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Abstract

Most of the proposed subsampling and resampling methods in the liter-
ature assume stationary data. In many empirical applications, however,
the hypothesis of stationarity can easily be rejected. In this paper we
demonstrate that moment and variance estimators based on the subsam-
pling methodology can be employed also for different types of nonsta-
tionarity data. Consistency of estimators are demonstrated under mild
moment and mixing conditions. Rates of convergence are provided, giv-
ing guidance into the appropriate choice of subshape size. Results from
a small simulation study on finite sample properties are also reported.
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1 Introduction

Resampling and subsampling methods have been suggested in the literature
to nonparametrically estimate different characteristics, such as the variance
and the distribution, of statistics computed from, e.g., time series and spa-
tial lattice data. The advantage of such methods is that statistical inference
can be done without knowledge of the underlying dependence mechanism and
marginal distributions that generated the data. Furthermore, for the user
no explicit theoretical derivation is necessary but instead intensive comput-
ing. Most of the proposed methods in the literature assume stationary data.
However, when modeling real-life data (in, e.g., agricultural experiments and
applications of remote-sensing imagery), the hypothesis of stationarity often
must be rejected. In the current paper we will mainly focus on subsampling
variance estimation of statistics computed from nonstationary data.

For stationary time series data, the subsampling variance estimator of a
statistic g use “replicates” of g computed on subseries of consecutive obser-
vations. Thus, within each subseries the dependence structure of the original
observations is preserved and if the common length of the subseries increases
to infinity with the sample size, asymptotically valid inference can ensue. Pi-
oneering work in this direction has been performed by Carlstein (1986); see
Künsch (1989) for related results. When a statistic g is computed on some
spatially indexed data observed in some region A ⊂ R2, then the subsam-
pling variance estimator of g use “replicates” of g computed on subshapes of
A. Such extensions to stationary spatial lattice data have been provided by
Possolo (1991), Politis and Romano (1993), Sherman and Carlstein (1994),
Sherman (1996), Politis et al. (1999), and Lahiri (1993), among others. In
Fukuchi (1999) and Politis et al. (1999), the results of Carlstein (1986) are
extended to nonstationary time series data. See also Belyaev (1996).

In the current paper, the general moment and variance estimators for spa-
tial lattice data, as proposed by Sherman (1996), will be regarded in a non-
stationary context, and consistency will be shown under assumptions similar
to those for time series in Fukuchi (1999, Theorem 1) and Politis et al. (1999,
Lemma 4.6.1). Such results show that the subsampling methodology intro-
duced for dependent but stationary observations can still be employed, even
if the assumption of stationarity is violated. For example, heteroscedasticity
is a problem that often arises. We demonstrate that the subsampling variance
estimator allow for considerable heteroscedasticity.

At the same time it is clear that it is not difficult to find conditions of
nonstationarity under which the subsampling variance estimator fails. In
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some of these cases, however, the estimation method can be modified in order
to obtain valid inference, as illustrated in the example below.

Example 1. Assume that {Xi : i ∈ Z2} is a random field and that we
observe the Xi’s in some region A ⊂ R2, i.e., we observe {Xi : i ∈ A∩ Z2}. If
the statistic of interest is the sample mean X̄A over A, then the subsampling
estimator of variance use the sample means computed on (overlapping)
subshapes of A as “replicates”, i.e., the estimator is a normalized sample
variance of the subshape means. Although this estimator can handle
considerable heteroscedasticity, it is sensitive to variation in the expected
values {E[Xi]}. Unless the subshape means have (essentially) the same
expected value, the subsampling estimator of variance will fail, since it cannot
distinguish the variation in the expected values from the random variation.
This happens, for example, when the expected values {E[Xi]} decomposes
additively into directional components (i.e., E[Xi] = µ + ci1 + ri2 for all
i = (i1, i2)). In geostatistics it is common to detrend data of this type
(Cressie, 1993). That is, the directional components are estimated (e.g.,
by mean or median polishing) and subtracted from the observations. The
analysis is then performed on the detrended observations (as if they are
a sample from a stationary random field). In Ekström (2002) it is shown
that the subsampling/resampling method applied on detrended observations
(through mean polishing) gives a consistent estimator of the variance of
X̄A. Unfortunately, the estimator based on detrended observations is heavily
biased for small samples. In Ekström and Sjöstedt-de Luna (2004a) a more
promising method is introduced by modifying the subsampling estimator of
variance so that it can handle directional components (as well as smoothly
varying expected values) without the need of estimating them. This modified
estimator is based on “crosswise differences” of subshape means rather than
single subshape means.

In the current paper we establish, under weak moment and mixing con-
ditions, that the modified subsampling estimator of the variance of sample
means can handle heteroscedastic data that also possess a spatial trend (e.g.,
a periodic trend, a smooth trend, directional components, or any combination
of these). Our conditions on the dependency structure and the spatial trend
are weaker than in the corresponding results by Ekström and Sjöstedt-de Luna
(2004a). The question on how to choose the distances between the subshapes
that defines the crosswise differences appeared as an open problem in Ekström
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and Sjöstedt-de Luna (2004a). In this paper we introduce a method for finding
appropriate distances between these subshapes.

The remaining of the paper is organized as follows. Section 2 defines
our notation and the general subsampling estimator of variance. In Section
3, consistency and rates of convergence for the general moment and variance
estimators are established under weak moment and mixing conditions. Section
4 is focused on the special case when the statistic is a sample mean, and in this
section we consider the (original) subsampling variance estimator as well as
Ekström and Sjöstedt-de Luna’s modified estimator. In Section 5 we introduce
a method for choosing the distances between the subshapes that defines the
crosswise differences in the modified variance estimator. A small simulation
study is given in Section 6 and the proofs of the theorems are given in the
Appendix.

2 Preliminaries

Assume that the boundary of a set A1 ⊆ (0, 1] × (0, 1] is a simple closed
curve of finite length, and for two integer values n1, n2, that A = An ⊆
(0, n1] × (0, n2], n = (n1, n2), is obtained from A1 in the following sense:
A = An = {x ∈ R2 : (x1/n1, x2/n2) ∈ A1}. We now consider the region A,
with our data {Xi ∈ R} being observed at the indices in A∩Z2. A subshape of
A can be constructed as Ak = {x ∈ R2 : (x1/k1, x2/k2) ∈ A1}, formed in the
subrectangle B0 = (0, k1]× (0, k2], where kj < nj , j = 1, 2. We can construct
other (overlapping) subshapes in a similar way by identifying them in the
subrectangles Bj = (j1, j1 + k1] × (j2, j2 + k2], j1, j2 = 0, 1, ... . However, we
only use the tn subshapes Ak,t, t = 1, ..., tn, which are completely contained
in A. Note that the Ak,t’s do not need to be subshapes in the strict sense.
Actually, Ak,t is a “true subshape” only when k1/k2 = n1/n2. The number of
indices in An ∩ Z2 and Ak ∩ Z2 will be denoted by S and s, respectively. Let
K = k1k2 and N = n1n2. If A1 = (0, 1]×(0, 1], then A = An = (0, n1]×(0, n2],
s = K, S = N , and tn = (n1 − k1 + 1)(n2 − k2 + 1).

Suppose, for the moment, that {Xi ∈ R} is a stationary random field.
Suppose further that a statistic g(A) is computed from the Xi’s in region A and
that we want an estimate of the variance γn = var[

√
Sg(A)]. The motivation

of the subsampling method is that if the subshapes {Ak,t} are large enough,
enough of the original dependence will be preserved in the subshapes that
statistics g(Ak,t) will have approximately the same distribution (if properly
normalized) as values g(A) calculated from replicates of the original data.
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Further, the {g(Ak,t)} are identically distributed random variables (r.v.’s),
and if the dependency is weak enough we can expect that

γ̃n =
s

tn

tn∑

t=1

(g(Ak,t)− ḡ′)2, (1)

where ḡ′ =
∑tn

t=1 g(Ak,t)/tn, is a valid estimator of var[
√

sg(Ak,t)]. Now, if
γn tends to some limit γ, as the region A expands more or less uniformly,
and if the subshapes are large enough, then we have var[

√
Sg(A)] ≈ γ and

var[
√

sg(Ak,t)] ≈ γ. Therefore we can regard γ̃n as an estimator of γn =
var[

√
Sg(A)] as well. In the next section it will be shown that γ̃n is a consistent

estimator of γn, even if the assumptions of stationarity and the existence of a
limiting variance γ are violated.

The weak dependency in the random field {Xi ∈ R} will be quantified
through a model-free mixing coefficient. A mixing condition says essentially
that observations separated by large distances are approximately independent.
In, e.g., Doukhan (1994), Guyon (1995), and Lin and Lu (1996) a collection
of strong mixing coefficients is defined by

αl(m) = sup{|P (B1 ∩B2)− P (B1)P (B2)| :
Bj ∈ F(Uj), |Uj | ≤ l, j = 1, 2, ρ(U1, U2) ≥ m},

where F(U) is the σ-algebra generated by {Xi, i ∈ U} and ρ(U1, U2) =
inf{ρ(i, j) : i ∈ U1, j ∈ U2}, ρ(i, j) = max{|i1 − j1|, |i2 − j2|}. If we put
α(m) = α∞(m) we obtain Rosenblatt’s (1956) usual strong mixing coefficients
and it is apparent that αl(m) ≤ α(m). If α(m) → 0 as m → ∞ then the
random field is said to be strong mixing.

Henceforth we use the following notation: a ∨ b denotes the maximum of
a and b; an ∼ bn means that for two sequences {an}n≥1 and {bn}n≥1 there
exist two constants, 0 < c1 < c2 < ∞, such that c1 < an/bn < c2, n = 1, 2, ...;
a = (a1, a2) → ∞ means that both a1 and a2 tend to ∞; ηX = XI{|X|>η};
||X||p = (E[|X|p])1/p. A sequence ξ1, ξ2, ... of r.v.’s will be said to converge to
the random variable ξ in Lp norm, 0 < p < ∞, if ||ξn − ξ||p → 0 as n → ∞.
Suppose f(n) and g(n) are two functions. We write f(n) = O(g(n)) if and
only if there exists a constant c such that |f(n)| ≤ c|g(n)| for all sufficiently
large values of n. It will be observed that our formulae involving O(·) will
not usually be reversible. Thus ‘O(n) = O(n2)’ (that is, ‘if f(n) = O(n) then
f(n) = O(n2)’) is true, but ‘O(n2) = O(n)’ is false. The letter c will denote
a constant which may have different values from equation to equation. U.I.
stands for uniformly integrable (or uniform integrability).
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3 Consistency and convergence rates of general sub-
sampling estimators

In this section we extend results of Sherman (1996) to nonstationary spatial
lattice data, i.e., it is shown, under weak moment and mixing conditions, that
the general moment estimator ḡ′ and the variance estimator γ̃n are consistent
estimators of E[g(A)] and γn, respectively. Convergence rates in mean square
are also given. These extensions are useful, since in many real-life situations,
the hypothesis of stationarity can easily be rejected. Examples of such situa-
tions include forestry applications of satellite data (Ekström and Sjöstedt-de
Luna, 2004a) and landscape ecology, where certain indices are used for de-
scribing the spatial structures of landscapes (Ekström and Sjöstedt-de Luna,
2004b).

Henceforth we assume that n1 ∼ n2, k1 ∼ k2, k → ∞, and kj/nj → 0,
j = 1, 2, as n →∞.

Theorem 1 Assume that

(a) {(g(Ak,t))2 : t = 1, ..., tn, n1, n2 = 1, 2, ...} is U.I.,

(b) E[ḡ′]−E[g(A)] → 0 as n →∞,

(c) αs(k1 ∨ k2) → 0 as n →∞.

Then ḡ′ − E[g(A)] converge to 0 in L2 norm as n →∞.

Theorem 2 Assume that

(a) {(√s (g(Ak,t)− E[g(Ak,t)]))4 : t = 1, ..., tn, n1, n2 = 1, 2, ...} is U.I.,

(b) t−1
n

∑tn
t=1 var[

√
s g(Ak,t)]− γn → 0 as n →∞,

(c) t−1
n

∑tn
t=1(E[

√
s g(Ak,t)]− E[

√
s ḡ′])2 → 0 as n →∞,

(d) αs(k1 ∨ k2) → 0 as n →∞.

Then γ̃n − γn converge to 0 in L2 norm as n →∞.

The assumptions in Theorems 1 and 2 resemble the assumptions in Fukuchi
(1999, Theorem 1a) and Politis et al. (1999, Lemma 4.6.1), respectively, al-
though an assumption like (c) in Theorem 2 appears to be missing in Politis
et al. (1999). Further, we do not require the existence of the limits of E[g(A)]
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and γn as n →∞, as in the corresponding results for time series by Fukuchi
and Politis et al.

If {Xi} is stationary and the limits of E[g(A)] and γn exist as n → ∞,
then assumption (b) in Theorem 1 and assumptions (b) and (c) in Theorem
2 are trivially fulfilled. Note also that (b) in Theorem 2 is a weak condition
on the variances. For example, if g(A) is the sample mean and if, for some
δ, βδ > 0, ||Xi −E[Xi]||2+δ ≤ βδ for all i,n and

∑∞
m=0(m + 1)α1(m)δ/(2+δ) <

∞, then condition (b) is fulfilled (see Lemma A.4 in the Appendix). Thus,
the subsampling variance estimator allow for considerable heteroscedasticity.

The main practical issue in applying subsampling and block resampling
methods is the choice of the subshape/block size. This issue is shared by all
“blocking” methods, such as Künsh’s (1989) moving blocks bootstrap, Carl-
stein’s (1986) variance estimator, or the estimator of variance in Ekström and
Sjöstedt-de Luna (2004a). The asymptotic conditions for consistency are typ-
ically fulfilled for a broad range of choices of the rate of subshape/block size.
Although any choice of rate satisfying these conditions will provide the desired
consistency, the conditions do not give much guidance on how to choose the
subshape/block size in the case of a finite sample. In subsampling and block
resampling methods, the optimal asymptotic rate for the subshapes/blocks
depends critically on the context. When S denotes the total number of obser-
vations and s the desired subshape/block size, the optimal asymptotic formula
for block and subshape size is typically s ∼ Sβ, where the value of β is known,
determined by context (see, e.g., Hall et al. (1995)). Based on this formula,
Hall et al. (1995) suggested an empirical rule for estimating the optimal block
size in a stationary time series context. A similar rule is applied in a spatial
setting in Ekström and Sjöstedt-de Luna (2004a) and it is shown that it works
also in cases of nonstationarity. For obtaining an optimal asymptotic formula
for the subshape size for the variance estimator γ̃n, we will investigate the rate
of convergence for γ̃n. This will be done in Corollary 2 below. First we estab-
lish, in Corollary 1, a rate of convergence for the general moment estimator
ḡ′.

Corollary 1 Assume that

(a) {(g(Ak,t))4 : t = 1, ..., tn, n1, n2 = 1, 2, ...} is U.I.,

(b) |E[ḡ′]−E[g(A)]| = O(κn) for some nonnegative function κn,

(c) s2αs(k1 ∨ k2) = O(λn) for some nonnegative function λn.

Then E[(ḡ′ − E[g(A)])2] = O(K/N + 1/K + κ2
n + λn).
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Corollary 2 Assume that

(a) {(√s (g(Ak,t)− E[g(Ak,t)]))8 : t = 1, ..., tn, n1, n2 = 1, 2, ...} is U.I.,

(b) |t−1
n

∑tn
t=1 var[

√
s g(Ak,t)]− γn| = O(%n) for some nonnegative function

%n,

(c) t−1
n

∑tn
t=1(E[

√
s g(Ak,t)]−E[

√
s ḡ′])2 =O(ζn) for some nonnegative func-

tion ζn,

(d) s2αs(k1 ∨ k2) = O(λn) for some nonnegative function λn.

Then E[(γ̃n − γn)2] = O(K/N + 1/K + %2
n + ζn + λn).

If the random field {Xi} is stationary, then assumption (c) in Corollary 2 is
trivially fulfilled (i.e., we may put ζn ≡ 0). If %2

n + ζn +λn = O(K/N +1/K),
then the rate of convergence for γ̃n is minimized when ki is of the order of
n

1/2
i , i = 1, 2, i.e., when s ∼ S1/2. Note that this makes it possible to apply

an empirical rule for estimating the optimal subshape size, by extending the
ideas in Hall et al. (1995) to spatial lattice data. In Ekström and Sjöstedt-de
Luna (2004a), a rule of this type was considered for a (modified) subsampling
estimator of variance for nonstationary spatial lattice data.

4 The case of the sample mean

Let X̄A be the sample mean of the Xi’s in region A, X̄t the sample mean of
the Xi-values in Ak,t, and X̄ ′ =

∑tn
t=1 X̄t/tn. Then we can write the estimator

(1) of γn = var[
√

SX̄A] as

γ̃n =
s

tn

tn∑

t=1

(X̄t − X̄ ′)2.

In Theorem 3 and Corollary 3 below, the results of Theorem 2 and Corollary 2
are reformulated and the U.I. conditions are replaced by moment and mixing
conditions.

The following assumption is used in the next two theorems.

Assumption A1. The random field {Xi} satisfies the following conditions,
for some δ > 0,

(i) ||Xi − E[Xi]||4+δ ≤ βδ, for some βδ > 0 and all i, n,
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(ii) st−1
n

∑tn
t=1(E[X̄t]− E[X̄ ′])2 → 0 as n →∞,

(iii) αl(m) ≤ cm−τ1 lτ2 , for some τ1 > 10(6 + δ)/δ, 0 ≤ τ2 < τ1/2, and all
l, m ≥ 1.

Theorem 3 If A1 holds, then γ̃n − γn → 0 in L2 norm as n →∞.

Note, in A1 there is no assumption on the variances of the Xi’s, other than
a uniform bound from above. The assumption on the mixing coefficients in
A1 resembles the assumptions of Lahiri (2003, Theorem 12.1).

Recall that k1 and k2 determine the subshape size and note that the
L2 consistency holds for a broad range of choices of k1 and k2 in Theorem
3. In a particular application the values of k1 and k2 must be speci-
fied. From the following corollary it follows that ki of the order of n

1/2
i ,

i = 1, 2, is a good choice when, for example, E[Xi] ≡ 0. The corollary gives
a rate of convergence for γ̃n and is established under the following assumption.

Assumption A2. The random field {Xi} satisfies the following conditions,
for some δ > 0,

(i) ||Xi − E[Xi]||4+δ ≤ βδ, for some βδ > 0 and all i, n,

(ii) st−1
n

∑tn
t=1(E[X̄t]−E[X̄ ′])2 = O(ψn) for some nonnegative function ψn,

(iii) αl(m) ≤ cm−τ1 lτ2 , for some τ1 > 10(6 + δ)/δ, 0 ≤ τ2 ≤ τ1/2− (2 + δ)/δ,
and all l, m ≥ 1.

Corollary 3 If A2 holds, then E[(γ̃n − γn)2] = O(K/N + 1/K + ψ2
n).

The subsampling estimator γ̃n can handle cases when the data have
“asymptotically equal” expected values, as is demonstrated in the following
example.

Example 2. If E[Xi] = µ + δi, where |δi| =≤ cνn, for all i, n, then we may
take ψn = Kν2

n in assumption A2(ii).

If, for example, the expected values {E[Xi]} vary smoothly over region
A, then the estimator γ̃n will not be consistent due to variation coming
from {E[Xi]}. To reduce this variation, Ekström and Sjöstedt-de Luna
(2004a) propose a modified subsampling method based on “crosswise sub-
shape differences”. For the creation of a crosswise subshape difference, identify
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the subshapes in the four subrectangles Bj ,Bj1+d1+k1,j2 ,Bj+d+k,Bj1,j2+d2+k2 ,
and name the subshapes Ak,t1 , Ak,t2 , Ak,t3 , and Ak,t4 , respectively. If all
four subshapes are completely contained in A, then we define the cross-
wise subshape difference Zt from the corresponding mean values, i.e., Zt =
(X̄t1 − X̄t2 + X̄t3 − X̄t4)/2. Assume there are t′n such crosswise differences,
Zt, t = 1, ..., t′n, and let Z̄ =

∑t′n
t=1 Zt/t′n. Then the modified subsampling

estimator of γn is defined as

γ̂n =
s

t′n

t′n∑

t=1

(Zt − Z̄)2.

In the next theorem, concerning the modified subsampling estimator of
variance, it is assumed that the random field {Xi} can be decomposed as
Xi = µi + Yi, where {Yi} satisfies A1 and {µi} is some additive deterministic
“trend”. With {Zt} denoting the crosswise subshape differences created from
the Xi-values, we can write Zt = Zµ,t + ZY,t, where {Zµ,t} and {ZY,t} are the
crosswise subshape differences created from {µi} and {Yi}, respectively. Let
Z̄µ =

∑t′n
t=1 Zµ,t/t′n.

Theorem 4 Assume that Xi = µi + Yi, where {Yi} satisfies A1 and

s

t′n

t′n∑

t=1

(Zµ,t − Z̄µ)2 → 0 as n →∞. (2)

Further, assume that di = O(ki), i = 1, 2. Then γ̂n − γn→0 in L2 norm as
n →∞.

Corollary 4 Assume that Xi = µi + Yi, where {Yi} satisfies A2 and

s

t′n

t′n∑

t=1

(Zµ,t − Z̄µ)2 = O(φn), (3)

for some nonnegative function φn. Further, assume that di = O(ki), i = 1, 2.
Then E[(γ̂n − γn)2] = O(K/N + 1/K + ψ2

n + φ2
n).

It should be noted that the above assumptions on the expected values
{E[Xi]} are more general than in Ekström and Sjöstedt-de Luna (2004b).
Further, Ekström and Sjöstedt-de Luna (2004b) assume that {Xi} is an m-
dependent random field, i.e., that αl(r) = 0 for all r > m and l ≥ 1, which
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is special case of assumptions A1(iii) and A2(iii). If E[Xi] ≡ µ, then the
assumptions A2(ii), (2), and (3), with ψn ≡ 0 and φn ≡ 0, are trivially
fulfilled and the obtained convergence rate in mean square in Corollaries 3
and 4 becomes O(K/N + 1/K). This is the same order of convergence as for
stationary random fields (e.g. Sherman 1996) where γ̃n is used.

We now present a number of further examples of “trends” {µi} that
satisfy assumptions (2) and (3).

Example 3. If µi can be decomposed additively into directional components
such that µi = µ+ci1 +ri2 for all i, then (2) and (3), with φn ≡ 0, are satisfied.

Example 4. If there is some periodicity in {µi} such that

µi = µi1+p1,i2 (or µi = µi1,i2+p2) for all i, (4)

then (2) and (3), with φn ≡ 0, are satisfied whenever d1 + k1 = mp1 (or
d2 + k2 = mp2) for some integer m.

Example 5. If

µi − µi1+p1,i2 + µi1+p1,i2+p2 − µi1,i2+p2 = 0 for all i, (5)

then (2) and (3), with φn ≡ 0, are satisfied whenever d1 + k1 = mp1 and
d2 + k2 = mp2 for some integer m. Note that if both equalities in (4) are
satisfied, then so is (5), but (5) does not necessarily imply any of the equalities
in (4).

Example 6. If di = O(ki), i = 1, 2, and the µi-values are smoothly
varying in the sense that they satisfy a Lipschitz condition of order β,
i.e., if µi = f(i1/n1, i2/n2) for all i,n, where, for some 0 < β ≤ 1,
|f(x) − f(y)| ≤ c||x − y||β over the set A1, then (3) is valid with
φn = K(K/N)β. Assumption (2) holds if K(K/N)β → 0 as n → ∞. Here
|| · || is the Euclidian norm.

Example 7. If di = O(ki), i = 1, 2, and the µi-values are smoothly varying
in the sense that µi = f(i1/n1, i2/n2) for all i, n, where, for some 0 < β ≤ 1,

|f(x1, x2)−f(x1+h1, x2)+f(x1+h1, x2+h2)−f(x1, x2+h2)| ≤ c|h1h2|β (6)

over the set A1, then (3) is valid with φn = K(K/N)2β. Assumption (2)
holds if K(K/N)2β → 0 as n →∞. Note that if f is such that its first-order
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partial derivatives exist and are continuous on A1, and if the mixed partial
derivative f12 (or f21) is continuous and bounded on A1, then (6) is satisfied
with β = 1.

Example 8. The different conditions on {µi} in Examples 3-7 can be com-
bined. For instance, if di = O(ki), i = 1, 2, and µi = µ3,i +µ7,i, where µ3,i and
µ7,i satisfy the conditions in Examples 3 and 7, respectively, then (3) is valid
with φn = K(K/N)2β and assumption (2) holds if K(K/N)2β → 0 as n →∞.

Assume that assumption A2(ii) holds with ψn = N−1/4 when ki = O(n1/2
i ),

i = 1, 2, and that β in Examples 7 and 8 is larger or equal to 3/4. The optimal
convergence rate in mean square in Examples 7 and 8 is then O(N−1/2), which
we get if we choose ki = O(n1/2

i ), i = 1, 2. This is the same optimal order
of convergence as for stationary random fields (e.g. Sherman 1996) where
γ̃n is used. In Example 6 with β = 1, on the other hand, the correspond-
ing optimal rate is only O(N−2/5), achieved if we choose ki = O(n2/5

i ), i = 1, 2.

5 Choice of d

Crosswise differences are created to reduce the variation coming from the
expected values. If the expected values vary smoothly, then the reduction
tends to be more successful when d1 and d2 are small. On the other hand, if
d1 and d2 are small, then the subshapes defining a crosswise difference may
be strongly dependent, which is an argument for not choosing d1 and d2 too
small. Thus, it is not obvious how to choose d = (d1, d2) in practice. However,
if we can find small values of d1 and d2 such that X̄t1 , X̄t2 , X̄t3 , and X̄t4 are
independent or at most weakly dependent, then this choice of d1 and d2 is
typically a good choice. But how to tell whether X̄t1 , X̄t2 , X̄t3 , and X̄t4 are
at most weakly independent or not for a particular choice of d? In the case
of stationary data, a study of an estimated correlogram (Cressie, 1993) may
yield the answer, but when having nonstationary data with, e.g., smoothly
varying expected values, it is often difficult to find reasonable estimators of
the correlation structure of {Xi}. Instead we will use a quantity closely related
to γ̂n with k1 ≡ 1 and k2 ≡ 1 for finding appropriate values of d1 and d2.
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Let Xi,d,1 = Xi, Xi,d,2 = X(i1+d1+1,i2), Xi,d,3 = Xi+d+1, Xi,d,4 =
X(i1,i2+d2+1), and

T •n = {i : i, (i1 + d1 + 1, i2), i + d + 1, (i1, i2 + d2 + 1) ∈ An ∩ Z2}.

Define crosswise differences Z•i = Xi,d,1 −Xi,d,2 + Xi,d,3 −Xi,d,4, i ∈ T •n, and
let Z̄• be the sample mean of {Z•i : i ∈ T •n}. Define

γ•n = γ•n(d) =
1
t•n

∑

i∈T •n

(Z•i − Z̄•)2,

where t•n = #T •n, i.e., t•n is the number of elements in T •n. If the region A is
rectangular, A = An = (0, n1]× (0, n2], and k1 ≡ 1 and k2 ≡ 1, then note that
γ•n = γ̂n.

If, for example, Xi = µi + Yi, with E[Yi] = 0 and µi = µ3,i + µ7,i for
all i, and where µ3,i and µ7,i satisfy the conditions in Examples 3 and 7,
respectively, then it can be shown that

E[γ•n(d)] =
1

4t•n

∑

i∈T •n

mi(d) + O
(Dβ

Nβ

)
,

where D = d1d2 and

mi(d) =
4∑

u=1

var[Xi,d,u] + 2
3∑

u=1

4∑

v=u+1

cov[Xi,d,u, Xi,d,v](−1)u+v. (7)

Thus, the contribution from the varying expected values {µi} to E[γ•n(d)] is
of order (D/N)β.

In many practical situations, it is reasonable to assume that the covari-
ances in (7) are nonnegative and monotonically tending to zero as d1 and d2

increases. In this case, the double sum on the right-hand side of (7) is non-
positive and mi(d) is a nondecreasing function of d1 and d2. This implies that
γ•n(d) typically has a positive increase until a specific point d• = (d•1, d

•
2), after

which the function flattens out, i.e., if d1 ≥ d•1 and d2 ≥ d•2, then the r.v.’s
Xi,d,1, Xi,d,2, Xi,d,3, and Xi,d,4 can be considered as independent or, at most,
weakly dependent. This implies that if d1 = d•1 and d2 = d•2, then X̄t1 , X̄t2 ,
X̄t3 , and X̄t4 are independent or at most weakly dependent. The value of d•

can be found from a visual inspection of the function γ•n(d).

12



6 Simulation study

We investigated the performance of the estimators γ̃n and γ̂n of variances
of sample means for samples of size 50 × 50 observations from four different
Gaussian random field models.

Let {Yi} be an (intrinsically) stationary Gaussian random field, with an
exponential covariance function,

cov[Yi, Yj ] = 0.245 exp(||i− j||/0.723), (8)

and with E[Yi] = 0 for all i. The covariance function (8) is taken from Lee
and Lahiri (2002), who fitted a variogram model to agricultural field data.

The four Gaussian random field models are defined as follows:

1. Xi = Yi,

2. Xi = Yi + cos(i1/n1) + cos(i2/n2),

3. Xi = Yia
1/2
i b + ai,

4. Xi = Yia
1/2
i b,

where ai = cos(i1/n1) cos(i2/n2) and b = 1.194..., i1 = 1, ..., n1 and i2 =
1, ..., n2. Thus, Model 2 is a two-way linear model, and in Model 3, the
variances, var[Xi], are nonconstant and proportional to the expected values,
E[Xi]. Model 4 is defined as Model 3, but without the spatial trend compo-
nent. The parameter b is chosen so that the true variance γn = γ50 ≈ 0.852
in all four models. Realizations of the random field {Yi} were generated using
the rfsim function in S+SpatialStats, an add-on module to the S-Plus version
6.0 statistical software package.

Empirical rules for choosing the subshape size are computationally de-
manding for spatial lattice data, and for getting the simulations done within a
reasonable amount of time we decided to use subshapes of size 7× 7 through-
out this study. With this subshape size, ki is of the order of n

1/2
i , i = 1, 2,

which is desired for obtaining the optimal rate of convergence of γ̃n and γ̂n.
Although the values d• may be found from visual inspections of plots

of realizations of γ•n(d), this would be impracticable in a simulation study.
Therefore we use an empirical rule, where we define d• = d•1 = d•2 as the
smallest d = d1 = d2 for which γ•n(d + 1, d + 1)− γ•n(d, d) < t, and where t is
some specified threshold value. The rule is simple, but seems to work well. In
Figure 1, three realizations of γ•n(d, d) are plotted against d. If the threshold

13
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Figure 1: Three realizations of γ•n(d1, d2), with d = d1 = d2 and n = (50, 50),
from Model 3.

equals 0.01, we get d• equal to 2, 2, and 1, respectively, and if the threshold
is 0.02, we obtain the same results as for the threshold 0.01. These values of
d• agree well with what would have been obtained from a visual inspection.

The results of the simulations are summarized in Tables 1 and 2, where
each entry is based on 1,000 replicates of {Yi}. In Models 1 and 4, where the
Xi’s have zero expectation, the variance estimator γ̃n performs slightly better
than the modified estimator γ̂n in terms of root mean square error (RMSE), as
expected. Observe that both γ̃n and γ̂n do well in the heteroscedastic Model
4. In Models 2 and 3, where the expected values E[Xi] vary, the estimator
γ̂n is clearly the winner, and γ̃n computed on the original data {Xi} fails to
provide valid estimates in these two cases. If γ̃n is computed on detrended
observations (obtained through mean polishing) in Model 2, then the resulting
RMSE is still more than 50% larger than for γ̂n. The estimator γ̃n has a large
negative bias in this case, and a plausible reason for this could be that the mean
polishing not only removes the trend but also some of the random variation.
The modified estimator γ̂n, on the other hand, gives similar values of RMSE
for all four models and the two choices of threshold value. Thus, if we do not
have good knowledge of whether the data have constant expected values, then
a safe policy is to choose γ̂n instead of γ̃n.

14



Table 1
Estimated biases and RMSEs of γ̃n

Model Data b̂ias[γ̃n] R̂MSE[γ̃n]
1 Original -0.169 0.205
2 Original 1.330 1.375

1 and 2 Detrended -0.356 0.366
3 Original 0.917 0.967
4 Original -0.160 0.199

Table 2
Estimated biases and RMSEs of γ̂n, together with corresponding

mean values and sample variances of d•

Model Data Threshold b̂ias[γ̂n] R̂MSE[γ̂n] d̄• v̂ar(d•)
1 and 2 Original 0.01 -0.158 0.237 2.07 0.46
1 and 2 Original 0.02 -0.167 0.234 1.47 0.28

3 Original 0.01 -0.137 0.231 2.12 0.51
3 Original 0.02 -0.147 0.227 1.51 0.30
4 Original 0.01 -0.138 0.231 2.13 0.51
4 Original 0.02 -0.147 0.227 1.51 0.30
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Appendix

Define Sn = An ∩ Z2, Sk,t = Ak,t ∩ Z2, and Vn = {i : i + h ∈
Sn for all h such that |h1| ≤ k1 and |h2| ≤ k2}. Then Vc

n = Sn \ Vn defines a
strip around the outside of Vn. Let V = #Vn.

The abbreviation E&S is used throughout the Appendix for the article by
Ekström and Sjöstedt-de Luna (2004a). To simplify the notation, we write
gA = g(A) and gt = g(Ak,t), t = 1, ..., tn.

Lemma 1 (E&S) There exist a constant n > 0 such that for all n1, n2 > n,
N ≥ S ≥ tn ≥ V ≥ cN and K ≥ s ≥ cK. Further, V/S → 1, t′n/tn → 1, and
S − V = O((KN)1/2) as n →∞.

It follows from Lemma 1 that S, tn, and V are all of O(N) and that
s = O(K). Henceforth we will not refer to Lemma 1 when applying these
simple consequences of it.

Lemma 2 Let Yj be measurable with respect to the σ-field F(Uj), where |Uj | ≤
l, j = 1, 2, and ρ(U1, U2) ≥ m.

(a) If ||Yj ||2+δ < ∞, j = 1, 2, δ > 0, then

|cov[Y1, Y2]| ≤ c||Y1||2+δ||Y2||2+δαl(m)δ/(2+δ)

.(b) If |Yj | ≤ v a.s., j = 1, 2, then |cov[Y1, Y2]| ≤ cv2αl(m).

(c) If ||Yj ||2 ≤ v, j = 1, 2, then for any η > 0,

|cov[Y1, Y2]| ≤ c(η2αl(m) + v(||ηY1||2 + ||ηY2||2))

.

Proof. For (a) and (b), see Lin and Lu (1996, Lemma 6.1.1). Inequality (c)
follows from (b) and the argument in Carlstein (1986, Lemma 1). ¤

Proof of Theorem 1. The proof follows closely that of Sherman (1996,
Theorem 1). Since E[(ḡ′ − E[gA])2] = var[ḡ′] + (E[ḡ′]− E[gA])2, it suffices to
show that var[ḡ′] → 0 as n →∞. Let k = k1 ∨ k2. We have

var[ḡ′] =
1
t2n

tn∑

ta,tb=1

cov[gta , gtb ] =
1
t2n

∑′
cov[gta , gtb ] +

1
t2n

∑′′
cov[gta , gtb ], (9)
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where
∑′ denotes the sum over ta, tb such that ρ(Sk,ta ,Sk,tb) ≤ k and

∑′′

denotes the sum over ta, tb such that ρ(Sk,ta ,Sk,tb) > k. There are at most
16k2tn summands in

∑′ and it follows from the U.I. condition that there
exists a constant v such that ||gt||2 ≤ v and |cov[gta , gtb ]| ≤ ||gta ||2||gtb ||2 ≤ v2

uniformly in t, ta, tb, n. Thus, t−2
n

∑′ cov[gta , gtb ] ≤ 16v2k2t−1
n → 0 as n →∞.

Finally, by Lemma 2(c) and the U.I. condition,

lim
n→∞

t−2
n

∑′′
cov[gta , gtb ] ≤ lim

η→∞ lim
n→∞

cη2αs(k) + 2cv lim
η→∞ sup

t,n
||ηgt||2 = 0.

¤

Proof of Theorem 2. The proof follows closely that of Sherman (1996,
Theorem 2). Namely, we can write the estimator of variance as

γ̃n = st−1
n

∑
(gt − E[gt])2 − s(ḡ′ − E[ḡ′])2 + st−1

n

∑
(E[gt]− E[ḡ′])2

+2st−1
n

∑
(gt − E[gt])(E[gt]− E[ḡ′])

, Tn1 + Tn2 + Tn3 + Tn4. (10)

By applying Theorem 1 with hA = S(gA −E[gA])2 we see that Tn1 − γn
L2→ 0.

Moreover, by applying Theorem 1 with hA =
√

S(gA − E[gA]) we see
that

√
s(ḡ′ − E[ḡ′]) L2→ 0, and, by the arguments in the proof of The-

orem 2 in Sherman (1996), we actually have
√

s(ḡ′ − E[ḡ′]) L4→ 0, i.e.,
Tn2

L2→ 0. We have, by assumption, Tn3 → 0, and by the Cauchy-Schwarz
inequality, E[T 2

n4] ≤ 4E[Tn1]Tn3. By the U.I. condition there exists
a constant c such that var[

√
sgt] ≤ c uniformly in t,n, implying that

E[Tn1] ≤ c for all n. Hence, E[T 2
n4] ≤ 4cTn3 → 0 and we have shown that

γ̃n − γn = Tn1 + Tn2 + Tn3 + Tn4 − γn
L2→ 0 as n →∞. ¤

Proof of Corollary 1. From the proof of Theorem 1,

var[ḡ′] ≤ 16v2k2t−1
n + cη2αs(k) + 2cv supt||ηgt||2.

If we put η = s, then

var[ḡ′] ≤ 16v2k2t−1
n + cs2αs(k) + 2cv supt||sgt||2

≤ 16v2k2t−1
n + cs2αs(k) + 2cvs−1 supt||sgt||24

= O(K/N + 1/K + λn).
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The desired result follows from the identity E[(ḡ′−E[gA])2] = var[ḡ′]+(E[ḡ′]−
E[gA])2 and the assumption that |E[ḡ′]− E[gA]| = O(κn). ¤

Proof of Corollary 2. Consider (10). By applying Corollary 1 with
hA = S(gA−E[gA])2 we see that E[(Tn1−γn)2] = O(K/N +1/K + %2

n +λn).
Moreover, by applying Corollary 1 with hA =

√
S(gA − E[gA]) we see that

E[T 2
n2] = O(K/N + 1/K + λn). By assumption, T 2

n3 = O(ζ2
n), and by the

proof of Theorem 2, E[T 2
n4] ≤ 4cTn3 = O(ζn). This completes the proof of

Corollary 2. ¤

Define ah = #{i : i, i+h ∈ Sk}, i.e., for each h, ah is the number of pixels
i such that both i and i + h belong to Sk. Further, let wh = ah/a0 = ah/s,
and note that 0 ≤ wh ≤ 1 for all h.

Lemma 3 |1− wh| ≤ cK−1/2(|h1| ∨ |h2|) uniformly in h.

Proof. The result is implicitly contained in the proof of Lemma 3 in E&S.
¤

Lemma 4 Assume for some δ, βδ > 0 that ||Xi −E[Xi]||2+δ ≤ βδ for all i, n
and

∑∞
m=0(m + 1)α1(m)δ/(2+δ) < ∞. Then t−1

n

∑tn
t=1 var[

√
sX̄t] − γn → 0 as

n →∞.

Proof. Let γ∗n = t−1
n

∑tn
t=1 var[

√
sX̄t], cih = cov[Xi, Xi+h], Iih = I{i,i+h∈Sn},

and wih = aih/s, where aih = #{t : i, i + h ∈ Sk,t}, that is, the number of
subshapes that includes both pixels i and i+h. Then γn = S−1

∑
h

∑
i cihIih,

γ∗n = t−1
n

∑
h

∑
i cihwihIih, and

γ∗n − γn = (t−1
n − S−1)

∑

h

∑

i

cihIih + t−1
n

∑

h

∑

i∈Vn

cih(wih − 1)Iih

+ t−1
n

∑

h

∑

i∈Vc
n

cih(wih − 1)Iih

, Un1 + Un2 + Un3.

By Lemma 2(a), |cih| = |cov[Xi − E[Xi], Xi+h − E[Xi+h]]| ≤ cβ2
δα1(h)δ′ ,
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where h = |h1| ∨ |h2| and δ′ = δ/(2 + δ). Thus

|
∑

h

∑

i

cihIih| ≤ cβ2
δ

∑

h

∑

i

α1(h)δ′Iih ≤ cβ2
δS

∞∑

h1,h2=−∞
α1(h)δ′

≤ 8cβ2
δS

∞∑

h1=0

h1∑

h2=0

α1(h1)δ′ ≤ 8cβ2
δS

∞∑

h1=0

(h1 + 1)α1(h1)δ′ = O(S). (11)

By Lemmas 1 and 2 in E&S, t−1
n −S−1 = S−1O((K/N)1/2), and together with

(11) this implies that

Un1 = O(K1/2/N1/2). (12)

Consider Un2. Let k = k1 ∨ k2. Note that wih = wh if i ∈ Vn and that
V/tn ≤ 1 by Lemma 1. Then, by Lemma 2(a) and Lemma 3,

|Un2| ≤ c1β
2
δ t−1

n

∑

|hj |≤kj

∑

i∈Vn

α1(h1)δ′ |wh − 1| ≤ c1β
2
δ

∑

|hj |≤kj

α1(h1)δ′ |wh − 1|

≤ 8c1c2β
2
δK−1/2

k∑

h1=0

h1∑

h2=0

h1α1(h1)δ′ ≤ 8c1c2β
2
δK−1/2

k∑

h=0

h(h + 1)α1(h)δ′

≤ 8c1c2β
2
δK−1/2[k1/2

∑

0≤h≤k1/2

(h + 1)α1(h)δ′ + k
∑

k1/2<h≤k

(h + 1)α1(h)δ′ ], (13)

for some constants c1 and c2. Since
∑∞

m=0(m + 1)α1(m)δ′ is finite, the right
hand side above tends to 0 as n →∞, implying that Un2 → 0 as n →∞.

Similarly,

|Un3| = O((S − V )/tn) = O(K1/2/N1/2). (14)

where the last equality follows from Lemma 1. ¤

Lemma 5 Assume, for some δ, βδ > 0, r ∈ N, and max{2(r−1), 2} ≤ τ ≤ 2r,
that ||Xi−E[Xi]||τ+δ ≤ βδ for all i, n and that

∑∞
m=1 m4r−3α2r−1(m)δ/(2r+δ)

is finite. Then
||

∑

i∈Sn

(Xi − E[Xi])||τ ≤ c
√

S,

where c is a constant that depends on r, τ, βδ, and the strong mixing coeffi-
cients, but not on the set Sn.
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Proof. Follows from Fazekas et al. (2000, Theorem 1) and Jensen’s inequal-
ity. ¤

Lemma 6 Assume, for some δ, βδ > 0, that ||Xi − E[Xi]||4+δ ≤ βδ for all
i, n and that

∑∞
m=1 m9α5(m)δ/(6+δ) < ∞. Then {(√s(X̄t − E[X̄t]))4 : t =

1, ..., tn, n1, n2 = 1, 2, ...} is U.I.

Proof. By Shiryayev (1984, Lemma 3, p. 188) it suffices to show that
supt,n E[(

√
s(X̄t − E[X̄t]))4+δ] is finite. The finiteness follows as a direct

consequence of Lemma 5. ¤

Proof of Theorem 3. Follows from Theorem 2 and Lemmas 4 and 6. ¤

Proof of Theorem 4. We have

γ̂n =
s

t′n

t′n∑

t=1

(Zt −E[Zt])2 − s(Z̄ −E[Z̄])2 +
s

t′n

t′n∑

t=1

(E[Zt]−E[Z̄])2

+
2s

t′n

t′n∑

t=1

(Zt − E[Zt])(E[Zt]− E[Z̄])

, Rn1 + Rn2 + Rn3 + Rn4. (15)

Since Rn1 and Rn2 are based on centered versions of Zt and Z̄, respectively,
we assume, without loss of generality, that E[Xi] ≡ 0 when considering Rn1

and Rn2.
We have

Rn1 =
s

4t′n

t′n∑

t=1

4∑

u=1

X̄2
tu +

s

2t′n

t′n∑

t=1

4∑

u=2

u−1∑

v=1

(−1)u+vX̄tuX̄tv

, Rn1a + Rn1b. (16)

From Lemma 1, Lemma 5, and Theorem 3,

E[(Rn1a − γn)2] → 0 as n →∞. (17)

The proof of (17) is essentially the same as the corresponding part of the
proof of Theorem 2 in E&S (only a slight change of notation is needed and the
references to Lemma 4 and Theorem 1 in E&S should be changed to Lemma
5 and Theorem 3 in the current paper).
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Let Qnuv = s(t′n)−1
∑t′n

t=1 X̄tuX̄tv . Then

Rn1b =
4∑

u=2

u−1∑

v=1

(−1)u+vQnuv/2

and by Lemma 2,

|E[Qnuv]| = 1
st′n

|
t′n∑

t=1

∑

i∈Sk,tu

∑

j∈Sk,tv

cov[Xi, Xj ]| ≤
cβ2

δ

s

∑

i∈Sk,tu

∑

j∈Sk,tv

α1(l1 ∨ l2)δ′ ,

where l1 = |i1− j1|, l2 = |i2− j2|, and δ′ = δ/(2 + δ). Consider the case u = 2
and v = 1. By a counting argument,

|E[Qn21]| ≤ cβ2
δ

s

∑

i∈Sk,tu

∑

j∈Sk,tv

α1(l1 ∨ l2)δ′

=
cβ2

δ

s

d1+k1−1∑

l1=d1+1

k2∑

l2=0

(1 + I{l2 6=0})(k2 − l2)(l1 − d1)α1(l1 ∨ l2)δ′

+
cβ2

δ

s

d1+2k1∑

l1=d1+k1

k2∑

l2=0

(1 + I{l2 6=0})(k2 − l2)(2k1 + d1 − l1)α1(l1 ∨ l2)δ′

≤ 2cβ2
δk2

s
(
d1+k1−1∑

l1=d1+1

k2∧(l1−1)∑

l2=0

l1α1(l1)δ′ +
d1+k1−1∑

l1=d1+1

k2∑

l2=k2∧l1

l1α1(l2)δ′)

+
2cβ2

δk2(2k1 + d1)
s

(
d1+2k1∑

l1=d1+k1

k2∧(l1−1)∑

l2=0

α1(l1)δ′ +
d1+2k1∑

l1=d1+k1

k2∑

l2=k2∧l1

α1(l2)δ′)

= O(k−1
1 ),

where the last equality follows from A1(iii). In general, we have, by using
similar arguments as above, E[Qnuv] = O(k−1

1 + k−1
2 ) for all u 6= v, implying

that

E[Rn1b] = O(k−1
1 + k−1

2 ). (18)

Further,

var[Qnuv] =
s2

(t′n)2
∑′

cov[X̄tuX̄tv , X̄luX̄lv ] +
s2

(t′n)2
∑′′

cov[X̄tuX̄tv , X̄luX̄lv ],
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where
∑′ denotes the sum over t, l such that ρ(Sk,tu ∪Sk,tv ,Sk,lu ∪Sk,lv) ≤ k∗,∑′′ denotes the sum over t, l such that ρ(Sk,tu ∪ Sk,tv ,Sk,lu ∪ Sk,lv) > k∗, and

k∗ = (2k1 + d1) ∨ (2k2 + d2). There are at most 16k2∗t′n summands in
∑′ and

by applying Lemma 5 we see that

|cov[X̄tuX̄tv , X̄luX̄lv ]| ≤ (var[X̄tuX̄tv ]var[X̄luX̄lv ])
1/2

≤ (E[X̄2
tuX̄2

tv ]E[X̄2
luX̄2

lv ])
1/2 ≤ (E[X̄4

tu ]E[X̄4
tv ]E[X̄4

lu ]E[X̄4
lv ])

1/4 ≤ cs−2.

Thus, s2(t′n)−2|∑′ cov[X̄tuX̄tv , X̄luX̄lv ]| ≤ 16ck2∗(t′n)−1 = O(K/N). Let K∗ =
(2k1 + d1)(2k2 + d2). Then, by Lemmas 2(a) and 5,

|cov[X̄tuX̄tv , X̄luX̄lv ]| ≤ c(E[|X̄tuX̄tv |2+δ]E[X̄luX̄lv |2+δ])1/(2+δ)αK∗(k∗)
δ′

≤ c1(E[|X̄tu |4+2δ]E[|X̄tv |4+2δ]E[|X̄lu |4+2δ]E[|X̄lv |4+2δ])1/(4+2δ)αK∗(k∗)
δ′

≤ c1c2s
−2αK∗(k∗)

δ′ ,

for some constants c1 and c2. Thus, s2(t′n)−2|∑′′ cov[X̄tuX̄tv , X̄luX̄lv ]| ≤
cαK∗(k∗)δ′ = O(K(τ2−τ1/2)δ′), and we have shown that

var[Rn1b] = O(K(τ2−τ1/2)δ′ + K/N). (19)

By Lemma 5,

E[R2
n2] = s2E[(

1
t′n

∑

i∈Sn

βiXi)4] ≤ cs2S2

(t′n)4
= O(

K2

N2
), (20)

for some “weights” {βi} satisfying |βi| ≤ 1 for all i.
Let Z̄y =

∑t′n
t=1 ZY,t/t′n. Then,

Rn3 ≤ 2s

t′n

t′n∑

t=1

(E[ZY,t]−E[Z̄Y ])2 +
2s

t′n

t′n∑

t=1

(Zµ,t − Z̄µ)2

, Rn3a + Rn3b. (21)

Let Ȳ ′
u =

∑t′n
t=1 Ȳtu/t′n, u = 1, 2, 3, 4. By Jensen’s inequality,

Rn3a =
s

2t′n

t′n∑

t=1

[
4∑

u=1

(−1)u(E[Ȳtu ]− E[Ȳ ′
u])]2 ≤ 2s

t′n

4∑

u=1

t′n∑

t=1

(E[Ȳtu ]− E[Ȳ ′
u])2

≤ 4s

t′n

4∑

u=1

t′n∑

t=1

(E[Ȳtu ]−E[Ȳ ′])2+ 4s
4∑

u=1

(E[Ȳ ′
u]−E[Ȳ ′])2

, R′
n3a + R′′

n3a. (22)

22



Again, by Jensen’s inequality,

R′′
n3a = 4s

4∑

u=1

[(t′n)−1

t′n∑

t=1

(E[Ȳtu ]− E[Ȳ ′])]2 ≤ R′
n3a, (23)

and R′
n3a → 0 by assumption A1(ii) and since t′n/tn → 1 (Lemma 1). Thus,

Rn3a → 0 and by assumption (2), Rn3b → 0, which together with (21) imply

Rn3 → 0 as n →∞. (24)

Finally, by the Cauchy-Schwarz inequality, (24), and by noting that
E[Rn1] = E[Rn1a] + E[Rn1b] = O(1), we see that

E[R2
n4] ≤ 4E[Rn1]Rn3 → 0 as n →∞. (25)

From (15-20) and (24-25), γ̃n − γn = Rn1 + Rn2 + Rn3 + Rn4 − γn→0 in
L2 norm as n →∞, as was to be proved. ¤

Proof of Corollary 3. We write

γ̃n = st−1
n

∑
(X̄t −E[X̄t])2 − s(X̄ ′ −E[X̄ ′])2 + st−1

n

∑
(E[X̄t]−E[X̄ ′])2

+2st−1
n

∑
(X̄t − E[X̄t])(E[X̄t]− E[X̄ ′])

, Tn1 + Tn2 + Tn3 + Tn4. (26)

Let δ′ = δ/(2 + δ). Since
∑∞

h=0 h(h + 1)α1(h)δ′ is finite by assumption, we
see from (12-14) that

(E[Tn1]− γn)2 ≤ 3(U2
n1 + U2

n2 + U2
n3) = O(K/N + 1/K). (27)

Further, if gt = s(X̄t −E[X̄t])2, then (9) holds and var[Tn1] = var[ḡ′]. Let
∑′

and
∑′′ be defined as in the proof of Theorem 1. By Lemma 5, |cov[gta , gtb ]| ≤

(E[g2
ta ]E[g2

tb
])1/2 ≤ c, for some c > 0, and by the arguments in the proof

of Theorem 1, t−2
n

∑′ cov[gta , gtb ] = O(K/N). By Lemma 2(a) and A2(iii),
t−2
n

∑′′ cov[gta , gtb ] ≤ cαs(k1 ∨ k2)δ′ = O(1/K). Thus

var[Tn1] = O(K/N + 1/K). (28)

By Lemma 5,

E[T 2
n2] = s2t−4

n E[(
∑

i∈Sn

βi(Xi − E[Xi])4] = O(K2/N2), (29)

23



where |βi| ≤ 1 for all i, and by assumption A2(ii),

T 2
n3 = O(ψ2

n). (30)

Moreover,

E[T 2
n4] =

4s2

t2n

∑′
cov[X̄ta , X̄tb ](E[X̄ta ]− E[X̄ ′])(E[X̄tb ]− E[X̄ ′])

+
4s2

t2n

∑′′
cov[X̄ta , X̄tb ](E[X̄ta ]− E[X̄ ′])(E[X̄tb ]−E[X̄ ′])

, Vn1 + Vn2 (31)

Let ρab = ρ(Sk,ta ,Sk,tb) and k = k1 ∨ k2. By Lemma 5, |cov[X̄ta , X̄tb ]| ≤
(var[X̄ta ]var[X̄tb ])

1/2 ≤ c/s, and, by the Cauchy-Schwarz inequality,

|Vn1| ≤ 4cs

t2n

tn∑

ta,tb=1

|(E[X̄ta ]− E[X̄ ′])(E[X̄tb ]−E[X̄ ′])|I{ρab≤k}

≤ 4ct−1
n Tn3(

∑′
1)1/2 = O((K/N)1/2ψn) = O(K/N + ψ2

n), (32)

since there are at most 16k2tn summands in
∑′. By Lemma 2(a),

|cov[X̄ta , X̄tb ]| ≤ cs−1αs(ρab)δ/(2+δ), and, by the Cauchy-Schwarz inequality,
A2(ii), and A2(iii),

|Vn2| ≤ 4csαs(k)δ/(2+δ)

t2n

tn∑

ta,tb=1

|(E[X̄ta ]− E[X̄ ′])(E[X̄tb ]−E[X̄ ′])|

≤ 4cαs(k)δ/(2+δ)Tn3 = O(ψn/K) = O(1/K). (33)

The desired result follows from (26-33). ¤

Proof of Corollary 4. Consider (15-16) and (21). From Lemma 1, Lemma
5, and Corollary 3,

E[(Rn1a − γn)2] = O(K/N + 1/K). (34)

The proof of (34) is essentially the same as the corresponding part of the
proof of Theorem 2 i E&S (only a slight change of notation is needed and the
references to Lemma 4 and Theorem 1 in E&S should be changed to Lemma
5 and Corollary 3 in the current paper). By (18-19), A2(iii), and (20),

E[R2
n1b] = O(K/N + 1/K) and E[R2

n2] = O(K2/N2). (35)
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By (22-23), A2(ii), and assumption (3),

R2
n3a = O(ψ2

n) and R2
n3b = O(φ2

n). (36)

Finally, consider Rn4. We have,

E[R2
n4] =

4s2

(t′n)2
E[{

t′n∑

t=1

(ZY,t − E[ZY,t])(E[ZY,t]− E[Z̄Y ] + Zµ,t − Z̄µ)}2]

≤ 2s2

(t′n)2
E[{

t′n∑

t=1

(ZY,t − E[ZY,t])(E[ZY,t]− E[Z̄Y ])}2]

+
2s2

(t′n)2
E[{

t′n∑

t=1

(ZY,t −E[ZY,t])(Zµ,t − Z̄µ)}2]

, Wn1 + Wn2. (37)

Let δ′ = δ/(2+δ) and let k∗, K∗, and
∑′ be defined as in the proof of Theorem

4. Then, by reasoning as in (31-33),

Wn1 =
2s2

(t′n)2

t′n∑

ta,tb=1

(E[ZY,ta ]− E[Z̄Y ])(E[ZY,tb ]− E[Z̄Y ])cov[ZY,ta , ZY,tb ]

≤
( 2cs

(t′n)2
∑′

+
2csαK∗(k∗)δ′

(t′n)2
∑′′)|(E[ZY,ta ]− E[Z̄Y ])(E[ZY,tb ]− E[Z̄Y ])|

≤ 2cRn3a((t′n)−1(
∑′

1)1/2 + αK∗(k∗)
δ′) = O(K/N + 1/K + ψ2

n). (38)

Likewise,

Wn2 ≤ 2cRn3b((t′n)−1(
∑′

1)1/2 + αK∗(k∗)
δ′) = O(K/N + 1/K + φ2

n), (39)

The desired result follows from (15-16), (21), and (34-39). ¤
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