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Abstract
In the paper an Edgeworth-type approximation to the density of the
estimator of the location parameter in the Growth Curve model has
been found. The approximation is a mixture of a normal and a Kotz-type
distribution, thus being an elliptical distribution. Shape and properties
of the distribution are examined. Finally a small example is given to
demonstrate an application of the approximation.
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1 Motivation and overview of the problem
Over the years linear models have been one of the most widely used tools in
statistics. Best linear unbiased estimators exist for the parameters describing
the mean and if we assume an underlying normal distribution, these linear
estimators are the best unbiased estimators. The linear model can be written
in the form

x′ = β′C + e′,

where e ∼ Nn(0, σ2I), β′: 1 × k is an unknown parameter matrix, C: k × n
is a known design matrix of full rank and σ2 is the variance. The estimator of
the parameter β is given by the equality

β̂
′
= x′C ′(CC ′)−1.

Here, β̂ ∼ Nk(β, σ2(CC ′)−1), i.e. β̂ is multivariate normal with mean β and
dispersion matrix σ2(CC ′)−1.

There exists an immediate extension to a multivariate linear model, i.e. a
MANOVA model. Let

X = BC + E,

where X: p×n is the data matrix, B: p×k is a matrix of unknown parameters,
C : k × n is the same design matrix as in the univariate linear model, and
the error matrix E = (e1, e2, . . . ,en), where ei ∼ Np(0,Σ) are i.i.d. and Σ
is an unknown positive de�nite parameter matrix. The maximum likelihood
estimator (MLE) of B is given by

B̂ = XC ′(CC ′)−1 ∼ Np,k(B, (CC ′)−1,Σ), (1.1)

where Np,k(•, •, •) represents the matrix normal distribution (Kollo & von
Rosen, 2005, pp. 191-193).

In the model, for each experimental unit, we have p correlated measure-
ments. There is no functional relationship between the mean parameters within
experimental units. However, if we suppose a linear functional relationship, we
have the following extension of the MANOVA model

X = ABC + E, (1.2)

where X, C and E are as in the MANOVA model but A: p× q, r(A) = q, is
a within individuals design matrix, and B is of size q × k. This is the Growth
Curve model which was �rst introduced by Pottho� & Roy (1964), although
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some other authors had earlier worked with a similar model. For a review of
the model see Woolson & Leeper (1980), von Rosen (1991) or Srivastava & von
Rosen (1999). Kshirsagar & Smith (1995) have written a book on the model
and for a recent contribution see Kollo & von Rosen (2005, Chapter 4), where
the model and some extensions are presented. The MLE of B (e.g. see Khatri,
1966 or Kollo & von Rosen, 2005) equals

B̂ = (A′S−1A)−1A′S−1XC ′(CC ′)−1, (1.3)

where
S = X(I −C ′(CC ′)−1C)X ′. (1.4)

Unlike the MANOVA model, B̂ in (1.3) is a non-linear estimator. Note that if
A = I, the estimator B̂ in (1.3) is identical to B̂ in (1.1). Unfortunately, B̂
in (1.3) is not normally distributed. This observation is the starting point of
our paper.

Several authors have described the distribution of B̂ in (1.3). Gleser &
Olkin (1970) were the �rst to derive the distribution in a canonical form of the
model. Later Kabe (1975), using a di�erent technique, considered the model
in the set-up given in (1.2). Kenward (1986) expressed the density of B̂ with
the help of hypergeometric functions. All these results are di�cult to apply.
Fujikoshi (1985, 1987) derived asymptotic expansions with upper error bounds
for the density of linear combinations of the elements in B̂. Fujikoshi's results
are based on an interesting matrix identity which leads to a decomposition
into a sum of two independently distributed random variables, where one is
normally distributed.

General Edgeworth type expansions for multivariate density functions were
presented by Kollo & von Rosen (1998) and if using them, Fujikoshi's results
can be generalized so that a density approximation for the matrix B̂ with an
upper error bound is obtained. We will observe the remarkable fact that the
density approximation is a density itself which is unusual when performing
Edgeworth expansions. Furthermore, it is noticed that a random variable with
the approximating density has the same mean and dispersion matrix as B̂ and
that the approximating density is a mixture of two elliptical distributions: a
normal and a Kotz-type distribution. The results can be used when construct-
ing con�dence sets. In Section 2 we give necessary notation and results on the
multivariate density approximation of the distribution of the parameter matrix
estimate B̂. Section 3 deals with properties of the density approximation for
B̂, while in Section 4 we examine our approximation in the Growth Curve
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model. Also a small simulation study is included to show the properties of the
approximating distribution.

2 Formal expansion of the density of B̂

Several strategies could be followed when approximating the distribution of
B̂ in (1.3). The asymptotic normal distribution would be the most common
approximation to look for. Asymptotic normality of B̂ is based on the conver-
gence of the matrix S, given in (1.4), if n →∞. It follows in the same way as
for the sample covariance matrix in multivariate analysis (see Anderson (2003),
p. 86, for example) that if n →∞,

1
n− k

S
P−→ Σ, (2.1)

where P−→ denotes the convergence in probability.
After replacing S−1 by Σ−1 in (1.3), we get a natural approximation for

B̂:
BN = (A′Σ−1A)−1A′Σ−1XC ′(CC ′)−1, (2.2)

which is normally distributed because X is matrix normally distributed,
Xp,n ∼ N(ABC,Σ, I). Therefore BN ∼ Nq,k(B, (A′Σ−1A)−1, (CC ′)−1).
However, it appears that a speci�c elliptical distribution gives a much better
approximation. Clearly both B̂ and BN give unbiased estimators:

E[B̂] = E[BN ] = B. (2.3)

In Kollo & von Rosen (2005, �4.2) the dispersion matrix D[B̂] is found:

D[B̂] =
n− k − 1

n− k − p + q − 1
(CC ′)−1 ⊗ (A′Σ−1A)−1. (2.4)

The dispersion matrix of BN is given by

D[BN ] = (CC ′)−1 ⊗ (A′Σ−1A)−1. (2.5)

From here:

D[B̂]−D[BN ] =
p− q

n− k − p + q − 1
(CC ′)−1 ⊗ (A′Σ−1A)−1,
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which is positive de�nite. Thus BN underestimates the variation of B̂. This
can be expected as the random matrix S in B̂ has been replaced by Σ in BN .
Let us rewrite B̂ in the following form:

B̂ =(A′S−1A)−1A′S−1XC ′(CC ′)−1 (2.6)
=(A′Σ−1A)−1A′Σ−1XC ′(CC ′)−1

+ (A′S−1A)−1A′S−1(I −A(A′Σ−1A)−1A′Σ−1)XC ′(CC ′)−1.

The two terms in (2.6) are independent, what follows from the next result
(Kollo & von Rosen, 2005, p. 196).

Lemma 2.1. Let X ∼ Np,n(µ,Σ,Ψ), Y ∼ Np,n(0,Σ,Ψ) and A, B, C, K
and L be non-random matrices of proper sizes. Then,

(i) AXK is independent of CXL for all constant matrices K and L if and
only if AΣC ′ = 0;

(ii) Y AY ′ is independent of Y B if and only if B′ΨA′Ψ = 0 and
B′ΨAΨ = 0.

Lemma 2.1 (i) yields that

(A′Σ−1A)−1A′Σ−1XC ′(CC ′)−1

and
(I −A(A′Σ−1A)−1A′Σ−1)XC ′(CC ′)−1

are independently distributed. Moreover, by Lemma 2.1 (ii) the sums of square
matrices S and XC ′(CC ′)−1 are independent.

Therefore

U = (A′S−1A)−1A′S−1(I −A(A′Σ−1A)−1A′Σ−1)XC ′(CC ′)−1 (2.7)

is independent of BN .
Thus we can represent B̂ as a sum B̂ = BN + U , where BN and U

are independent. In Kollo & von Rosen (1998) a general relation between two
multivariate density functions was given. We formulate this in the next the-
orem. When the approximating density is Npq(M ,Σ), the obtained density
expansion is given in the next theorem.
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Theorem 2.2. If Y is a random p× q-matrix with �nite �rst four moments,
then the density fY (X) can be presented through the density fN (X) of the
distribution Npq(M ,Σ) by the following formal matrix Edgeworth type expan-
sion:

fY (X) = fN (X)
{

1 + E[vec(Y −M)]′vecH1(vecX, vecM ,Σ)

+
1
2
vec′{D[vecY ]−Σ + E[vec(Y −M)]E[vec(Y −M)]′}

× vecH2(vecX, vecM ,Σ)

+
1
6

(
vec′(c3[Y ] + 3vec′(D[vecY ]−Σ)

⊗E[vec′(Y −M)] + E[vec′(Y −M)]⊗3
)

× vecH3(vecX, vecM ,Σ) + · · ·
}

. (2.8)

In the above density expansion the �rst three multivariate Hermite poly-
nomials appear:

H1(vecX, vecM ,Σ) = Σ−1vec(X −M);

H2(vecX, vecM ,Σ) = Σ−1vec(X −M)vec′(X −M)Σ−1 −Σ−1;

H3(vecX, vecM ,Σ) = Σ−1vec(X −M)(vec′(X −M)Σ−1)⊗2

−Σ−1vec(X −M)vec′Σ−1 − {vec′(X −M)Σ−1 ⊗Σ−1}
−Σ−1 ⊗ {vec′(X −M)Σ−1}. (2.9)

For the de�nition and derivation of multivariate Hermite polynomials the
interested reader is referred to Kollo & von Rosen (2005, �2.2.4).

From Theorem 2.2 we get the following formal approximation for the den-
sity of B̂.

Theorem 2.3. Let B̂, BN and U be given by (1.3), (2.2) and (2.7), respec-
tively. Then an Edgeworth type expansion of the density of B̂ equals

fcB(B0) = fBE
(B0) + · · · ,

where

fBE
(B0) = fBN

(B0)
{

1 +
1
2
s
(
tr{A′Σ−1A(B0 −B)CC ′(B0 −B)′} − kq

)}
,

(2.10)
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with
s =

p− q

n− k − p + q − 1
. (2.11)

Proof. To prove the theorem we have to plug the expressions of the �rst two
moments of BN and B̂, given by equalities (2.3)-(2.5), into the formal approx-
imation in Theorem 2.2.

From (2.8) and (2.9) we get

fcB(B0) = fBN
(B0)

{
1 +

1
2
vec′

{
D[B̂]− (CC ′)−1 ⊗ (A′Σ−1A)−1

}

× vec
{
(CC ′)⊗ (A′Σ−1A)vec(B0 −B)vec′(B0 −B)

× (CC ′)⊗ (A′Σ−1A)− (CC ′)⊗ (A′Σ−1A)
}

+ . . .
}

. (2.12)

Using a property of the vec-operator

vec(ABC) = (C ′ ⊗A)vecB

and taking into account (2.4) and (2.5) we get

fcB(B0) = fBN
(B0)

{
1 +

1
2
s vec′

(
(CC ′)−1 ⊗ (A′Σ−1A)−1

)

× vec
{
(CC ′)⊗ (A′Σ−1A)vec(B0 −B)vec′(B0 −B)

× (CC ′)⊗ (A′Σ−1A)− (CC ′)⊗ (A′Σ−1A)
}

+ . . .
}

. (2.13)

Using the property of the trace function

tr(A′B) = vec′AvecB

we have

fcB(B0) = fBN
(B0)

{
1 +

1
2
s
(
tr{vec(B0 −B)

× vec′(A′Σ−1A(B0 −B)CC ′)} − Ik ⊗ Iq

)
+ . . .

}

= fBN
(B0)

{
1 +

1
2
s

(
tr{A′Σ−1A(B0 −B)CC ′(B0 −B)′} − kq

)

+ . . .
}

(2.14)

what completes the proof.
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Following the ideas of Fujikoshi (1987), Kollo & von Rosen (2005, �4.3.2)
have shown that fBE

(B0) is a good approximation to the density fcB(B0):

Corollary 2.3.1.
∣∣∣fBE

(B0)− fcB(B0)
∣∣∣ = O(n−2).

3 Mixture of normal and Kotz distribution
Before presenting properties of the approximation for density (2.10), we give
some basic facts about the Kotz-type distributions (see for example, Fang et
al., 1990).

De�nition 3.1. Let x = (X1, . . . , Xp)′ be a random p−vector. The vector x
has a Kotz-type distribution with the parameters µ, V , N , s, r, if the density
fx(x) of x has a form:

fx(x) = Cp|V |−
1
2 [(x− µ)′V −1(x− µ)]N−1

× exp{(−r[(x− µ)′V −1(x− µ)]s)}, r, s > 0, 2N + p > 2, (3.1)

where Cp is a normalizing constant:

Cp =
sΓ(p/2)

πp/2Γ(2N + p− 2/2s)
r(2N+p−2/2s).

If we look upon the density function as a univariate function of the
quadratic form (x− µ)′V −1(x− µ), we get a function g(u), which is called a
density generator :

g(u) = Cpu
N−1 exp(−rus), r, s > 0, 2N + p > 2. (3.2)

We write x ∼ Kp(µ,V , N, s, r) if x has the density function (3.1). When
N = 1, s = 1 and r = 1

2 , we get the multivariate normal distribution. When
N = 2, s = 1 and r = 1

2 , we get the distribution which we call Kotz distribution
and denote x ∼ Kp(µ,V ). Now and later on we shall follow this distinction
also in the matrix case: the general distribution is called Kotz-type distribution
and the special case for N = 2, s = 1 and r = 1

2 is called the Kotz distribution.
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De�nition 3.2. We say that Y : p× n has the matrix Kotz-type distribution
with parameters M , V , W , N , s and r, Y ∼ Kp,n(M ,V , W , N, s, r) if

Y = M + δXγ ′,

where M : p× n is a constant matrix, matrices δ : p× p, V = δδ′, γ : n× n,
W = γγ ′ are full rank and X : p × n is a random matrix, so that vecX ∼
Kp,n(0, Ipn, N, s, r). We say that X : p× n has the matrix spherical Kotz-type
distribution Kp,n(0, Ip, In, N, s, r).

We say that the matrix Y is Kotz distributed if N = 2, s = 1 and r = 1
2

and denote Y ∼ Kp,n(M , V , W ).
Using De�nition 3.2 and some properties of the vec-operator we get the

density function for the matrix Kotz-distribution:

fY (Y ) = |V |−n
2 |W |− p

2 g(tr{V −1(Y −M)W−1(Y −M)′}),

where g(·) is the density generating function of Kotz-type distributions, given
in (3.2).

Now we start to examine the approximation fBE
.

Theorem 3.1. The function fBE
in (2.10) is a density function, if

0 < 1− 1
2
skq < 1. (3.3)

Proof. From the assumption (3.3) fBE
(B) ≥ 0 for any B. Let us integrate

the function fBE
:

∫

Rq×k

fBE
(B0)dB0 =

∫

Rq×k

{
1 +

1
2
s

(
tr{A′Σ−1A(B0 −B)CC ′

× (B0 −B)′} − kq
)}

fBN
(B0)dB0 = (1− 1

2
skq)

∫

Rq×k

fBN
(B0)dB0

+
1
2
skq

∫

Rq×k

1
kq

(
tr{A′Σ−1A(B0 −B)CC ′(B0 −B)′}) fBN

(B0)dB0

= 1,

as obviously ∫

Rq×k

fBN
(B0)dB0 = 1,
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and
∫

Rq×k

1
kq

(
tr{A′Σ−1A(B0 −B)CC ′(B0 −B)′}) fBN

(B0)dB0 = 1,

because we integrate the density function of the matrix Kotz distribution
Kq,k(B, (A′Σ−1A)−1, (CC ′)−1).

Corollary 3.1.1. The distribution of BE given in (2.10) is a mixture of a
normal distribution and a Kotz distribution with weights 1 − 1

2skq and 1
2skq

respectively, if the assumption (3.3) holds, where s is de�ned in (2.11). The
dimensions k and q are �xed in the model (1.2).

Proof. The statement follows straightforwardly from the proof of Theorem
3.1.

The Kotz distribution is a multimodal distribution, see Kollo & Roos
(2005), for example. The mixture of the normal distribution and the Kotz
distribution can be unimodal if the weight of the normal distribution is large
enough. The problem is studied in the next theorem.

Theorem 3.2. Let the distribution of a random matrix X be the mixture of
the matrix spherical Kotz distribution Kp,n(0, Ip, In) and standard matrix nor-
mal distribution Np,n(0, Ip, In) with positive weights λ and 1− λ. The density
function of the matrix X is unimodal if and only if

λ ≤ np

2 + np
.

Proof. Let us denote x = vecX. Then we can write the density function of the
random matrix X as follows:

f(x) =
1

(2π)
np
2

(1− λ +
λ

np
x′x) exp

(
−1

2
x′x

)
. (3.4)

We need to �nd extrema of the function f(x). For that we �nd the deriv-
ative of the function (3.4).

Di�erentiating the product in the density expression we get:

df(x)
dx

=
1

(2π)
np
2

(
λ

np

dx′x
dx

exp
(
−1

2
x′x

)
+

d exp
(−1

2x′x
)

dx
(1− λ +

λ

np
x′x)

)
.
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Now we calculate the needed derivatives:

dx′x
dx

= 2x;

d exp
(−1

2x′x
)

dx
=

d
(−1

2x′x
)

dx

d exp
(−1

2x′x
)

d
(−1

2x′x
) = − exp

(
−1

2
x′x

)
x.

The desired derivative has the following form:

df(x)
dx

=
1

(2π)
np
2

exp
(
−1

2
x′x

) (
2λ

np
− 1 + λ− λ

np
x′x

)
x.

One extremum is always obtained at x = 0. Additionally, the derivative
can be zero if

2λ

np
− 1 + λ− λ

np
x′x = 0 ⇐⇒ x′x =

2λ + λnp− np

λ
,

which has no solution, if

2λ + λnp− np

λ
< 0 ⇐⇒ λ ≤ np

2 + np
.

This proves the theorem.

Considering the non-spherical mixture of the distributions Np,n(M , V , W )
and Kp,n(M , V , W ), the condition for unimodality remains the same, because
the mean and dispersion of the distribution do not have an e�ect on modality.

Corollary 3.2.1. Consider the model (1.2). The density function of BE given
in (2.10) is unimodal if and only if s < 2(2 + kq)−1.

Proof. From Corollary 3.1.1 we know that the distribution of the estimator
BE is a mixture of a Kotz distribution and a normal distribution with weights
1
2skq and 1 − 1

2skq, respectively. The dimension of the matrix BE is q × k.
From Theorem 3.2 the following relation must hold for unimodality:

1
2
skq <

kq

2 + kq
=⇒ s < 2(2 + kq)−1.
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Next we consider the marginal distribution of the mixture of a Kotz dis-
tribution and a normal distribution. We shall see that when considering the
marginals of the mixture, the distribution of the marginals is a similar mixture
with a smaller weight for Kotz distribution. So when we reduce the dimen-
sions of the random matrix the similarity to the normal distribution increases.
This result shows, that in low-dimensional cases the approximation by normal
distribution may be appropriate but in higher dimensions the approximation
is not so good anymore. We also make use of this theorem in Section 4 in a
simulation study.

Theorem 3.3. Let a random matrix X be a mixture of random matri-
ces XN and XK with weights 1 − λ and λ respectively, where the matrix
XN ∼ Np,n(M , V , W ) and the matrix XK ∼ Kp,n(M , V ,W ). Let

X =
(

x1

x̃1
X2

)
,

where x1 : p1 × 1, x̃1 : (p− p1)× 1 and X2 : p× (n− 1), let

M =
(

µ1

µ̃1
M2

)

be with the same structure as X and the matrix

Σ = V ⊗W =
(

Σ11 Σ12

Σ21 Σ22

)
.

Then the vector x1 is a mixture of random vectors x1N and x1K with weights
1−λp1/(np) and λp1/(np) respectively, where x1N ∼ Np1(µ1,Σ11) and x1K ∼
Kp1(µ1,Σ11).

Proof. Let us denote x = vecX, x′2 = (x̃′1, vec′X), µ = vecM , µ′2 =
(µ̃′1, vec′M2) and p2 = np− p1. The density of x has the form:

fx(x) =
1

(2π)
np
2

|Σ|−1 exp(−1
2
a)

(
λa

np
+ 1− λ

)
,

where
a = (x− µ)′Σ−1(x− µ).

Let us denote z = x− µ, z1 = x1 − µ1 and z2 = x2 − µ2.
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To obtain the density function for x1 we need to integrate the density
function of the vector x by the vector x2. Next we change the form of some
expressions in the density of x, to make the integration easier.

We shall make use of the representation of the inverse matrix (Horn &
Johnson, 1990, p 31):

A=
(

A11 A12

A21 A22

)
⇒A−1 =

(
A−1

11 + A−1
11 A12A

−1
22·1A21A

−1
11 −A−1

11 A12A
−1
22·1

−A−1
22·1A21A

−1
11 A−1

22·1

)
,

where
A22·1 = A22 −A21A

−1
11 A12.

Now we get:

Σ−1 =
(

Σ−1
11 + Σ−1

11 Σ12Σ−1
22·1Σ21Σ−1

11 −Σ−1
11 Σ12Σ−1

22·1
−Σ−1

22·1Σ21Σ−1
11 Σ−1

22·1

)
,

We calculate the expression for a by partitioned matrices:
a = z′Σ−1z

= z′1Σ
−1
11 z1 + (Σ

− 1
2

22·1z2 −Σ
− 1

2
22·1Σ21Σ−1

11 z1)′(Σ
− 1

2
22·1z2 −Σ

− 1
2

22·1Σ21Σ−1
11 z1).

The determinant of Σ can be found by the formula:

A =
(

A11 A12

A21 A22

)
=⇒ |A| = |A11||A22 −A21A

−1
11 A12|.

From here we get:
|Σ| = |Σ11||Σ22·1|.

After a change of variables in the original density expression of x:
z2 = x2 − µ2;

y = z2 −Σ21Σ−1
11 z1 ⇒ z2 = y −Σ21Σ−1

11 z1 ⇒ dy = dz2 ⇒ J = 1,

we get:

fZ1(z1) =
1

(2π)
np
2

|Σ|−1 exp(−1
2
z′1Σ

−1
11 z1)

∫

Rp2

exp(−1
2
y′Σ−1

22·1y)
(

λ

np
z′1Σ

−1
11 z1 +

λ

np
y′Σ−1

22·1y + 1− λ

)
dy

=
1

(2π)
np
2

|Σ|−1 exp(−1
2
z′1Σ

−1
11 z1)

[(
λ

np
z′1Σ

−1
11 z1 + 1− λ

)

× (2π)
p2
2 |Σ22·1|+ λ

p
(2π)

p2
2 |Σ22·1|E(y′Σ−1

22·1y)
]

.
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Applying the equalities Dy = Σ22·1 and Ey = 0, we get E(y′Σ−1
22·1y) = p2.

That implies:

fZ1(z1) = =
1

(2π)
p1
2

|Σ11|−1 exp(−1
2
z′1Σ

−1
11 z1)

(
λ

np
z′1Σ

−1
11 z1 + 1− λp1

np

)
.

Returning to the original variables z1 = x1 − µ1, the statement is proved.

4 Simulation
Here we study a low-dimensional example. Consider two groups, both consist-
ing of �ve objects. Let each object be measured three times. Let each object in
the �rst group have a theoretical mean vector µ1 = (1, 2, 3)′ and each object
in the second group µ2 = (2, 4, 6)′. Let the correlation between two consecu-
tive observations be 0.5 and between the �rst and the third observation 0.25.
Consider the data matrix X ∼ N3,10(M ,Σ, I10), where

M =




1 1 1 1 1 2 2 2 2 2
2 2 2 2 2 4 4 4 4 4
3 3 3 3 3 6 6 6 6 6


 ; Σ =




1 0.5 0.25
0.5 1 0.5
0.25 0.5 1


 .

The following model is assumed to hold:

µi,t = βi,0 + βi,1t,

where i = 1, 2, t = 1, 2, 3. Then in matrix form, as given in (1.2), the design
matrices A and C are:

A =




1 1
1 2
1 3


 ; C =

(
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1

)
.

In that case obviously the real value of B is known:

B =
(

0 0
1 2

)
.

The approximation for the distribution of the estimator of B in our ex-
ample is a mixture of the normal distribution N2,2(B, V ,W ) and the Kotz
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Table 4.1: Characteristics of the elements of the matrix B̂

mean variance
β01 0 0.42
β11 1 0.075
β02 0 0.42
β12 2 0.075

distribution K2,2(B,V , W ), where V = (A′Σ−1A)−1 and W = (CC ′)−1.
These matrices equal:

V =
(

2.1 −0.75
−0.75 0.375

)
, W =

(
0.2 0
0 0.2

)
.

The weights of the mixture can be found using (2.11). By the formula we get
2/3 as the weight of the normal distribution and 1/3 to be the weight of the
Kotz distribution.

To check the theory we simulated 100,000 samples (using the software pack-
age R), estimated the parameter matrix B from each sample and examined
the obtained empirical distribution.

To study the distribution visually we use the marginals of the distribution
of B̂, which can be plotted in two dimensions. The parameters of the univariate
marginals can be found using Theorem 3.3. The distribution of the vector vecB̂
is a mixture of N4(vecB, V v) and K4(vecB, V v), where

V v = V ⊗W =




0.42 −0.15 0 0
−0.15 0.075 0 0

0 0 0.42 −0.15
0 0 −0.15 0.075


 ,

with weights 2/3 and 1/3, respectively.
Using Theorem 3.3, the distribution of each element of the matrix B̂ is

a mixture of the Kotz distribution and the normal distribution with weights
1/12 and 11/12 respectively. The parameters of the described distributions are
given in Table 4.1.

The density functions of one-dimensional marginals for the generated data
and the theoretical density functions are given in Figure 4.1.

The data is presented in the histogram whereas the underlying theoretical
density function follows the included curve. Clearly, the estimated density of
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Figure 4.1: The marginals of the distribution of B̂
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the generated data follows the theoretical density well. Moreover we can see,
that when we look at the one-dimensional marginals the true distribution is
not very far from being normal, but this does not hold in higher dimensions.

Acknowledgement
T. Kollo and A. Roos are thankful to Estonian Science Foundation for �nancial
support trough the grant GMTMS 5686 and the project TMTMS 1776.

References
Anderson, T.W. (2003). An Introduction to Multivariate Statistical Analysis,

Third edition. Wiley, New York.
Fang, K.-T., Kotz, S. & Ng, K.W. (1990). Symmetric Multivariate and Re-

lated Distributions. Monographs on Statistics and Applied Probability,
36, Chapman and Hall, London.

Fujikoshi, Y. (1985). An error bound for an asymptotic expansion of the
distribution function of an estimate in a multivariate linear model. Ann.
Statist. 13 827�831.

Fujikoshi, Y. (1987). Error bounds for asymptotic expansions of the distri-
bution of the MLE in a gmanova model. Ann. Inst. Statist. Math. 39
153-161.

Gleser, L.J. & Olkin, I. (1970). Linear models in multivariate analysis. In:
Essays in Probability and Statistics. University of North Carolina, Chapel
Hill, 267�292.

Horn, R.A. & Johnson, C.R. (1990). Matrix Analysis. Cambridge University
Press, Cambridge.

Kabe, D.G. (1975). Some results for the GMANOVA model. Comm. Statist.
4 813�820.

Kenward, M.G. (1986). The distribution of a generalized least squares esti-
mator with covariance adjustment. J. Multivariate Anal. 20 244�250.

Khatri, C.G. (1966). A note on a Manova model applied to problems in growth
curve. Ann. Inst. Statist. Math. 18 75�86.

Kollo, T. & Roos, A. (2005) On Kotz-type elliptical distributions. In: Contem-
porary Multivariate Analysis and Experimental Designs - In Celebration
of Professor Kai-Tai Fang's 65th Birthday. Eds. J. Fan and G. Li. World
Scienti�c, New Jersey, 271�282.

16



Kollo, T. & von Rosen, D. (1998). A uni�ed approach to the approximation
of multivariate densities. Scand. J. Statist. 25 93�109.

Kollo, T. & von Rosen, D. (2005). Advanced Multivariate Statistics with Ma-
trices. Springer, Dordrecht.

Kshirsagar, A.M. & Smith, W.B. (1995). Growth Curves. Marcel Dekker,
New York.

Pottho�, R.F. & Roy, S.N. (1964). A generalized multivariate analysis of
variance model useful especially for growth curve problems. Biometrika
51 313�326.

von Rosen, D. (1991). The growth curve model: A review. Comm. Statist.
Theory Methods 20 2791�2822.

Srivastava, M.S. & von Rosen, D. (1999). Growth curve models. In: Multi-
variate Analysis, Design of Experiments, and Survey Sampling, Ed. S.
Ghosh. Marcel Dekker, New York, 547�578.

Woolson, R.F. & Leeper, J.D. (1980). Growth curve analysis of complete
and incomplete longitudinal data. Comm. Statist. A, Theory Methods 9
1491�1513.

17


