of the matrix T : n × n. The
following lemma gives the spectral property of the matrix T .
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Lemma 2.1 Let T: n × n be symmetric Toeplitz matrix with elements as in
(2.1). If n is odd

λh = t0 + 2
[n/2]∑

j=1

tj cos(2πhj/n). (2.5)

There is only one eigenvalue λn which has multiplicity 1 and all other eigen-
values are of multiplicity 2.
If n is even

λh = t0 + 2
n/2−1∑

j=1

tj cos(2πhj/n) + tn/2 cos(πh). (2.6)

There are only two eigenvalues λn, λn/2 which have multiplicity 1 and all others
eigenvalues are of multiplicity 2.

The eigenvectors corresponding to the eigenvalues λ1, . . . , λn are

vh = n−1/2(vh1, . . . , vhn)′ (2.7)

with

vhi = cos(2πih/n) + sin(2πih/n), i = 1, . . . , n. (2.8)

Proof. For derivation of the eigenvalues and eigenvectors we refer the reader
to Basilevsky (1983). If n is odd we can see that λh = λn−h, h = 1, . . . , n− 1,
and λn = t0 + 2

∑(n−1)/2
j=1 tj . If n is even, then for h 6= n, n/2 : λh = λn−h.

However, the eigenvalues

λn = t0 + 2
n/2−1∑

j=1

tj cos(2πj) + tn/2 cos(πn),

λn/2 = t0 + 2
n/2−1∑

j=1

tj cos(πj) + tn/2 cos(πn/2)

are distinct. 2

It is worth observing that from (2.2) it follows that Lemma 2.1 immediately
gives eigenvalues and eigenvectors for SC(n, k). Moreover, eigenvectors given
in (2.7) do not depend on the elements in (2.1). One important consequence of
this result is that any pair of two different symmetric circular Toeplitz matrices
of the same size always commute.
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3 Shift permutation invariance, Toeplitz covariance matrices

An orthogonal matrix P = (pij) : n× n is a shift permutation matrix if

pij =

{
1, if j = i + 1− nI(i>n−1)

0, otherwise
, (3.1)

where

I(a>b) =

{
1, if a > b

0, otherwise
. (3.2)

Definition 3.1 The covariance matrix D(ξ) of a factor ξ is called invariant
with respect to a shift permutation matrix P if D(ξ) = D(Pξ) or, equivalently,
if PD(ξ)P ′ = D(ξ).

Suppose that we have observations Yi1,i2,...,ik for which we assume a model
consisting of k random factors, i.e. the observations Yi1,i2,...,ik form a K−way
table. A crucial assumption will be that if we permute the levels of one
factor, the others will not be affected. This leads to the concept of marginal
permutations. For k = 2 we have Yi1i2 , i.e. a matrix Y = (Yij). Invariance
implies that we can premultiply Y by a shift matrix P (1) and P (1)Y will have
the same distribution as Y . Observe that P (1) affects the index i in Yij and
if E(Y ) = 0 invariance means D(P (1)Y ) = D(Y ). If we want to permute
the j-index, we look at Y P (2). Furthermore, if we intend to permute the
indices i and j independently of each other we study P (1)Y P (2), or equivalently
(P (2) ⊗ P (1))vecY , where vec is the usual vec-operator. In the case of several
factors we can repeat the arguments and obtain the next theorem.

Theorem 3.2 In the K-way table the structure of the shift permutation ma-
trix Pk equals

Pk = P (k) ⊗ · · · ⊗ P (1), (3.3)

where P (h) are shift permutation matrices, h = 1, . . . , k.

The matrix Pk defined in Theorem 3.2 is called a marginally shift permu-
tation matrix of order k.

In the proof, we are not going to discuss the vector of observations Y but
instead study the underlying random factors. Based on our results for factors
we can immediately consider observations but this is a trivial exercise. For
example, for

Yijk = ξ1
i + ξ2

j + γ
(2)
ij + εijk,
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where ξ1=(ξ1
i ) ∼ N(0, Σξ1), ξ2=(ξ2

j ) ∼ N(0, Σξ2), γ(2)=(γ(2)
ij ) ∼ N(0,Σγ(2)),

ε = (εijk) ∼ N(0, Σε) are independent, results are obtained when we have
knowledge about the factors ξ1, ξ2, γ(2) and ε. Here γ(2) is a second order in-
teraction factor. In the subsequent we are going to study an s-order interaction
factor γ(s) with D(γ(s)) = Σs. Let levels of the factor γ(s) be ordered lexico-
graphically. The next theorems show that invariance has strong implications
on the structure of the covariance matrix. We first present two special cases
which are of interest in applications but also serve as a basis in an induction
proof which will be used for proving the general statement.

Theorem 3.3 The covariance matrix Σ: n1 × n1 of the factor ξ is shift per-
mutation invariant if and only if it is a symmetric circular Toeplitz matrix:

Σ = Toep(τ0, τ1, τ2, . . . , τ1) =
[n1/2]∑

i=0

τiSC(n1, i), (3.4)

where the matrices SC(n1, i), i = 0, . . . , [n1/2], are given by (2.2).

Proof. Let eh be the h-th column of the identity matrix In1 , h = 1, . . . , n1.
Then we can express Σ = (σij) in the following way:

Σ =
n1∑

i=1

n1∑

j=1

σijeie
′
j =

n1∑

i

σiieie
′
i +

[n1/2]∑

k=1

∑

i,j
|i−j|=
k,n1−k

σijeie
′
j . (3.5)

Since by invariance, i.e. P1γ
(1) and γ(1) have the same covariance matrix, we

study when P1ΣP ′
1 = Σ. Now,

P1ΣP ′
1 =

n1∑

i=1

σii(P1eie
′
iP

′
1) +

[n1/2]∑

k=1

∑

i,j
|i−j|=
k,n1−k

σij(P1eie
′
jP

′
1) (3.6)

equals Σ for all P1, if and only if

σ11 = σ22 = . . . = σn1n1 ,

σ12 = σ23 = . . . = σn1−1,n1 = σn1,1,

σ13 = σ24 = . . . = σn1−2,n1 = σn1,2,

... (3.7)
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By using τk instead of σij , where |i− j| = k or |i− j| = n1 − k, we obtain

Σ =
n1∑

i=1

τ0eie
′
i +

[n1/2]∑

k=1

τk

∑

i,j
|i−j|=k,n1−k

eie
′
j = τ0In1+

[n1/2]∑

k=1

τkSC(n1, k)

=
[n1/2]∑

k=0

τkSC(n1, k) = Toep(τ0, τ1, τ2, . . . , τ1).

2

For the second order interactions we have

Theorem 3.4 The covariance matrix Σ2 : n × n of γ(2) is shift permutation
invariant if and only if

Σ2 =
[n2/2]∑

k2=0

[n1/2]∑

k1=0

τkSC(n2, k2)⊗ SC(n1, k1), (3.8)

where γ(2) represents the interaction between a factor with n1 levels and a
factor with n2 levels, n = n1n2, the matrices SC(i, j) are given by (2.2), and

k = ([n1
2 ] + 1)k2 + k1. (3.9)

Proof. Observe, that we may write

Σ2 =
∑
r,s

σrsere
′
s =

n2∑

i2,j2=1

n1∑

i1,j1=1

σ(i2i1)(j2j1)(e2i2
e′

2j2
)⊗ (e1i1

e′
1j1

), (3.10)

where er, es are the r-th and the s-th columns of the identity matrix In,
respectively, ehih is the ih-th column of the identity matrix Inh

, h = 1, 2,
σ(i2i1)(j2j1) = Cov(γ(2)

i2i1
, γ

(2)
j2j1

) is the element of Σ2 in the r-th row and the s-th
column,

r = (i2 − 1)n1 + i1, s = (j2 − 1)n1 + j1,

and
er = e2i2

⊗ e1i1
, es = e

2j2
⊗ e

1j1
.

We apply the proof of Theorem 3.3, i.e. inquiring the condition

P2Σ2P
′
2 = Σ2,
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for all P2, where P2 = P (2) ⊗ P (1) is the marginally shift permutation matrix
defined in (3.3). It follows that

Σ2 =
[n2/2]∑

k2=0

n1∑

i1,j1=1

σ(k2i1)(k2j1)SC(n2, k2)⊗ P (1)(e1i1e
′
1j1)P

(1)′

which implies that the theorem is true. 2

Now we can formulate the result in the case of s-order interactions which
is one of the main results in this paper.

Theorem 3.5 The covariance matrix Σs : n × n of γ(s) is shift permutation
invariant if and only if

Σs =
[ns/2]∑

ks=0

. . .

[n1/2]∑

k1=0

τkSC(ns, ks)⊗ · · · ⊗ SC(n1, k1), (3.11)

where γ(s) represents the interaction between s factors, the matrices SC(ni, ki),
i = 1, . . . , s, are given by (2.2), τk are constants, and

k =
s∑

h=2

h−1∏

i=1

([
ni
2

]
+ 1

)
kh + k1. (3.12)

Proof. We only prove (3.12) since (3.11) is a straightforward consequence of
(3.12) and the proof of Theorem 3.3. From Theorem 3.3 and Theorem 3.4 it
follows that (3.12) is true for s = 1, 2. Suppose that (3.12) holds for s − 1,
i.e. holds for Σs−1 : Ns−1×Ns−1, where Ns−1 = n1×· · ·×ns−1. However, the
s−1 factors can be viewed as one factor with an index defined via k1, . . . , ks−1:

s−1∑

h=2

h−1∏

i=1

([
ni
2

]
+ 1

)
kh + k1. (3.13)

Let the index of the s factor be given by ks. Then, by using (3.9) in Theorem
3.4 for two factors

k =
s−1∏

i=1

([
ni
2

]
+ 1

)
ks +

(
s−1∑

h=2

h−1∏

i=1

([
ni
2

]
+ 1

)
kh + k1

)

=
s∑

h=2

h−1∏

i=1

([
ni
2

]
+ 1

)
kh + k1, (3.14)

and thus (3.12) has been proved. 2
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4 Reparameterization of factors and shift permutation invari-
ance

One can usually put an infinite number of constraints on factor levels. How-
ever under invariance there exist only some few possibilities. This will be
studied in detail in this chapter. Moreover, it is worth observing that un-
der permutation invariance there is only one reparameterization constraint,
i.e. the sum-to-zero condition, whereas shift permutation invariance will give
additional reparameterization possibilities.

We are going to examine the covariance matrices of order n = 4, 5, 6, 7, 8,
satisfying dihedral block symmetry Perlman (1987). In particular we study
the interpretation of τk in (3.11) and reparameterizations. The results are im-
portant because they guide us how to design interpretable experiments. There
is a significant difference in the interpretation of the designs (with reparame-
terization) for various n, i.e. the number of factor levels. For example one
should think about if n is odd or even, if nk = 360, or if n = 2k, for some k.
Therefore we present a detailed treatment of n = 4, 5, 6, 7, 8.

When n = 4

Σ =




τ0 τ1 τ2 τ1

τ1 τ0 τ1 τ2

τ2 τ1 τ0 τ1

τ1 τ2 τ1 τ0


 = I2 ⊗A + (J2 − I2)⊗B

= I2 ⊗ (τ0I2 + τ1(J2 − I2)) + (J2 − I2)⊗ (τ2I2 + τ1(J2 − I2)), (4.1)

where

cov(ξi, ξj) =





τ0, i = j,

τ1, |i− j| ∈ {1, 3} ,

τ2, |i− j| = 2,

(4.2)

and i, j = 1, . . . , 4.
When n = 5

Σ =




τ0 τ1 τ2 τ2 τ1

τ1 τ0 τ1 τ2 τ2

τ2 τ1 τ0 τ1 τ2

τ2 τ2 τ1 τ0 τ1

τ1 τ2 τ2 τ1 τ0




, (4.3)
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where for i, j = 1, . . . , 5,

cov(ξi, ξj) =





τ0, i = j,

τ1, |i− j| ∈ {1, 4},
τ2, |i− j| ∈ {2, 3}.

(4.4)

Comparing n = 4 and n = 5 it appears that it is much easier to discover the
underlying symmetry in (4.1) compared to (4.3). Moreover, for n = 6, n = 7
and n = 8 we respectively have:

Σ =




τ0 τ1 τ2 τ3 τ2 τ1

τ1 τ0 τ1 τ2 τ3 τ2

τ2 τ1 τ0 τ1 τ2 τ3

τ3 τ2 τ1 τ0 τ1 τ2

τ2 τ3 τ2 τ1 τ0 τ1

τ1 τ2 τ3 τ2 τ1 τ0




, (4.5)

and for i, j = 1, . . . , 6,

cov(ξi, ξj) =





τ0, i = j,

τ1, |i− j| ∈ {1, 5},
τ2, |i− j| ∈ {2, 4},
τ3, |i− j| = 3;

if n = 7

Σ =




τ0 τ1 τ2 τ3 τ3 τ2 τ1

τ1 τ0 τ1 τ2 τ3 τ3 τ2

τ2 τ1 τ0 τ1 τ2 τ3 τ3

τ3 τ2 τ1 τ0 τ1 τ2 τ3

τ3 τ3 τ2 τ1 τ0 τ1 τ2

τ2 τ3 τ3 τ2 τ1 τ0 τ1

τ1 τ2 τ3 τ3 τ2 τ1 τ0




, (4.6)

with elements

cov(ξi, ξj) =





τ0, i = j,

τ1, |i− j| ∈ {1, 6},
τ2, |i− j| ∈ {2, 5},
τ3, |i− j| ∈ {3, 4},
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where i, j = 1, . . . , 7; and finally for n = 8 we once again have a fairly sym-
metric structure

Σ =




τ0 τ1 τ2 τ3 τ4 τ3 τ2 τ1

τ1 τ0 τ1 τ2 τ3 τ4 τ3 τ2

τ2 τ1 τ0 τ1 τ2 τ3 τ4 τ3

τ3 τ2 τ1 τ0 τ1 τ2 τ3 τ4

τ4 τ3 τ2 τ1 τ0 τ1 τ2 τ3

τ3 τ4 τ3 τ2 τ1 τ0 τ1 τ2

τ2 τ3 τ4 τ3 τ2 τ1 τ0 τ1

τ1 τ2 τ3 τ4 τ3 τ2 τ1 τ0




, (4.7)

with elements (i, j = 1, . . . , 8)

cov(ξi, ξj) =





τ0, i = j,

τ1, |i− j| ∈ {1, 7},
τ2, |i− j| ∈ {2, 6},
τ3, |i− j| ∈ {3, 5},
τ4, |i− j| = 4.

In the rest of this section we shall put different constraints on the spec-
trum of the shift permutation invariant covariance matrix and study in detail
specific circular covariance structures and implications of reparameterization
constraints. The results are based on Lemma 2.1.

The case n = 4:

The spectrum of Σ : 4× 4 of the factor ξ is the following:

λ1 = λ3 = τ0 − τ2,

λ2 = τ0 − 2τ1 + τ2, (4.8)
λ4 = τ0 + 2τ1 + τ2.

Using the linear relationships among eigenvalues λ1, λ2, λ3 and parameters
τ0, τ1, τ2 gives

τ0 = 1
4(2λ1 + λ2 + λ4),

τ1 = 1
4(−λ2 + λ4),

τ2 = 1
4(−2λ1 + λ2 + λ4),
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and we can express Σ given by (4.1) in the following way:

Σ = 1
4I2 ⊗ [(2λ1 + λ2 + λ4)I2 + (J2 − I2)(−λ2 + λ4)]

+ 1
4(J2 − I2)⊗ [(−2λ1 + λ2 + λ4)I2 + (J2 − I2)(−λ2 + λ4)].

We also assume the natural condition ξi 6= ξj for all i 6= j, i, j = 1, . . . , 4,
in ξ because if two levels are equal it does not make sense to model both.
Therefore this situation will not be considered.

Let us look at how the structure of Σ will change if it is singular, i.e. exists
at least one λi = 0, i = 1, . . . , 4. To model data with singular covariance
matrices we refer to Rao (1973) in the general Gauss-Markov setup and to
Srivastava and von Rosen (2002) with an unknown Σ. In the present paper
we study the problem from a design of experiment point of view.

(i) λ4 = 0: In this case

λ1 = −2(τ1 + τ2)
λ2 = −4τ1,

τ0 = −2τ1 − τ2, and τ1 < 0, τ2 < −τ1.

Hence,

Σ =




−2τ1 − τ2 τ1 τ2 τ1

τ1 −2τ1 − τ2 τ1 τ2

τ2 τ1 −2τ1 − τ2 τ1

τ1 τ2 τ1 −2τ1 − τ2




= I2 ⊗ (−(2τ1 + τ2)I2 + τ1(J2 − I2) + (J2 − I2)⊗ (τ2I2 + τ1(J2 − I2))
= 1

4I2 ⊗ [(2λ1 + λ2)I2 − (J2 − I2)λ2]
+ 1

4(J2 − I2)⊗ [(−2λ1 + λ2)I2 − (J2 − I2)λ2].

The corresponding eigenvector of λ4 = 0 is v4 = (1, 1, 1, 1)′ = 14. Since

E(v′4ξ) = 0, D(v′4ξ) = 0,

we have 1′4ξ = 0 a.s. which is a “sum-to-zero” reparameterization constraint.
Hence we clearly see what model should be assumed under the assumption
of shift invariance together with the commonly applied standardization con-
dition 1′4ξ = 0. This type of knowledge is usually not implemented in the
data analysis which then will lead to an inefficient and sometimes erroneous
analysis. For example, to have a wrong covariance model will lead to that
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confidence intervals will not be correctly constructed.

(ii) λ2 = 0: In this case,

λ1 = 2(τ0 − τ1),
λ4 = 4τ1,

τ2 = 2τ1 − τ0, τ0 > τ1 > 0.

The corresponding covariance matrix equals

Σ =




τ0 τ1 2τ1 − τ0 τ1

τ1 τ0 τ1 2τ1 − τ0

2τ1 − τ0 τ1 τ0 τ1

τ1 2τ1 − τ0 τ1 τ0




= I2 ⊗ (τ0I2 + τ1(J2 − I2)) + (J2 − I2)⊗ ((2τ1 − τ0)I2 + τ1(J2 − I2))
= 1

4I2 ⊗ [(2λ1 + λ4)I2 + (J2 − I2)λ4]
+ 1

4(J2 − I2)⊗ [(−2λ1 + λ4)I2 + (J2 − I2)λ4].

The eigenvector corresponding to λ2 = 0 is v2 = (1,−1, 1,−1)′. In this
case, since E(v′2ξ) = 0, D(v′2ξ) = 0 we have ξ1 − ξ2 + ξ3 − ξ4 = 0 a.s. which
also is a natural reparameterization constraint in many data sets.

(iii) The assumption ξi 6= ξj , i 6= j a.s. makes it impossible that λ1 = 0
or λ3 = 0 holds.

(iv) λ4 = λ2 = 0: In this case, λ1 = 2τ0 and Σ = 2τ0(I2 − 1
2J2)⊗ I2.

The eigenvectors corresponding to λ4 = λ2 = 0 are v4 = (1, 1, 1, 1)′ and
v2 = (1,−1, 1,−1)′. Taking into account that E(v′4ξ) = E(v′2ξ) = 0 and
D(v′4ξ) = D(v′2ξ) = 0 we get ξ1 = −ξ3 and ξ2 = −ξ4 a.s. which is a new and
natural type of reparameterization constraint. However, if ξ has a symmetric
distribution this case is excluded.

The case n = 5:

The spectrum of Σ : 5× 5 is the following:

λ1 = λ4 = τ0 + 1
2(
√

5− 1)τ1 − 1
2(
√

5 + 1)τ2,

λ2 = λ3 = τ0 − 1
2(
√

5 + 1)τ1 + 1
2(
√

5− 1)τ2,

λ5 = τ0 + 2τ1 + 2τ2.

12



The corresponding eigenvectors are

v1 = (−1, 1
2(1−

√
5),−1

2(1−
√

5), 1, 0)′,

v2 = (−1, 1
2(
√

5 + 1),−1
2(
√

5 + 1), 1, 0)′,

v3 = (−1
2(
√

5 + 1), 1
2(
√

5 + 1),−1, 0, 1)′,

v4 = (−1
2(1−

√
5), 1

2(1−
√

5),−1, 0, 1)′,
v5 = (1, 1, 1, 1, 1)′.

The relationships between the eigenvalues λ1, λ2, λ3, λ4 and parameters
τ0, τ1, τ2 equal

τ0 = 1
5(2λ1 + 2λ2 + λ5),

τ1 = −
√

5
50 (

√
5− 5)λ1 −

√
5

50 (
√

5 + 5)λ2 + 1
5λ5,

τ2 = −
√

5
50 (

√
5 + 5)λ1 −

√
5

50 (
√

5− 5)λ2 + 1
5λ5.

In a similar manner to the case n = 4 we shall study the change of structure
when Σ : 5×5 becomes singular due to putting eigenvalues equal to zero. Then
we find out what kind of different constraints are induced by this procedure.

However, we shall in some detail only consider the case when the singularity
of Σ is caused by setting λ5 = 0. In this case, τ0 = −2(τ1 + τ2), and

λ1 = 1
2(
√

5− 5)τ1 − 1
2(
√

5 + 5)τ2,

λ2 = −1
2(
√

5 + 5)τ1 + 1
2(
√

5− 5)τ2,

τ1 < −(3 +
√

5)τ2/2.

The covariance matrix Σ has in this case the following structure which unfor-
tunately cannot be simplified more.

Σ : 5× 5 =




−2(τ1 + τ2) τ1 τ2 τ2 τ1

τ1 −2(τ1 + τ2) τ1 τ2 τ2

τ2 τ1 −2(τ1 + τ2) τ1 τ2

τ2 τ2 τ1 −2(τ1 + τ2) τ1

τ1 τ2 τ2 τ1 −2(τ1 + τ2)




.

The eigenvector corresponding to λ5 = 0 is v5 = (1, 1, 1, 1, 1)′. Since
E(v′5ξ) = 0 and D(v′5ξ) = 0 we get a ”sum-to-zero” reparameterization con-
straint, i.e. 1′5ξ = 0 a.s.

Other types of constraints which are possible are λ2=λ3= 0, λ1 = λ4= 0,
λ1=λ4 =λ5=0, λ2 =λ4 =λ5 =0. The effects of these are shown in Appendix 1.
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The case n = 6:

The spectrum of Σ : 6× 6 is given by

λ1 = λ5 = τ0 + τ1 − τ2 − τ3,

λ2 = λ4 = τ0 − τ1 − τ2 + τ3,

λ3 = τ0 − 2τ1 + 2τ2 − τ3,

λ6 = τ0 + 2τ1 + 2τ2 + τ3.

The eigenvectors of the corresponding eigenvalues equal:

v1 = (1
2(1 +

√
3),−1

2(1−
√

3),−1,−1
2(1 +

√
3), 1

2(1−
√

3), 1)′

v2 = (−1
2(1−

√
3),−1

2(1 +
√

3), 1,−1
2(1−

√
3),−1

2(1 +
√

3), 1)′,
v3 = (−1, 1,−1, 1,−1, 1)′,
v4 = (−1

2(1 +
√

3),−1
2(1−

√
3), 1,−1

2(1 +
√

3),−1
2(1−

√
3), 1)′,

v5 = (1
2(1−

√
3),−1

2(1 +
√

3),−1,−1
2(1−

√
3), 1

2(1 +
√

3), 1)′,
v6 = (1, 1, 1, 1, 1, 1)′.

We can use the following relationships among τs and λs:

τ0 = 1
6(2λ1 + λ2 + 2λ3 + λ6),

τ1 = 1
6(λ1 − λ2 − λ3 + λ6),

τ2 = 1
6(−λ1 − λ2 + λ3 + λ6),

τ3 = 1
6(−2λ1 + 2λ2 − λ3 + λ6),

to represent Σ via its spectrum.
The case λ3 = 0. Then it follows from v3 that ξ1 + ξ3 + ξ5 = ξ2 + ξ4 + ξ6.
The case λ6 = 0. From v6 it follows that we immediately can state that

the sum to zero condition holds: ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6 = 0. Other cases
are presented in Appendix 2.

The case n = 7:

For the case n = 7 we can just refer to Lemma 2.1 in order to find the
eigenvalues and eigenvectors. However, it is difficult to present interpretable
details. One reason for this is that the designs we are studying are connected
to circularity. Since, for example 360/7 is not an integer we run into problems
with the interpretations. The same also applies when putting eigenvalues to 0

14



and if we then want to see what kind of conditions are imposed on the factor
levels.

The case n = 8:

The spectrum of Σ : 8× 8 is the following:

λ1 = λ7 = τ0 +
√

2τ1 −
√

2τ3 − τ4,

λ2 = λ6 = τ0 − 2τ2 + τ4,

λ3 = λ5 = τ0 −
√

2τ1 +
√

2τ3 − τ4, (4.9)
λ4 = τ0 − 2τ1 + 2τ2 − 2τ3 + τ4,

λ8 = τ0 + 2τ1 + 2τ2 + 2τ3 + τ4.

The columns of the matrix

V =




√
2 1 0 −1 −√2 −1 0 1

1 −1 −1 1 1 −1 −1 1
0 −1

√
2 −1 0 1 −√2 1

−1 1 −1 1 −1 1 −1 1
−√2 1 0 −1

√
2 −1 0 1

−1 −1 1 1 −1 −1 1 1
0 −1 −√2 −1 0 1

√
2 1

1 1 1 1 1 1 1 1




are the eigenvectors corresponding to the eigenvalues λ1, . . . , λ8. We can ex-
press Σ : 8 × 8 via its spectrum using the relationships among eigenvalues
λ1, . . . , λ8 in (4.9) and parameters τ0, . . . , τ4

τ0 = 1
8(2λ1 + 2λ2 + 2λ3 + λ4 + λ8),

τ1 = 1
8(
√

2λ1 −
√

2λ3 − λ4 + λ8),
τ2 = 1

8(−2λ2 + λ4 + λ8),

τ3 = 1
8(−

√
2λ1 +

√
2λ3 − λ4 + λ8,

τ4 = 1
8(−2λ1 + 2λ2 − 2λ3 + λ4 + λ8).

Let us study how the structure of Σ will change in the case it is singular,
i.e. exists at least one λi = 0, i = 1, . . . , 8, and what kind of dependencies arise
among factor levels, i.e. how the corresponding factor is reparameterized.
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In the case λ8 = 0,

λ1 = (
√

2− 2)τ1 − 2τ2 − (
√

2 + 2)τ3 − 2τ4,

λ2 = −2τ1 − 4τ2 − 2τ3,

λ3 = −(
√

2 + 2)τ1 − 2τ2 + (
√

2− 2)τ3 − 2τ4,

λ4 = −4τ1 − 4τ3.

The eigenvector corresponding to λ8 is a vector with all elements equal to
one, i.e. v8 = 1′8. Since E(1′8ξ) = 0 and D(1′8ξ) = 0 we get ”sum-to-zero”
reparameterization constraint, i.e. 1′8ξ= 0 a.s.

We can see that the “sum-to-zero” constraints on factor levels are only
connected to the last eigenvalue of the covariance matrix λn which equals to
the sum of row (or column) elements of this matrix. Other types of constraints
can be found in Appendix 3.

In the case when two or three eigenvalues are zeros, one gets more restric-
tions on the components of a random factor, i.e. not just the sum over factor
levels equals zero but some linear combination of them. Consider, for exam-
ple, the case when λ4 = λ8 = 0. In this case the singularity of the covariance
matrix means that ξ2 + ξ4 + ξ6 + ξ8 = 0 and ξ1 + ξ3 + ξ5 + ξ7 = 0.

5 Interactions

Suppose now that in our model besides main effects there are also second order
interactions

Y = (1n1 ⊗ 1n2 ⊗ 1n)µ + (In1 ⊗ 1n2 ⊗ 1n)ξ1

+(1n1 ⊗ In2 ⊗ 1n)ξ2 + (In1 ⊗ In2 ⊗ 1n)γ(2)

+(In1 ⊗ In2 ⊗ In)ε, (5.1)

where γ(2) represent second order interaction effects between factors ξ1 with
n1 levels and factor ξ2 with n2 levels, ε is a random error.

Let Σ2 denote the covariance matrix of γ(2). Due to marginal shift per-
mutation invariance Σ2 has a specific structure which can be described by a
block Toeplitz matrix:

Σ2 =




A0 A1 A2 . . . A2 A1

A1 A0 A1 . . . A3 A2

A2 A1 A0 . . . A4 A3
...

...
...

. . .
...

...
A2 A3 A4 . . . A0 A1

A1 A2 A3 . . . A1 A0




. (5.2)
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Here every matrix Ai is a symmetric circular Toeplitz matrix with [n2/2] + 1
parameters, i = 0, . . . , [n1/2]. Hence, the matrix Σ2 is defined by ([n1/2] +
1)([n2/2] + 1) parameters.

Notice that Σ2 can be written as a Kronecker product of two matrices

Σ2 = Σ(1) ⊗ Σ(2), (5.3)

where both Σ(1) and Σ(2) are symmetric circular Toeplitz matrices, as defined
in (2.1), i.e. Σ(1) =Toep(t0, t1, t2, . . . , t1) and Σ(2) =Toep(s0, s1, s2, . . . , s1).

Let λ
(k)
1 , . . . , λ

(k)
[nk/2]+1 be the distinct eigenvalues of Σ(k) with multiplicities

m1, . . . , m[nk/2]+1, respectively, k = 1, 2. Because of the Kronecker product

structure the distinct eigenvalues of Σ2 are λ
(1)
i λ

(2)
j of multiplicity mimj , i =

1, . . . , [n1/2] + 1 and j = 1, . . . , [n2/2] + 1.
If we look at the presentation of Σ2 in (5.2) and (5.3), it follows from

Theorem 3.4 that the blocks in (5.2) are the following

Ai = tiΣ2 = Toep(τi0 , τi1 , τi2 , . . . , τi2 , τi1),

where
ik = i([n2

2 ] + 1) + k, i = 0, . . . , [n1
2 ], k = 0, . . . , [n2

2 ].

For example, A0 = t0Σ2 = Toep(τ0, τ1, τ2, . . . , τ2, τ1).
Now one can find the eigenvalues of Σ2 directly using the expression for

the eigenvalues of a symmetric circular Toeplitz matrix, given in Lemma 2.1.

Theorem 5.1 Let ω
(k)
i , i = 1, . . . , [n2/2]+1, k = 0, . . . , [n1/2], be the distinct

eigenvalues of block Ak in (5.2) of multiplicities mi, respectively. Then the
eigenvalues of Σ2 in (5.2) are the following:

If n1 is odd,

λh,i = ω
(0)
i + 2

[
n1
2 ]∑

j=1

ω
(j)
i cos(2πhj/n1), h = 1, . . . , n1.

The multiplicity of λn1,i
is mi and all other eigenvalues are of multiplicity 2mi.

If n1 is even,

λh,i = ω
(0)
i + 2

n1
2 −1∑

j=1

ω
(j)
i cos(2πhj/n1) + ω

(
n1
2 )

i cos(πh), h = 1, . . . , n1.

Only the eigenvalues λn1,i
and λ

n1/2,i are of multiplicity mi and all others
eigenvalues are of multiplicity 2mi.
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Proof. Notice first that Σ2 in (5.2) can be written as

Σ2 =
[
n1
2 ]∑

k1=0

SC(n1, k1)⊗Ak1 ,

where

Ak1 =
[
n2
2 ]∑

k2=0

τkSC(n2, k2),

k = k1([n2
2 ] + 1) + k2.

Since SC(ni, ki) are symmetric circular matrices, ki = 0, . . . , [ni/2], we know
that they commute. Thus, there exists an orthogonal matrix Vi, i = 1, 2, such
that

V ′
i SC(ni, ki)Vi = Λki ,

where Λki is a diagonal matrix where the diagonal elements are the eigenvalues
of SC(ni, ki) given via Lemma 2.1. Let V = V1 ⊗ V2. Then

V ′Σ2V =
[
n1
2 ]∑

k1=0

Λk1 ⊗ ΛA,k1 ,

where ΛA,k1 is a diagonal matrix with diagonal elements equal to the eigen-
values of Ak1 , given in Lemma 2.1. Thus, the proof is complete. 2

It is of interest to formulate the result in the case of s-order interactions
and to present the eigenvalues of Σs in a recursive form. The next theorem
presents Σs in a recursive way.

Theorem 5.2 Let Σs be as in Theorem 3.5. Then

Σs =
[ns/2]∑

ks=0

SC(ns, ks)⊗ Σ(ks)
s−1, (5.4)
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where

Σ(k)
0 = τk, (5.5)

k = 0, . . . , N(s) − 1, N(s) =
s∏

i=1

([ni
2 ] + 1),

Σ
(k∗h+1)

h =
[nh/2]∑

kh=0

SC(nh, kh)⊗ Σ
(k∗h+1([

nh
2 ]+1)+kh)

h−1 , (5.6)

k∗h+1 = 0, . . . , N(s\h) − 1, h = 1, . . . , s− 1,

N(s\h) =
s∏

i=h+1

([ni
2 ] + 1).

Proof. The proof is an immediate consequence of Theorem 3.5 if we observe
that k in (3.12) can be obtained recursively via k∗h+1([nh/2] + 1) + kh:

k =
s∑

h=2

h−1∏

i=1

([
ni
2

]
+ 1

)
kh + k1 = (

s∑

h=3

h−1∏

i=1

([
ni
2

]
+ 1

)
kh + k2)

︸ ︷︷ ︸
k∗2

(
[

n1
2

]
+ 1) + k1

= [[
s∑

h=4

h−1∏

i=1

([
ni
2

]
+ 1

)
kh + k3]

︸ ︷︷ ︸
k∗3

(
[

n2
2

]
+ 1) + k2](

[
n1
2

]
+ 1) + k1

...

= [· · · [[
s−1∏

i=1

([
ni
2

]
+ 1

)
ks + ks−1]

︸ ︷︷ ︸
k∗s−1

(
[ns−2

2

]
+ 1) + ks−2]× · · ·

· · ·+ k2](
[

n1
2

]
+ 1) + k1.

Thus,

Σs =
[ns/2]∑

ks=0

· · ·
[n2/2]∑

k2=0

SC(ns, ks)⊗ · · · ⊗ SC(n2, k2)⊗
[n1/2]∑

k1=0

SC(n1, k1)Σ
k∗2([n1

2 ]+1)+k1

0

=
[ns/2]∑

ks=0

· · ·
[n3/2]∑

k3=0

SC(ns, ks)⊗ · · · ⊗ SC(n3, k3)⊗
[n2/2]∑

k2=0

SC(n2, k2)Σ
k∗3([n2

2 ]+1)+k2

1

If we continue applying (5.6) in a similar way, we get (5.4). 2
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From Lemma 2.1 it follows that the eigenvalues for SC(n, l) are given by

λk =





2 cos(2πkl/n), if l ≤ [n2 ], n odd,
2 cos(2πkl/n), if l ≤ n

2 − 1, n even,
cos(πk), if l = n

2 , n even,

and k = 1, 2, . . . , n. Since SC(ns, ks), ks = 0, . . . , [ns/2] commute, it fol-
lows that all terms in the sum (3.11) commute. Thus, they have a common
eigenspace. Let Λ(n, l) denote the diagonal matrix of eigenvalues of SC(n, l).
The next theorem is based on Theorem 3.5.

Theorem 5.3 The diagonal matrix Λs of the eigenvalues to Σs in Theorem
3.5 is given by

Λs =
[ns/2]∑

ks=0

· · ·
[n1/2]∑

k1=0

τkΛ(ns, ks)⊗ · · · ⊗ Λ(n1, k1),

where k is given in (3.12).

From here one can in principle study multiplicities of eigenvalues. However,
one has to take into account if ni is odd or even and therefore no general
formula will be presented. Alternatively using Theorem (5.4) we can state

Λs =
[ns/2]∑

ks=0

Λ(ns, ks)⊗ Λ(ks)
s−1,

where

Λ(k)
0 = τk,

k = 0, . . . , N(s) − 1, N(s) =
s∏

i=1

([ni
2 ] + 1),

Λ
(k∗h+1)

h =
[nh/2]∑

kh=0

Λ(nh, kh)⊗ Λ
(k∗h+1([

nh
2 ]+1)+kh)

h−1 ,

k∗h+1 = 0, . . . , N(s\h) − 1, h = 1, . . . , s− 1,

N(s\h) =
s∏

i=h+1

([ni
2 ] + 1).
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6 Possible generalizations

Up to know we have been focusing on one step shift permutation invariance.
However we will briefly consider what happens if we suppose t-shift permu-
tation invariance. An orthogonal matrix P (t) : n × n is a t-shift permutation
matrix, t = 2, . . . , n− 1, if

pij =

{
1, if j = i + t− nI(i>n−t)

0, otherwise .
(6.1)

It follows that P (t) equals the product of t 1-shift matrices given in (3.1).
Thus, we can start to copy the proofs given in Theorem 3.3. However, it is
clear that some criteria of irreducibility should be included. Furthermore, one
should consider the “smallest t”. Consider the following sequence: n = 6;
2 → 4 → 6 → 2, 1 → 3 → 5 → 1 which consists of two “independent”
sequences. However, if n = 7 then 2 → 4 → 6 → 1 → 3 → 5 → 7 → 2 which
is one sequence. Hence, it has been shown that the effect of t-shift invariance
really depends on the size n of Σ.
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Appendix 1. Reparameterization constraints in the case n = 5

This appendix is a continuation of Section 4 when n = 5.

(ii) λ2 = λ3 = 0. In this case τ0 = 1
2(
√

5 + 1)τ1 − 1
2(
√

5− 1)τ2 and

λ1 =
√

5(τ1 − τ2),
λ5 = 1

2(
√

5 + 5)τ1 − 1
2(
√

5− 5)τ2.

The eigenvectors corresponding to zero eigenvalues are

v2 = (−1, 1
2(
√

5 + 1),−1
2(
√

5 + 1), 1, 0)′,

v3 = (−1
2(
√

5 + 1), 1
2(
√

5 + 1),−1, 0, 1)′.

Because E(v′iξ) = 0 and D(v′iξ) = 0, i = 2, 3, we get as reparameteriza-
tion constraints

−ξ1 + 1
2(
√

5 + 1)ξ2 − 1
2(
√

5 + 1)ξ3 + ξ4 = 0,

−1
2(
√

5 + 1)ξ1 + 1
2(
√

5 + 1)ξ2 − ξ3 + ξ5 = 0.

(iii) λ1 = λ4 = 0. In this case τ0 = −1
2(
√

5− 1)τ1 + 1
2(
√

5 + 1)τ2,

λ2 = −
√

5(τ1 − τ2),
λ5 = −1

2(
√

5− 5)τ1 + 1
2(
√

5 + 5)τ2

and

v1 = (−1, 1
2(1−

√
5),−1

2(1−
√

5), 1, 0)′,

v4 = (−1
2(1−

√
5), 1

2(1−
√

5),−1, 0, 1)′

are eigenvectors corresponding to the zero eigenvalues, leading to the
constraints

−ξ1 + 1
2(1−

√
5)ξ2 − 1

2(1−
√

5)ξ3 + ξ4 = 0,

−1
2(1−

√
5)ξ1 + 1

2(1−
√

5)ξ2 − ξ3 + ξ5 = 0.

(iv) λ1 = λ4 = λ5 = 0. In this case τ0 = (1 −√5)τ1, τ2 = 1
2(
√

5 − 3)τ1 and
thus

λ2 = 5
2(1−

√
5)τ1.
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The eigenvectors corresponding to the zero eigenvalues are

v1 = (−1, 1
2(1−

√
5),−1

2(1−
√

5), 1, 0)′,

v2 = (−1, 1
2(1 +

√
5),−1

2(1 +
√

5), 1, 0)′,
v5 = (1, 1, 1, 1, 1)′,

Thus the elements of ξ satisfy

−ξ1 + 1
2(1−

√
5)ξ2 − 1

2(1−
√

5)ξ3 + ξ4 = 0,

−ξ1 − 1
2(1 +

√
5)ξ211

2(1 +
√

5)ξ3 + ξ4 = 0,

ξ1 + ξ2 + ξ3 + ξ4 + ξ5 = 0.

(v) λ2 = λ3 = λ5 = 0. In this case τ0 = (1 +
√

5)τ1, τ2 = −1
2(
√

5 + 3)τ1 and

λ1 = 5
2(1 +

√
5)τ1.

Moreover,

v2 = (−1, 1
2(
√

5 + 1),−1
2(
√

5 + 1), 1, 0)′,

v3 = (−1
2(
√

5 + 1), 1
2(
√

5 + 1),−1, 0, 1)′,
v5 = (1, 1, 1, 1, 1)′

are the eigenvectors corresponding to zero eigenvalues. Thus,

−ξ1 + 1
2(1 +

√
5)ξ2 − 1

2(1 +
√

5)ξ3 + ξ4 = 0,

−1
2(
√

5 + 1)ξ1 + 1
2(
√

5 + 1)ξ2 − ξ3 + ξ5 = 0,

ξ1 + ξ2 + ξ3 + ξ4 + ξ5 = 0.

(vi) λ1 = λ2 = λ3 = λ4 = 0. In this case τ0 = 2τ1, τ2 =
√

5τ1. Hence,

λ5 = 2(2 +
√

5)τ1.

The eigenvectors v1, . . . , v4, give the reparametrization conditions which
in this case leads to that the vector of factor levels should be proportional
to v5 which implies that ξi 6= ξj , i 6= j, can not hold.
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Appendix 2. Reparameterization constraints in the case n = 6

As in Appendix 1 we present the effect on factor levels if introducing various
restrictions on the eigenvalues, i.e. put eigenvalues equal to 0.

(i) λ1 = λ5 = λ2 = λ4 = 0. The eigenvectors corresponding to the zero
eigenvalues equal

v1 = (1
2(
√

3 + 1), 1
2(
√

3− 1),−1,−1
2(
√

3 + 1),−1
2(
√

3− 1), 1)′,

v2 = (1
2(
√

3− 1),−1
2(
√

3 + 1), 1, 1
2(
√

3− 1),−1
2(
√

3 + 1), 1)′,

v4 = (−1
2(
√

3 + 1), 1
2(
√

3− 1), 1,−1
2(
√

3 + 1), 1
2(
√

3− 1), 1)′,

v5 = (−1
2(
√

3− 1),−1
2(
√

3 + 1),−1, 1
2(
√

3− 1), 1
2(
√

3 + 1), 1)′.

As a result, ξ = (ξ1, ξ2, ξ1, ξ2, ξ1, ξ2)′.

(ii) λ1 = λ5 = λ3 = 0. The corresponding eigenvectors are

v1 = (1
2(
√

3 + 1), 1
2(
√

3− 1),−1,−1
2(
√

3 + 1),−1
2(
√

3− 1), 1)′,

v5 = (−1
2(
√

3− 1),−1
2(
√

3 + 1),−1, 1
2(
√

3− 1), 1
2(
√

3 + 1), 1)′,
v3 = (−1, 1,−1, 1,−1, 1)′.

As a result we get, ξ = (ξ1, ξ2, ξ3, ξ1, ξ2, ξ3)′.

(iii) λ1 = λ5 = λ6 = 0. In this case the corresponding eigenvectors are

v1 = (1
2(
√

3 + 1), 1
2(
√

3− 1),−1,−1
2(
√

3 + 1),−1
2(
√

3− 1), 1)′,

v5 = (−1
2(
√

3− 1),−1
2(
√

3 + 1),−1, 1
2(
√

3− 1), 1
2(
√

3 + 1), 1)′,
v6 = (1, 1, 1, 1, 1, 1)′.

This leads to that, ξ1 + 3
2ξ2 + ξ3 − 1

2ξ5 = 0, ξ1 + ξ2 − ξ4 − ξ5 = 0 and
ξ1 + 1

2ξ2 + 1
2ξ5 + ξ6 = 0.

(iv) λ2 = λ4 = λ3 = 0. In this case the corresponding eigenvectors are

v2 = (1
2(
√

3− 1),−1
2(
√

3 + 1), 1, 1
2(
√

3− 1),−1
2(
√

3 + 1), 1)′,

v4 = (−1
2(
√

3 + 1), 1
2(
√

3− 1), 1,−1
2(
√

3 + 1), 1
2(
√

3− 1), 1)′,
v3 = (−1, 1,−1, 1,−1, 1)′,

and 2ξ1−2ξ2+ξ3−ξ6 = 0, 3ξ1−2ξ2+ξ4−2ξ6 = 0 and 2ξ1−ξ2+ξ5−2ξ6 = 0.
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(v) λ2 = λ4 = λ6 = 0. In this case the corresponding eigenvectors are

v2 = (1
2(
√

3− 1),−1
2(
√

3 + 1), 1, 1
2(
√

3− 1),−1
2(
√

3 + 1), 1)′,

v4 = (−1
2(
√

3 + 1), 1
2(
√

3− 1), 1,−1
2(
√

3 + 1), 1
2(
√

3− 1), 1)′,
v6 = (1, 1, 1, 1, 1, 1)′.

As result, ξ = (ξ1, ξ2, ξ3,−ξ1,−ξ2,−ξ3)′.

(vi) λ3 = λ6 = 0. To these two eigenvalues the corresponding eigenvectors
are

v3 = (−1, 1,−1, 1,−1, 1)′,
v6 = (1, 1, 1, 1, 1, 1)′.

Hence, ξ1 + ξ3 + ξ5 = 0 and ξ2 + ξ4 + ξ6 = 0.

(vii) λ1 = λ5 = λ2 = λ4 = λ3 = 0. In this case ξ = (ξ5, ξ5, ξ5, ξ5, ξ5, ξ5)′.

(viii) λ1 = λ5 = λ3 = λ6 = 0. In this case ξ = (−ξ5−ξ6, ξ5, ξ6,−ξ5−ξ6, ξ5, ξ6)′.

(ix) λ2 = λ4 = λ3 = λ6 = 0. Then, ξ = (ξ1, ξ1 − ξ6,−ξ6,−ξ1 + ξ6, ξ6)′.

(x) λ1 = λ5 = λ2 = λ4 = λ6 = 0. In this case ξ = (ξ1,−ξ1, ξ1,−ξ1, ξ1,−ξ1)′.

Appendix 3. Reparameterization constraints in the case n = 8

(i) λ1 = λ7 = 0. In this case

λ2 = λ6 = −
√

2τ1 − 2τ2 +
√

2τ3 + 2τ4,

λ3 = λ5 = −2
√

2τ1 + 2
√

2τ3,

λ4 = −(
√

2 + 2)τ1 + 2τ2 − (2−
√

2)τ3 + 2τ4,

λ8 = (2−
√

2)τ1 + 2τ2 + (2 +
√

2)τ3 + 2τ4

and
√

2ξ1 + ξ2 − ξ4 −
√

2ξ5 − ξ6 + ξ8 = 0, (6.2)
−ξ2 −

√
2ξ3 − ξ4 + ξ6 +

√
2ξ7 + ξ8 = 0. (6.3)
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(ii) λ2 = λ6 = 0. In this case

λ1 = λ7 =
√

2τ1 + 2τ2 −
√

2τ3 − 2τ4,

λ3 = λ5 = −
√

2τ1 + 2τ2 +
√

2τ3 − 2τ4,

λ4 = −2τ1 + 4τ2 − 2τ3,

λ8 = 2τ1 + 4τ2 + 2τ3

and

ξ1 − ξ2 − ξ3 + ξ4 + ξ5 − ξ6 − ξ7 + ξ8 = 0, (6.4)
−ξ1 − ξ2 + ξ3 + ξ4 − ξ5 − ξ6 + ξ7 + ξ8 = 0. (6.5)

(iii) λ3 = λ5 = 0. In this case

λ1 = λ7 = 2
√

2τ1 − 2
√

2τ3,

λ2 = λ6 =
√

2τ1 − 2τ2 −
√

2τ3 + 2τ4,

λ4 = −(2−
√

2)τ1 + 2τ2 − (2 +
√

2)τ3 + 2τ4,

λ8 = (2 +
√

2)τ1 + 2τ2 + (2−
√

2)τ3 + 2τ4

and

−ξ2 +
√

2ξ3 − ξ4 + ξ6 −
√

2ξ7 + ξ8 = 0, (6.6)
−
√

2ξ1 + ξ2 − ξ4 +
√

2ξ5 − ξ6 + ξ8 = 0. (6.7)

(iv) λ4 = 0. In this case

λ1 = λ7 = (2 +
√

2)τ1 − 2τ2 + (2−
√

2)τ3 − 2τ4,

λ2 = λ6 = 2τ1 − 4τ2 + 2τ3,

λ3 = λ5 = (2−
√

2)τ1 − 2τ2 + (2 +
√

2)τ3 − 2τ4,

λ8 = 4τ1 + 4τ3

and

−ξ1 + ξ2 − ξ3 + ξ4 − ξ5 + ξ6 − ξ7 + ξ8 = 0. (6.8)

(v) λ1 = λ7 = λ8 = 0, λ2 = λ6 = λ8 = 0 or λ3 = λ5 = λ8 = 0. In these cases
the corresponding reparameterizations are given by (6.2), (6.3), (6.4),
(6.5) and (6.6), (6.7), respectively, and additionally for all we must have

ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ7 + ξ8 = 0. (6.9)
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(vi) λ1 = λ7 = λ2 = λ6 = λ4 = 0. In this case the reparameterization
conditions are given by (6.2), (6.3), (6.4), (6.5) and (6.8).

(vii) λ1 = λ7 = λ2 = λ6 = λ8 = 0. In this case the reparameterization
conditions are given by (6.2), (6.3), (6.4), (6.5) and (6.9).

(viii) λ1 = λ7 = λ2 = λ6 = λ3 = λ5 = 0. In this case the reparameterization
conditions are given by (6.2), (6.3), (6.4), (6.5), (6.6) and (6.7).
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