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Abstract
Classical multivariate methods are often based on the sample covariance
matrix, which is very sensitive to outlying observations. One alternative
to the covariance matrix is the a�ne equivariant rank covariance matrix
(RCM) that has been studied for example in Visuri et al. (2003). In
this article we assume that the covariance matrix is partially known and
study how to estimate the corresponding RCM. We use the properties
that the RCM is a�ne equivariant and that the RCM is proportional
to the inverse of the regular covariance matrix, and reduce the problem
of estimating the RCM to estimating marginal rank covariance matrices.
This is a great advantage when the dimension of the original data vectors
is large.
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1 Introduction
In classical multivariate analysis it is assumed that the underlying distribution
is multivariate normal. In this case the sample mean and covariance matrix are
su�cient statistics and UMVU estimators and standard multivariate methods
are based on the sample covariance matrix. However, the sample covariance
matrix is very sensitive to outlying observations, which leads to searching for
more robust methods. Besides, the assumption about multivariate normal dis-
tribution is restrictive, because it does not allow the data to come from a
distribution with heavier tails. In this work we assume that our data are ellip-
tically distributed. Simple simulation studies show how sensitive the sample
covariance matrix is to observations from the tails, when we have data from a
multivariate distribution with heavier tails, e.g. a t-distribution. This a�rms
again that alternatives to the standard sample covariance matrix are needed.

In the univariate case robust statistics are often based on ordering the
data and de�ned via rank statistics. In the multivariate case the concept of
ordering becomes much more complicated. Since there is no obvious method
for complete ordering, di�erent restricted ordering or subordering principles
are used. For the issue of multivariate ordering principles, see the classical
paper by Barnett (1976). Since there is no unique way of ordering multivariate
data, the de�nition of rank can also be extended to the multivariate case in
several ways. Puri & Sen (1985) gave the simplest de�nition: they de�ned
multivariate ranks through the usual univariate ranks for each marginal sample,
i.e. via coordinatewise ranks. In this article we will concentrate on the a�ne
equivariant ranks based on the Oja median (see Oja, 1983). The de�nition of
these a�ne equivariant ranks can be found for example in Visuri et al. (2003).
The rank covariance matrix based on these ranks has a nice property: it is
proportional to the inverse of the regular covariance matrix. It follows that
the RCM can be used in many applications instead of the regular covariance
matrix.

Visuri et al. (2003) studied the use of the RCM in classical multivariate
analysis methods, e.g. multivariate analysis of variance, principal component
analysis, multivariate regression analysis and canonical correlation analysis.
However, Visuri et al. (2003) did not make any assumptions about the structure
of the underlying covariance matrix. In this paper we assume that we have
zero blocks in the covariance matrix. We are going to study the problem where
we partition a random vector into three subvectors and where the covariance
matrix of any two of the three subvectors is a null-matrix. We are interested
in how to estimate the corresponding rank covariance matrix in this case. Zero
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blocks in the covariance matrix mean a restriction to the parameter space.
Knowing that some of the parameters are equal to zero gives us additional
information about the parameter space and we should use this information in
estimating the rest of the parameters.

In Section 2 we give some de�nitions and results concerning the elliptical
distributions and the a�ne equivariant RCM. In Section 3 we study how zero
blocks in a covariance matrix a�ect the corresponding RCM. To estimate this
�structured" RCM, we will use the a�ne equivariance property of the RCM
and �nd such a linear transformation that the RCM of the transformed data
will be block-diagonal. Section 4 deals with how to estimate a block-diagonal
RCM using the corresponding marginal vectors and marginal rank covariance
matrices. In the end of Section 4 we present two examples of how one can use
the RCM instead of the usual covariance matrix.

2 On elliptical distributions and a�ne equivariant
ranks

We give some de�nitions and results that we will need throughout this work.
In this paper, we consider the class of elliptical distributions. Let X

d= Y
denote that X and Y have the same distribution. Elliptical distributions or
elliptically symmetric distributions belong to the class of location-scale families
which are de�ned as follows.

De�nition 2.1. Let z : p × 1 be re�ection and permutation invariant, i.e.
Hz d= z for every re�ection and permutation matrix H. Then the corresponding
location-scale family is given by the distributions of

x = Az + b,

where A : p× p is nonsingular and b is a p-vector.

The location-scale family corresponding to a re�ection and permutation
invariant vector z is obtained from z through a�ne transformations, which
are linear transformations followed by a translation. A re�ection matrix is a
diagonal matrix with diagonal elements equal to 1 or −1, a permutation matrix
is obtained from an identity matrix by permuting its rows or columns.

The class of elliptical distributions can be de�ned in several ways. This
class includes for example the class of multivariate normal distributions and

2



multivariate t-distributions. One may say that elliptically symmetric distribu-
tions are extensions of the multivariate normal distribution. In Fang & Zhang
(1990) we can �nd the following de�nition for the class of elliptically contoured
distributions.

De�nition 2.2. If the characteristic function of a p-dimensional random vec-
tor x has the form

exp(it′µ)φ(t′Σt),

for some function φ, where µ : p × 1, Σ : p × p and Σ ≥ 0, we say that
x is elliptically distributed with parameters µ, Σ and φ and we write x ∼
ECp(µ,Σ, φ). In particular, when µ = 0 and Σ = Ip, ECp(0, Ip, φ) is called a
spherical distribution and denoted by Sp(φ).

A spherically distributed vector y : k×1 is invariant with respect to orthog-
onal transformations, i.e. if O(k) denotes the set of k× k orthogonal matrices,
then for every Γ ∈ O(k)

Γy d= y.

In Fang et al. (1990) the function φ is called the characteristic generator.
Next we present some properties of elliptical distributions which can all be

found in Fang et al. (1990), for example. One fundamental property of elliptical
distributions is that they are invariant under the group of a�ne transforma-
tions which are linear transformations followed by a translation.

Theorem 2.1. Assume that x ∼ ECp(µ,Σ, φ) with rank(Σ) = k, let B be a
p×m-matrix and ν an m-vector. Then

ν + B′x ∼ ECm(ν + B′µ,B′ΣB, φ).

From this theorem it follows that the marginal vectors of an elliptically
distributed vector are also elliptically distributed. Partition x, µ and Σ as

x =
(

x1

x2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (1)

where x1 : m × 1, µ1 : m × 1, Σ11 : m ×m, 0 < m < p. Then the following
corollary holds.

Corollary 2.2. Assume that x ∼ ECp(µ,Σ, φ), then x1 ∼ ECm(µ1,Σ11, φ)
and x2 ∼ ECp−m(µ2,Σ22, φ).
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The last result that we state concerns the parameters of an elliptical dis-
tribution.

Theorem 2.3. Assume that x ∼ ECp(µ,Σ, φ) and that the covariance matrix
of x exists. Then

Ex = µ, Covx = −2φ′(0)Σ.

In this work we will concentrate on a�ne equivariant ranks based on the Oja
median (Oja, 1983). A�ne equivariance means that something is equivariant
with respect to a�ne transformations. An equivariant estimator of a parameter
or parametric function for example is an estimator, that is transformed in the
same way as the parameter or parametric function, when the observations are
transformed. For a description of the principle of equivariance, see Lehmann
& Casella (1998) and Bondesson (1982).

The Oja median is a spatial median. Since it is the corner-stone behind
the de�nition of the a�ne equivariant ranks, we present its de�nition here.

De�nition 2.3. Let x1, . . . ,xn be a sample from x in Rp. Let
V (xi1 , . . . ,xip , µ) denote the volume of the simplex with vertices xi1 , . . . ,xip , µ
in Rp, where 1 ≤ i1 < i2 < . . . < ip ≤ n. Then the Oja simplex median of the
sample x1, . . . ,xn is a point µ̂ which minimizes

∑

i1<...<ip

V (xi1 , . . . ,xip , µ) ,

where the sum is taken over all subsets of integers 1 ≤ i1 < i2 < . . . < ip ≤ n.

We can now look at a more generalized situation. Let X = {x1, . . . ,xn}
be a data set of p-variate observation vectors and let I = {i1 . . . , ip} refer to
a subset of p observations in X. Consider the hyperplane determined by the
points in I, which is given by the following equation:

{
x ∈ Rp : det

(
1

xi1

· · · 1
xip

1
x

)
= 0

}
. (2)

The determinant of the (p + 1) × (p + 1) matrix in (2) can also be written
as d0(I) + d′(I)x, where d(I) is a p-dimensional vector. If x does not belong
to the hyperplane, the set I along with x determine a p-variate simplex with
volume

VI(x) =
1
p !

abs{ d0(I) + d′(I)x } ,
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where abs{a} denotes the absolute value of a. To de�ne multivariate ranks,
the centered rank function is de�ned at �rst. This de�nition is based directly
on the de�nition of the Oja median (see De�nition 2.3). The multivariate Oja
median minimizes the average of the volumes of all possible simplices over I,
so it minimizes also

D(x) = p ! aveI{VI(x)}.
The Oja median is the solution of the gradient function ∇D(x) = 0. The
following de�nitions of multivariate a�ne equivariant ranks and the corre-
sponding rank covariance matrix (RCM) can be found for example in Visuri
et al. (2003).

De�nition 2.4. Let x1, . . . ,xn be a random sample from a distribution with
c.d.f. F . Then the centered rank function at x is de�ned as

R(x) = ∇D(x) = aveI{SI(x)d(I)},

where
SI(x) = sgn (d0(I) + d′(I)x).

The corresponding population rank function at x is de�ned as

RF (x) = EF {SI(x)d(I)},

assuming that the order of the expectation and the di�erentiation can be re-
versed. Here the expectation is taken over the vectors in I.

The sample rank vectors are given by

Ri = R(xi), i = 1, . . . , n.

The Ri-vectors satisfy
∑

i Ri = 0, i.e. they are centered. Since the a�ne
equivariant ranks are vectors, they have both magnitude and direction. The
most important property of the rank vectors is their a�ne equivariance. This
property is presented in the following lemma (see Visuri et al., 2003).

Lemma 2.4. Let R∗
1, . . . ,R

∗
n be the centered ranks for the transformed ob-

servations x∗i = Axi + b, i = 1, . . . , n, where A : p × p is nonsingular. Let
R1, . . . ,Rn be the centered rank vectors for the untransformed observations xi,
i = 1, . . . , n. Then

R∗
i = abs {|A|} (A−1)′Ri, i = 1, . . . , n. (3)
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Here |A| denotes the determinant of A. Next we give the de�nitions of the
sample and theoretical rank covariance matrices.

De�nition 2.5. Let x1, . . . ,xn be a sample from a random vector x with
c.d.f. F . The sample rank covariance matrix is de�ned as

D̂ = avei{RiR′
i}. (4)

The corresponding theoretical rank covariance matrix is de�ned as

DF = EF [RF (x)R′
F (x)].

The rank covariance matrices are a�ne equivariant (see Visuri et al., 2003),
this follows directly from equations (3) and (4).

Theorem 2.5. Let D̂∗ be the sample RCM calculated from the transformed
observations xi

∗ = Axi + b, i = 1, . . . , n, for some nonsingular A : p× p. Let
D̂ be the sample RCM for the observations xi, i = 1, . . . , n. Then

D̂∗ = |A|2(A−1)′D̂(A−1).

The a�ne equivariance property holds also for the theoretical RCM:

D∗
F = |A|2(A−1)′DF (A−1).

The following theorem from Visuri et al. (2003) presents the important
relationship between a regular covariance matrix and the corresponding rank
covariance matrix in location-scale families. We will use this result several
times in our work.

Theorem 2.6. Let z be a p-dimensional permutation and re�ection invariant
vector with Cov z = Ip. Let

x = PΛ1/2z + µ

be a random vector in the corresponding location-scale family. Here P : p×p is
an orthogonal matrix, Λ : p× p is a diagonal matrix and µ : p× 1 a symmetry
center. Then Covx = PΛP′ = Ψ and the population rank covariance matrix
of x equals to

DF = ω |Λ|PΛ−1P′ = ω |Ψ|Ψ−1, (5)
where ω is a constant that depends on the distribution of z only.
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Equation (5) shows that the rank covariance matrix is proportional to the
inverse of the corresponding covariance matrix. It is interesting to notice that
the constant ω does not depend only on the type of distribution, it also de-
pends on the dimension of the distribution. One can say that ω contains the
information about the class of distributions that we are working with. The ex-
pressions for calculating this constant in the multivariate normal distribution
and t-distribution are given in Ollila et al. (2004). For example, for normal
distributions the constant ω equals 0.356, 1.920 and 33.958 for dimensions
k = 2, 4 and 6, respectively.

3 Rank covariance matrix corresponding to a par-
tially known covariance matrix

Suppose we have a random vector y = (y′1,y
′
2,y

′
3)
′ from a family of elliptical

distributions consisting of three subvectors y1, y2 and y3. Let the mean and
covariance matrix of this random vector be

µ = (µ′1, µ
′
2,µ

′
3)
′ and Ψ =




Ψ11 Ψ12 Ψ13

Ψ21 Ψ22 Ψ23

Ψ31 Ψ32 Ψ33


 , (6)

respectively, where Ψ is positive de�nite and symmetric. Suppose thatΨ23 = 0
(and Ψ32 = 0), i.e. the subvectors y2 and y3 are uncorrelated. We denote the
corresponding rank covariance matrix by

D =




D11 D12 D13

D21 D22 D23

D31 D32 D33


 .

In Theorem 2.6 we stated that a covariance matrix and the corresponding rank
covariance matrix for a distribution from a location-scale family are related as
follows:

D = ω |Ψ|Ψ−1, (7)
where the constant ω depends on the distribution of (y′1,y

′
2,y

′
3)
′. Using equa-

tion (7) and the assumption that Ψ23 = 0, we obtain the next theorem.
Theorem 3.1. Suppose that we have a random vector (y′1,y

′
2,y

′
3)
′ with mean

µ and covariance matrix Ψ from a location-scale family. Suppose that Ψ23 = 0.
Then the following condition holds for the rank covariance matrix of y:

D23 = D21 D−1
11 D13.
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Proof. From matrix theory we know that if A =
(

A11 A12

A21 A22

)
and A−1

exists, then

A−1 =
(

A−1
11 + A−1

11 A12E−1A21A−1
11 −A−1

11 A12E−1

−E−1A21A−1
11 E−1

)
, (8)

where E = A22 −A21A−1
11 A12 is the Schur complement of A11. From (7) it

follows that Ψ = cD−1 for some constant c.
Using this relationship we obtain:

(
Ψ22 Ψ23

Ψ32 Ψ33

)
= c

[(
D22 D23

D32 D33

)
−

(
D21

D31

)
D−1

11

(
D12 D13

)]−1

= c

(
D22 −D21D−1

11 D12 D23 −D21D−1
11 D13

D32 −D31D−1
11 D12 D33 −D31D−1

11 D13

)−1

.

Applying (8), we get

Ψ23 = −c (D22 −D21D−1
11 D12)−1(D23 −D21D−1

11 D13)(E∗)−1,

where

E∗ = (D33 −D31D−1
11 D13)−

−(D32 −D31D−1
11 D12)(D22 −D21D−1

11 D12)−1(D23 −D21D−1
11 D13).

It follows that if Ψ23 = 0, then D23 −D21D−1
11 D13 = 0, and the conclusion

follows. 2

So our problem becomes how to estimate D if we know that D23 =
D21 D−1

11 D13 (and D32 = D31 D−1
11 D12). This relationship is additional in-

formation about the RCM and should be used in estimating D. To solve this
problem, we will use the a�ne equivariance property (Theorem 2.5) of the rank
covariance matrix.

Let y1, . . . ,yn be a random sample from an elliptical vector y. The a�ne
equivariance property states that if D∗ is calculated from the transformed
observations

y∗i = Ayi + b, i = 1, . . . , n,

for some nonsingular matrix A, then

D∗ = |A|2 (A−1)′DA−1.
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We begin by transforming our random vector y. Let the transformation matrix
be

A =




I D−1
11 D12 D−1

11 D13

0 I 0
0 0 I


 . (9)

Then |A| = 1 and

A−1 =




I −D−1
11 D12 −D−1

11 D13

0 I 0
0 0 I


 .

We choose a transformation matrix of this form because then the rank co-
variance matrix of the transformed data will become block-diagonal. When a
rank covariance matrix is block-diagonal, the subranks of the corresponding
components are uncorrelated. The rank covariance matrix for the transformed
data is

D∗ = (A−1)′DA−1 =




D11 0 0
0 D22 −D21D−1

11 D12 0
0 0 D33 −D31D−1

11 D13


 ,

since |A|2 = 1. Here D∗
23 = 0, because D23 = D21D−1

11 D13. Thus, we have
proved the following result.

Theorem 3.2. Let y be elliptically distributed with a mean and covariance
matrix given in (6). Let A be de�ned as in (9). Then the rank covariance
matrix of the transformed vector

Ay = [(y1 + D−1
11 D12y2 + D−1

11 D13y3)′,y′2,y
′
3]
′

equals

D∗ =




D11 0 0
0 D22 −D21D−1

11 D12 0
0 0 D33 −D31D−1

11 D13


 . (10)

The covariance matrix of the transformed vector is equal to

Ψ∗ = AΨA′ =




Ψ11 + D−1
11 D12Ψ21 + D−1

11 D13Ψ31 0 0
0 Ψ22 0
0 0 Ψ33


 . (11)
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Because of the relationship (7) we can write

D∗ = ω |Ψ∗| (Ψ∗)−1 (12)

for some constant ω that depends on the distribution of y. As we mentioned
earlier, this constant does not depend only on the family of distributions to
which our random vector belongs, it depends also on the size of the vector.

4 Estimating a block-diagonal rank covariance ma-
trix

In this section we study the problem of estimating a block-diagonal RCM.
To emphasize di�erent components of the problem, we divide the section into
three subsections.

In the �rst subsection we show how our problem can be reduced in dimen-
sion: we can use marginal sample vectors to estimate the diagonal blocks D11,
D22 − D21D−1

11 D12 and D33 − D31D−1
11 D13. The circumstance that we can

use the marginal sample vectors and the corresponding marginal rank covari-
ance matrices in the estimation process, is very important. The computation
of the sample RCM's is computer-intensive due to the number of hyperplanes
considered. The number of possible hyperplanes one has to regard in order to
estimate an RCM increases fast with increasing size of data vectors. There-
fore, it is always an advantage to reduce the dimension of data vectors when
working with rank covariance matrices.

In the second subsection we deal with estimating the constants ω1, ω2 and
ω3. We show that our new estimates of the blocks in the original rank covari-
ance matrix D contain the constant ω. This entails that in the applications
that require the estimate of the RCM up to a proportionality constant, we do
not need to bother estimating the constant ω.

In the third subsection we present a couple of examples of how one can use
the RCM.

4.1 Estimating a block-diagonal rank covariance matrix via
marginal rank covariance matrices

We have reduced our problem to estimating a rank covariance matrix D∗ that
is block-diagonal, see (10). When we have estimated the diagonal blocks D11,
D22 −D21D−1

11 D12 and D33 −D31D−1
11 D13 of D∗, and D−1

11 D12 and D−1
11 D13,
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we can estimate all the blocks in the original rank covariance matrix D. From
(12) it is easy to see how the diagonal blocks of D∗ and Ψ∗ are related:

D11 = ω |Ψ22| |Ψ33| |Ψ11 + D−1
11 D12Ψ21 + D−1

11 D13Ψ31|
× (Ψ11 + D−1

11 D12Ψ21 + D−1
11 D13Ψ31)−1, (13)

D22 −D21D−1
11 D12 = ω |Ψ11 + D−1

11 D12Ψ21 + D−1
11 D13Ψ31| |Ψ33| |Ψ22|Ψ−1

22 ,

D33 −D31D−1
11 D13 = ω |Ψ11 + D−1

11 D12Ψ21 + D−1
11 D13Ψ31| |Ψ22| |Ψ33|Ψ−1

33 .

If a random vector (y′1,y
′
2,y

′
3)
′ has a multivariate normal distribution and

its covariance matrix Ψ is block-diagonal, then we know that the components
y1, y2, y3 are independent. In this case marginal sample vectors are used
to estimate Ψ11, Ψ22 and Ψ33, respectively. For other elliptical distributions
a block-diagonal covariance matrix does not imply independence of the com-
ponents. Suppose, anyway, that we want to use marginal sample vectors to
estimate the blocks D11, D22 − D21D−1

11 D12 and D33 − D31D−1
11 D13 in our

transformed rank covariance matrix.
Theorem 4.1. Let the marginal vectors y1 +D−1

11 D12y2 +D−1
11 D13y3, y2 and

y3 be vectors of dimensions p1, p2 and p3, respectively. Denote the popula-
tion rank covariance matrices of these random vectors by M1, M2 and M3,
correspondingly. Then the following equations hold:

M1 = ω1 |Ψ11 + D−1
11 D12Ψ21 + D−1

11 D13Ψ31|
× (Ψ11 + D−1

11 D12Ψ21 + D−1
11 D13Ψ31)−1,

M2 = ω2 |Ψ22|Ψ−1
22 , (14)

M3 = ω3 |Ψ33|Ψ−1
33 .

Proof. From Theorem 2.1 it follows that Ay is elliptical with the covari-
ance matrix given in (11). Due to Corollary 2.2, the marginal vectors
y1 + D−1

11 D12y2 + D−1
11 D13y3, y2 and y3 are also elliptically distributed with

the covariance matrices Ψ11 + D−1
11 D12Ψ21 + D−1

11 D13Ψ31, Ψ22 and Ψ33,
respectively. So the equations in (14) follow from (7). 2

Notice that if the dimensions p1, p2 and p3 are not the same, then the
constants ω1, ω2 and ω3 di�er. We will discuss estimation of these constants
in the following subsection. Meanwhile, let us assume that ω, ω1, ω2 and ω3

are known.
By expressing the blocks D11, D22 −D21D−1

11 D12 and D33 −D31D−1
11 D13

through the marginal rank covariance matrices M1, M2 and M3, we obtain
one of the main results of this work.
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Theorem 4.2. The block matrices D11, D22 − D21D−1
11 D12 and D33 −

D31D−1
11 D13 of the block-diagonal matrix D∗ in (10) can be expressed in terms

of the marginal rank covariance matrices M1, M2 and M3 as follows:

D11 = ω
1
ω1

M1
p2−1

√
|M2|
ωp2

2

p3−1

√
|M3|
ωp3

3

,

D22 −D21D−1
11 D12 = ω

1
ω2

M2
p1−1

√
|M1|
ωp1

1

p3−1

√
|M3|
ωp3

3

, (15)

D33 −D31D−1
11 D13 = ω

1
ω3

M3
p1−1

√
|M1|
ωp1

1

p2−1

√
|M2|
ωp2

2

.

Proof. From the equations in (14) it follows that

|Ψ11 + D−1
11 D12Ψ21 + D−1

11 D13Ψ31| = p1−1

√
|M1|
ωp1

1

,

|Ψ22| = p2−1

√
|M2|
ωp2

2

, (16)

|Ψ33| = p3−1

√
|M3|
ωp3

3

,

and that

(Ψ11 + D−1
11 D12Ψ21 + D−1

11 D13Ψ31)−1 = |Ψ11 + D−1
11 D12Ψ21 + D−1

11 D13Ψ31|−1

×ω−1
1 M1,

Ψ−1
22 = ω−1

2 |Ψ22|−1M2, (17)
Ψ−1

33 = ω−1
3 |Ψ33|−1M3.

The equations in (15) now follow by substituting the expressions in (16) and
(17) into (13). 2

It is important to stress that Theorem 4.2 gives us a tool for presenting
block-diagonal RCM's via respective marginal RCM's, which are of smaller
size.

Before we go further with how to estimate all the blocks in the original
rank covariance matrix D, we describe brie�y what we have done. We started
with an elliptically distributed vector y with mean µ and covariance matrix
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Ψ partitioned as in (6). We assumed that Ψ23 = 0, i.e. that the covariance
matrix Ψ is partially known. In Theorem 3.1 we showed that this results in
D23 = D21D−1

11 D13 for the corresponding RCM. The purpose was to use this
additional information in the estimation of D. We began with transforming our
vector y so that the RCM of the transformed vector became block-diagonal,
see Theorem 3.2. Next we decided to use an idea from the theory for normal
distributions, namely to use the rank covariance matrices M1, M2 and M3 of
the marginal vectors y1 +D−1

11 D12y2 +D−1
11 D13y3, y2 and y3, respectively, for

estimating the blocks D11, D22 −D21D−1
11 D12 and D33 −D31D−1

11 D13 in D∗.
In Theorem 4.2 we showed that these blocks can be expressed in terms of M1,
M2 and M3.

To estimate D11, D22 −D21D−1
11 D12 and D33 −D31D−1

11 D13, we need to
estimate the marginal rank covariance matrices M1, M2 and M3. In (4) we
de�ned the sample RCM. Esa Ollila (see Visuri et al. 2003) has written C-
programs for calculating the rank vectors and the RCM, so estimating M1,
M2 and M3 is not a problem, when we have observation vectors from y1 +
D−1

11 D12y2+D−1
11 D13y3, y2 and y3. Since M1 is the RCM of y1+D−1

11 D12y2+
D−1

11 D13y3, we need to estimate at �rst the matrices D−1
11 D12 and D−1

11 D13,
to estimate M1. Since D∗ is block-diagonal, the subranks of the components
are uncorrelated. This means that we can obtain estimates of D−1

11 D12 and
D−1

11 D13 by solving a regression problem. Set B2 = −D−1
11 D12 and B3 =

−D−1
11 D13. Then y1i −B2y2i −B3y3i, i = 1, . . . , n, are nothing else but error

vectors. So we have to solve a multivariate regression problem to estimate M1.
When we have estimates for D−1

11 D12, D−1
11 D13, D11, D22 −D21D−1

11 D12 and
D33 −D31D−1

11 D13, we can get the rest of the estimates.
The process of estimation of a structured RCM can be summarized in the

following steps:

1) estimate D−1
11 D12 and D−1

11 D13 in y1+D−1
11 D12y2+D−1

11 D13y3 by solving
a multivariate regression problem;

2) then the marginal rank covariance matrices M1, M2 and M3 can be
estimated;

3) thereafter the estimates of D11, D∗
22 = D22 − D21D−1

11 D12 and D∗
33 =

D33 −D31D−1
11 D13 can be obtained using the formulas in (15);
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4) the rest of the estimates can be obtained as follows:

D̂12 = D̂11D̂−1
11 D12,

D̂13 = D̂11D̂−1
11 D13,

D̂22 = D̂∗
22 + D̂21D̂−1

11 D12,

D̂33 = D̂∗
33 + D̂31D̂−1

11 D13,

D̂23 = D̂21D̂−1
11 D13.

Finally, we have estimated all the blocks in the original rank covariance matrix
D.

4.2 Estimating the constants ω1, ω2 and ω3

We can see from formulas in (15) that D11, D22 − D21D−1
11 D12 and D33 −

D31D−1
11 D13 have one common proportionality constant ω, so we can write

D11 = ω K1,

D22 −D21D−1
11 D12 = ω K2,

D33 −D31D−1
11 D13 = ω K3,

where the matrices K1, K2 and K3 are functions of M1, M2 and M3 and ω1,
ω2, ω3, see (15). We can express the blocks in the original RCM through ω,
K1, K2, K3, D−1

11 D12 and D−1
11 D13:

D12 = ω K1 D−1
11 D12,

D13 = ω K1 D−1
11 D13,

D22 = ω [K2 + (D−1
11 D12)′K′

1 (D−1
11 D12)], (18)

D33 = ω [K3 + (D−1
11 D13)′K′

1 (D−1
11 D13)],

D23 = ω (D−1
11 D12)′K′

1 (D−1
11 D13).

It follows that in the applications that require the estimate of the rank
covariance matrix up to a proportionality constant, it is enough to estimate
K1, K2, K3, D−1

11 D12 and D−1
11 D13, and one does not need to be concerned

about estimating the constant ω. However, since K1, K2 and K3 are functions
of M1, M2, M3 and ω1, ω2, ω3, we still need to estimate the constants ω1,
ω2 and ω3, which connect the marginal rank covariance matrices M1, M2 and
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M3 with the corresponding covariance matrices. Estimating ω1, ω2 and ω3 is
a di�cult problem. One advantage that we have, compared to the situation
of estimating ω, is that for the marginal covariance matrices we do not have
any restrictions concerning the parameter space like we had for the covariance
matrix Ψ of y, i.e. the zero blocks. We can estimate ω1, ω2 and ω3 using
marginal sample vectors, which is also an advantage, because estimating the
a�ne equivariant RCM is computer-intensive.

The constant ω in D = ω |Ψ|Ψ−1 can be expressed through the radius r in
the respective spherical distribution. If a random vector x follows a spherically
symmetric distribution F0, it can be represented as x = r u, where r = ‖x ‖
and u = x/‖x ‖ and r and u are independent. The population rank function
is then given by

RF0(x) = qF0(r)u (19)
for some function qF0(r), see Möttönen et al. (1998) or Visuri et al. (2003),
for example. The expressions for qF0(r) for the multivariate normal and t-
distribution can be found in Ollila et al. (2004).
Lemma 4.3. Let x : p×1 follow a spherical distribution F0. Then the constant
ω in (7) is given by

ω =
E{q2

F0
(r)}

(Er2)p−1
pp−2 .

Proof. Since x = r u, Covx = (E r2/p) Ip . On one hand, from (7) it follows
that

DF0 = ω
(Er2)p−1

pp−1
Ip .

On the other hand, (19) gives that

DF0 =
E{q2

F0
(r)}

p
Ip ,

and the result follows. 2

We can see that ω is a function of the radius in the spherical distribu-
tion corresponding to our elliptical distribution. The constants ω1, ω2 and
ω3 are accordingly functions of the radii in the respective marginal spherical
distributions.

One possible way to de�ne the estimator of ω is to use relationship (7),
which gives

ω̂ =
| D̂ |1/p

| Ψ̂ |(p−1)/p
,
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where D and Ψ are p × p -matrices. Hence, the estimates of ω1, ω2 and ω3

can be obtained via the marginal covariance matrices and the corresponding
RCM's as follows:

ω̂1 =
| M̂1 |1/p1

| Ψ̂∗
11 |(p1−1)/p1

,

ω̂2 =
| M̂2 |1/p2

| Ψ̂22 |(p2−1)/p2
,

ω̂3 =
| M̂3 |1/p3

| Ψ̂33 |(p3−1)/p3
,

where Ψ∗ = Ψ11 + D−1
11 D12Ψ21 + D−1

11 D13Ψ31, see (11).

4.3 Examples
In this section we present two examples of applications where it is enough
to estimate the RCM corresponding to a regular covariance matrix up to
a proportionality constant. When we estimate the rank covariance matrix
corresponding to a partially known covariance matrix, we do not have to
bother estimating the constant ω, see (18).

I. Principal component analysis

One application where the analysis can be based on the RCM instead of the
covariance matrix, is principal component analysis. Suppose that we have a p-
variate random vector z from a location-scale family. In location-scale families
the population RCM is proportional to the inverse of the regular covariance
matrix,

D = ω |Ψ|Ψ−1,

which can also be written as

D = ω |Λ|PΛ−1P′,

where Λ : p × p is the diagonal matrix of eigenvalues of Ψ and P : p × p is
the matrix of eigenvectors of Ψ, see Theorem 2.6. The eigenvectors of the
theoretical RCM equal the eigenvectors of the ordinary covariance matrix, and
the eigenvalues of the RCM are proportional to the inverses of the eigenvalues
of the covariance matrix. Suppose that we estimate the RCM up to the pro-
portionality constant ω, i.e. if D = ωK, we estimate K. Let K = PLP′ be
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the orthogonal decomposition of K, where L = diag(l1, . . . , lp) is the diagonal
matrix of eigenvalues of K. Assume that l1 ≤ l2 ≤ . . . ≤ lp . The eigenval-
ues of D are given by ωl1 ≤ ωl2 ≤ . . . ≤ ωlp . The eigenvalues λ1, . . . , λp of
the regular covariance matrix Ψ are proportional to the (ωl1)−1, . . . , (ωlp)−1,
respectively, so we can write

λ1 =
c

ωl1
, . . . λp =

c

ωlp
,

for some constant c, λ1 ≥ . . . ≥ λp . In principal component analysis one is
interested in k �rst principal components with the largest variances, where k
is determined so that these k components account for a certain percentage of
the total variance. Often this percentage is chosen to be 85%. In this case k
is determined from the inequality

c
ωl1

+ . . . + c
ωlk

c
ωl1

+ . . . + c
ωlp

=
1/l1 + . . . + 1/lk
1/l1 + . . . + 1/lp

≥ 0.85.

We can see that it is enough to estimate D = ωK up to the propor-
tionality constant. The k �rst principal components are given by y1 = p′1z,
y2 = p′2z,. . . , yk = p′kz, where p1, . . . ,pk are the eigenvectors corresponding
to l1, . . . , lk.

II. Canonical correlation analysis

Another application where the RCM can be used instead of the covariance
matrix, is canonical correlation analysis, see also Visuri et al. (2003). Let z1

and z2 be vectors of dimensions p and q, respectively, p ≤ q. Partition the
covariance matrix Ψ of z = (z′1, z

′
2)
′ and the corresponding rank covariance

matrix D as follows:

Ψ =
(

Ψ11 Ψ12

Ψ21 Ψ22

)
, D =

(
D11 D12

D21 D22

)
,

where Ψ11 and D11 are p× p -matrices. Let the inverses of Ψ and D be

Ψ−1 =
(

Ψ11 Ψ12

Ψ21 Ψ22

)
, D−1 =

(
D11 D12

D21 D22

)
,

respectively. It can be shown that

Ψ−1
11 Ψ12Ψ−1

22 Ψ21 = [(Ψ11)−1Ψ12(Ψ22)−1Ψ21]′ = [D−1
11 D12D−1

22 D21]′, (20)
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Ψ−1
22 Ψ21Ψ−1

11 Ψ12 = [(Ψ22)−1Ψ21(Ψ11)−1Ψ12]′ = [D−1
22 D21D−1

11 D12]′.

Since C and C′ have the same eigenvalues, it follows that Ψ−1
11 Ψ12Ψ−1

22 Ψ21

and D−1
11 D12D−1

22 D21 have the same eigenvalues. We can conclude that the
canonical correlations found using Ψ and D are exactly the same. From (20)
it follows again that it is enough to estimate D up to a proportionality constant
for calculating canonical correlations.

5 Summary
In this article we have studied the problem of estimating the a�ne equivari-
ant rank covariance matrix based on the Oja median, when the corresponding
covariance matrix is partially known. Speci�cally, we have assumed that the
covariance matrix contains zero blocks, i.e. any two subvectors of the obser-
vation vector are uncorrelated. We have presented one way of estimating the
rank covariance matrix, when the additional knowledge about the covariance
matrix has been taken into account. An advantage of the presented estimators
is, that the marginal rank covariance matrices can be used in the estimation
process. When the size of the data vector is large, reducing the dimension
is very useful, because calculating the rank covariance matrices is computer-
intensive. One drawback of our estimators is that they include the constants ω,
ω1, ω2 and ω3, which characterize the relationship between the rank covariance
matrices and the respective covariance matrices. The problem of estimating
these constants needs to be studied further. The properties of our estimators
and their numerical behavior also need to be further studied.
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