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Abstract
Methods for analysing coe�cients of variation in normally distributed
data are studied. An approximate F -test for equality of two coe�cients
of variation is introduced. The approximate F -test is compared with
eight other tests in a simulation study. The new test performs well, also
when the sample sizes are small. A generalized version of the approx-
imate F -test is de�ned for the case that there are several independent
estimates of each coe�cient of variation, calculated with di�erent aver-
ages. The test is applied to a real immunoassay dataset from diagnostic
research. All moments of the proposed test statistic are shown to be
approximately equal to the moments of an F -distribution. The distri-
bution of the logarithm of the test statistic equals the distribution of
the logarithm of an F - distribution plus some error variables that are in
probability of small orders.

Key words: coe�cient of variation, normal distribution, McKay's approximation, approx-
imate F -test
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1 Introduction
In statistical theory the second moment of the mean is a convenient measure
of dispersion. When the observations y1, y2, ..., yn are normally distributed it
is usually estimated by the sample variance s2, de�ned by

s2 =
1

n− 1

n∑

j=1

(yj −m)2, m =
1
n

n∑

j=1

yj . (1)

The standard deviation s is a measure of the variability in the original scale.
In many problems it is, however, necessary to go one step further and relate
the variation to the level of the observations. If the standard deviation is e.g.
25 it may possibly be small if the average is 1000, but large if the average is
100. For this reason variability in data is often summarised by the coe�cient
of variation

c =
s

m
. (2)

The coe�cient of variation is a ratio between two outcomes of random
variables. Theoretically this measure of dispersion is not as convenient as the
variance, but from a practical point of view it provides useful information. In
many �elds of interest, often in biological and medical research, the coe�cient
of variation is preferred to the variance or standard deviation.

Pearson (1896) de�ned the coe�cient of variation and used it for compar-
ison of various measurements on females with corresponding measurements
on males. Schimmerl-Metz et al. (1999) provide a modern example from
morphology. They calculate coe�cients of variation on measurements of the
scapholunate joint intercortical width of wrists.

In laboratory analytical procedures the standard deviation of repeated mea-
surements are often proportional to the concentration being measured. The
precision of an analytical method is usually described by coe�cients of varia-
tion between and within assays. DeSilva et al. (2003) accordingly recommend
that precision shall be expressed by coe�cients of variation. Comparing the
performance of e.g. two laboratories or two instruments thus involves the
problem of comparing two coe�cients of variation.

In clinical trials not only the average e�ect of a treatment but also the
variation in the e�ect is considered. It is not always appropriate to assume
independence between e�ect size and variance. Often data indicate a constant
coe�cient of variation. In crossover trials treatments are compared within
individuals. An individual is �rst given one treatment, and then a second
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treatment and so on. Sometimes each individual receives each treatment sev-
eral times. The individuals may respond very di�erently on the treatments,
and the standard deviation in the replicated measurements is often propor-
tional to the response. In this case the coe�cient of variation is a natural
measure of dispersion. The Food and Drug Administration (2001) establish
that coe�cients of variation shall be reported in bioequivalence studies.

The reaction time of a task may di�er much between a group of patients
and a control group. The coe�cients of variation may, however, be similar or
equal in the two groups (Schafer and Sullivan, 1986).

Despite the large number of applications the properties of the coe�cient of
variation are seldom discussed in statistical textbooks. As a consequence there
is among practitioners often an inadequate knowledge on how to make proper
statistical inference concerning the measure. We shall in this article bring some
light on the subject in general and particularly discuss statistical tests for the
coe�cient of variation when the observations are normally distributed. Many
approximate tests have been suggested for the hypothesis that two coe�cients
of variation are equal. They are however not well known, and maybe for this
reason coe�cients of variation are often reported in scienti�c work without
any use of statistical methods. The present article compares eight proposed
methods with a new approximate F -test in a simulation study. This study
should help the researcher to choose a test for the comparison of two coe�cients
of variation.

We shall see that all moments of the approximate F -test statistic are close
to the moments of an F -distributed random variable. The distribution of the
logarithm of the test statistic approximately equals the distribution of the
logarithm of an F -distributed random variable. The test is easily generalized
to the case that there are several estimates per coe�cient of variation. We shall
show by a real data example from diagnostic research how the approximate F -
test and its generalized version can be applied. We shall also suggest a method
for the problem considered by Tian (2005) of making inference for an a priori
common coe�cient of variation.

2 Inference on a single coe�cient of variation
Let yj = µ + ej , where ej are independently distributed N(0, γ2µ2), j =
1, 2, . . . , n, with positive population coe�cient of variation γ and positive ex-
pected value µ. Let m denote the average as de�ned in (1), c the sample
coe�cient of variation as de�ned in (2).
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In the well-known t-test of the hypothesis that the expected value of a
normally distributed random variable equals zero, the test statistic

t =
m

s/
√

n
=
√

n

c

is t distributed with n − 1 degrees of freedom under assumption that the hy-
pothesis is true. Generally t follows a noncentral t distribution with n − 1
degrees of freedom and noncentrality parameter τ =

√
n/γ. Owen (1968)

discusses this and other applications of the noncentral t distribution. With
modern statistical software the percentiles of the noncentral t distribution are
accessible and it is easy to test the hypothesis that τ , and thus also γ, equals
a speci�ed value. A con�dence set for τ can be constructed by inverting the
acceptance region of a test of the hypothesis about τ (Shao, 2003). Thus, if
Pr(t <

√
n/c | τ = τ1) = α/2 and Pr(t >

√
n/c | τ = τ2) = α/2 then [τ2, τ1]

is a 100(1− α)% con�dence interval for τ . An exact �nite con�dence interval
for γ is easily obtained from the con�dence interval for τ provided that the
latter does not include zero, which it seldom does. The exact �nite con�dence
interval is [

√
n/τ1,

√
n/τ2].

If the percentiles of the noncentral t distribution are not available there
are several ways to calculate approximate con�dence intervals. McKay (1932)
shows that if γ is small, i.e., less than 1/3, and if θ = (n− 1)/n, then

(n− 1)
c2/(1 + θc2)
γ2/(1 + γ2)

(3)

is approximately χ2 distributed with n − 1 degrees of freedom. Note that in
applications the condition γ < 1/3 is often reasonable since it makes negative
observations unlikely. The condition is ful�lled when the observations are
necessarily positive though well described by the normal distribution. This
is often the case when measuring, e.g., length, mass, time, blood pressure
or concentration. Fieller (1932), Pearson (1932), Iglewicz and Myers (1970)
and Umphrey (1983) all con�rm the adequacy of McKay's χ2 approximation.
Since (3) is an approximate pivotal quantity (Shao, 2003) it can be used as
an approximate test for the hypothesis that γ = γ0, where γ0 is a speci�ed
constant, or for calculating an approximate con�dence interval.

Vangel (1996) proposes a small modi�cation of McKay's approximation
useful for calculating approximate con�dence intervals that are accurate also
for small sample sizes. The con�dence interval based on this approximation
can be written
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[
c

(
u1

n− 1
+ c2

(
u1 + 2

n
− 1

))− 1
2

, c

(
u2

n− 1
+ c2

(
u2 + 2

n
− 1

))− 1
2

]
, (4)

where u1 denote the 100(1−α/2):th percentile of a χ2 distribution with n− 1
degrees of freedom, and where u2 denote the 100(α/2):th percentile of a χ2 dis-
tribution with n− 1 degrees of freedom. Another approximate method, devel-
oped by Wong and Wu (2002), for calculating con�dence intervals is based on
the modi�ed signed log likelihood ratio statistic de�ned by Barndor�-Nielsen
(1986, 1991). This method is also claimed to give accurate results in case of
small sample sizes.

There is a strong tradition among statisticians to use the logarithmic trans-
formation when the standard deviation is proportional to the mean. A Taylor
series expansion of log y about y = µ gives

log y ≈ log µ +
1
µ

(y − µ),

so that Var(log y) ≈ Var(y)/µ2. Thus the standard deviation in log scale
roughly equals the coe�cient of variation in the original scale. In terms of
changes in µ the logarithmic transformation is variance stabilising when the co-
e�cient of variation in the original scale is constant. After having transformed
all data into log values the statistical analyst often proceeds by modelling an
expected value under assumption of a normally distributed error term. This
additive error is normally distributed in log scale. In the original scale the er-
ror is multiplicative with a lognormal distribution. The lognormal distribution
is however not symmetric, but positively skewed. The �nal analysis does for
this reason not conform to an initial assumption of a symmetric distribution
with approximately normally distributed errors. In e.g. blood test systems the
measurement errors, detected by measuring the same blood sample repeatedly,
are often approximately normally distributed as a result of approximately nor-
mally distributed error sources such as variation in pipetted volume.

3 Review of tests for equality of two coe�cients of
variation

Various test statistics have been proposed for the hypothesis that two coe�-
cients of variation are equal. The most well known are collected in this section.
We investigate their performances in Section 6.
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Let yij = µi + eij , where eij are independently distributed N(0, γ2
i µ2

i ), i =
1, 2 and j = 1, 2, . . . , ni, with positive population coe�cients of variation γi

and positive expected values µi. Let ci and mi denote the sample coe�cient
of variation and the average in sample i, respectively. We study tests of the
null hypothesis H0 : γ1 = γ2 of equal population coe�cients of variation.

3.1 Likelihood ratio test
Several authors explore the likelihood ratio test of the hypothesis. Miller and
Karson (1977) and Bhoj and Ahsanullah (1993) deal with the special case
of equal sample sizes. Lohrding (1975), Bennett (1977) and Doornbos and
Dijkstra (1983) consider the general case of unequal sample sizes. According
to Gerig and Sen (1980), the maximum likelihood estimates of µ1, µ2 and γ
are

µ̂1 =
n1m1µ̂2

(n1 + n2)µ̂2 − n2m2
, µ̂2 = − q

2p
+

√
q2

4p2
− r

p

and

γ̂ =

√
1
µ̂2

(
n2 − 1

n2
c2
2m

2
2 + m2

2 −m2µ̂2

)
(5)

respectively, where p = (n1 + n2)c2
1 + n2, q = −(2n2c

2
1 + 2n2 − n1)m2 and

r = (n2
2(c

2
1 + 1)− n2

1(c
2
2 + 1))m2

2/(n1 + n2). The likelihood ratio test statistic
can be written

R = −2 log λ = n1 log
n1(γ̂µ̂1)2

(n1 − 1)c2
1m

2
1

+ n2 log
n2(γ̂µ̂2)2

(n2 − 1)c2
2m

2
2

, (6)

where λ is the likelihood ratio. Asymptotically R is χ2 distributed with 1
degree of freedom.

3.2 Bennett's test
Bennett (1976) utilise McKay's approximation (3) and applies a test accord-
ing to Pitman (1939) of the hypothesis of equal scale parameters of gamma
variables. Shafer and Sullivan (1986) note that Bennett by mistake uses a
variance with devisor n− 1 where McKay (1932) uses a variance with devisor
n. For this reason they modify Bennett's test correspondingly. The modi�ed
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Bennett's test statistic is

B = (n1 + n2 − 2) log
(

1
n1 + n2 − 2

(
n1θ1c

2
1

1 + θ1c2
1

+
n2θ2c

2
2

1 + θ2c2
2

))

−(n1 − 1) log
(

n1θ1c
2
1

(n1 − 1)(1 + θ1c2
1)

)

−(n2 − 1) log
(

n2θ2c
2
2

(n2 − 1)(1 + θ2c2
2)

)
(7)

where θi = (ni−1)/ni, i = 1, 2. The value of the test statistic shall be compared
with a χ2 distribution with 1 degree of freedom.

3.3 Miller's test
When there are many observations, the sample coe�cient of variation has
an approximate normal distribution. Miller (1991) gives a test based on this
asymptotic normality. The population coe�cient of variation γ is estimated
by a weighted average, γW = ((n1 − 1)c1 + (n2 − 1)c2)/(n1 + n2 − 2). This
estimate is employed in the calculation of a test statistic

M =
c1 − c2√

γ2
W

2(n1−1) + γ4
W

n1−1 + γ2
W

2(n2−1) + γ4
W

n2−1

, (8)

which shall be compared with a standard normal distribution. Feltz and Miller
(1996, 1997) give more information about this test.

3.4 Wald test
Rao and Vidya (1992) give the Wald statistic for the case of equal sample sizes.
Gupta and Ma (1996) modify it to the general case of unequal sample sizes.
The test statistic

W =
(c1 − c2)2

c21
2n1

+ c41
n1

+ c22
2n2

+ c42
n2

(9)

is approximately χ2 distributed with 1 degree of freedom. This test statistic is
obviously closely related to Miller's statistic (8). Bhoj and Ahsanullah (1993)
give a third statistic on the same theme, but only for the case of equal sample
sizes.
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3.5 Score test
Gupta and Ma (1996) derive the score test, based on the maximum likelihood
estimates (5). Its explicit value is given by

S =
(

1
2

γ̂2 + γ̂4

) (
a2

1

n1
+

a2
2

n2

)
, (10)

where
ai = µ̂−2

i γ̂−3
ni∑

j=1

(yij − µ̂i)2 − niγ̂
−1, i = 1, 2.

The test statistic (10) shall be compared with a χ2 distribution with 1 degree
of freedom.

3.6 Doornbos and Dijkstra's test
Doornbos and Dijkstra (1983) develop a test based on the distribution of the
inverse of the sample coe�cient of variation. Let bi = 1/ci, bW = (n1b1 +
n2b2)/(n1 + n2). The total sum of squares T = n1(b1 − bw)2 + n2(b2 − bw)2

is sensitive to deviations from the null hypothesis. Doornbos and Dijkstra
estimate the expectation of T by

Ê[T ] =
n2(n1 − 1)

(n1 + n2)(n1 − 3)
+

n1(n2 − 1)
(n1 + n2)(n2 − 3)

+
1

c2
p(n1 + n2)

(
n1n2(n1 − 1)

n1 − 3
+

n1n2(n2 − 1)
n2 − 3

+ n2
1e

2
1 + n2

2e
2
2 − (n1e1 + n2e2)2

)

where

c2
p =

n1(n1−1)
n1−3 + n2(n2−1)

n2−3

n1b2
1 + n2b2

2 − n1−1
n1−3 + n2−1

n2−3

, ei =

√
ni − 1

2
Γ[ni−2

2 ]
Γ

[
ni−1

2

] , i = 1, 2.

The test statistic
D =

T

Ê(T )
(11)

is approximately χ2 distributed with 1 degree of freedom.
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3.7 Log test
A test based on the logarithmic approach discussed in Section 2 can be made
in the following way. Take the logarithm of all observations and calculate the
standard deviation sL1 in sample 1 and the standard deviation sL2 in sample
2. Then compare

L =
s2
L1

s2
L2

(12)

with an F -distribution with n1 − 1 and n2 − 1 degrees of freedom.

3.8 Naive test
With the �naive" test the sample coe�cients of variation are compared by an
F -test in the same way as standard deviations are compared, that is,

N =
c2
1

c2
2

(13)

is compared with an F -distribution with n1− 1 and n2− 1 degrees of freedom.

4 An approximate F -test for equality of two coe�-
cients of variation

4.1 The approximate F -test
In the previous section we reviewed eight tests for the hypothesis of equal
coe�cients of variation. Many of them require large sample sizes. When
the numbers of observations are not large it is not clear which test should be
preferred. For this reason we now introduce an approximate F -test plausible to
work well also for small sample sizes. It is natural to look for an F -test, since
such tests are used for comparing variances. The ordinary test statistic for
comparing two variances is the ratio between the two variances. If we, for the
comparison of two coe�cients of variation, analogously take the ratio between
the two coe�cients of variation we get the naive test (13). This test does not
take into account the variation in the estimated averages in the denominators
of the coe�cients of variation. Therefore it is reasonable to suppose that it is
better to build the test on McKay's transformation (3). According to McKay
(1932),

(ni − 1)
c2
i /(1 + θic

2
i )

γ2
i /(1 + γ2

i )
, i = 1, 2,
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is approximately χ2 distributed with ni − 1 degrees of freedom when θi =
(ni − 1)/ni. The only requirement is that the coe�cients of variation are
smaller than 1/3, which is ful�lled when negative observations are unlikely.
Consequently we can, if H0 : γ1 = γ2 is true, anticipate

F =
c2
1/(1 + θ1c

2
1)

c2
2/(1 + θ2c2

2)
(14)

to be approximately F -distributed with n1 − 1 and n2 − 1 degrees of freedom.
The statistic F is an increasing function of c1 and a decreasing function of c2.
Large deviations between c1 and c2 result in large deviations of F from one.
Thus F is a plausible test statistic for the hypothesis of equal coe�cients of
variation.

4.2 The distribution of the test statistic
For inference it is essential that F is approximately F -distributed. We assume
that this is the case because F is a quotient between two χ2 approximations
divided by their degrees of freedom. We can, however, not take it for granted,
and will therefore investigate the properties of F analytically. We shall compare
the distribution of F with the distribution of an F -distributed random variable
X with n1 − 1 and n2 − 1 degrees of freedom. The comparison shall be made
under the assumptions that the measurements are normally distributed and
that the null hypothesis of equal coe�cients of variation is correct. We shall
see that all moments of F are close to the moments of X if only the coe�cient
of variation is su�ciently small.

Let W1 and W2 denote independent χ2 distributed random variables di-
vided by their degrees of freedom, let X = W1/W2, and let Z1 and Z2 denote
independent standardized normal random variables. The distributions of the
sample averages mi and the standard deviations cimi equals the distributions
of µi+n

−1/2
i Ziµiγ and W

1/2
i µiγ respectively. Thus the distribution of c2

i equals
the distribution of

Wiγ
2

(
1 +

Ziγ√
ni

)−2

, i = 1, 2, (15)

which inserted in (14) gives

F
d=

1
W2

(
1 + Z2γ√

n2

)2
+ n2−1

n2
γ2

1
W1

(
1 + Z1γ√

n1

)2
+ n1−1

n1
γ2

,
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where d denotes equality in distribution. By a Taylor series expansion of F to
a power of r, about γ = 0,

E[F r] = E[Xr] +
1
2
E

[
2r(r − 1)Xr−1

(
Z2√
n2
− Z1√

n1

)

+ 2rXr

(
3
Z2

1

n1
− 4

Z1Z2√
n1n2

+
Z2

2

n2
− (n1 − 1)W1

n1
+

(n2 − 1)W2

n2

)]
γ2

+ O(γ3),

where X = W1/W2 is an F -distributed random variable with n1−1 and n2−1
degrees of freedom. From the formula for the r:th moment of X (Kotz and
Johnson, 1983) we notice that

E[Xr−1] =
(n1 − 1)(n2 − 2r − 1)
(n2 − 1)(n1 + 2r − 3)

E[Xr], n2 > 2r + 1.

Furthermore, by the formula for the r:th moment of a χ2 distributed ran-
dom variable with n− 1 degrees of freedom (Kotz and Johnson, 1982), it can
be shown that

E

[
W r+1

1

W r
2

]
=

n1 + 2r − 1
n1 − 1

E[Xr],

since W1 and W2 are independent. As a result, the r:th moment of F is, in a
neighbourhood of γ = 0,

E[F r] = E[Xr] + 2rE[Xr]
(

2− r

n1
− r

n2

)
γ2 + O(γ3), n2 > 2r + 1.

We conclude that the moments are similar when the coe�cient of variation is
small, especially if the sample sizes are equal or large.

We also want to compare the distribution of F with the F -distribution
(i.e., the distribution of X). Since F is a ratio of two independent χ2 approx-
imations it is, however, more convenient to compare the logarithm of F with
the logarithm of X. This means that we shall compare the distribution of the
logarithm of F with Fisher's z distribution, since originally Fisher (1924) did
not de�ne the F -distribution but the z distribution, which is the distribution
of (log X)/2. Write log F as

log F = log c2
1

(
1 +

n1 − 1
n1

c2
1

)−1

− log c2
2

(
1 +

n2 − 1
n2

c2
2

)−1

. (16)
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The �rst term in (16) is by (15)

log c2
1

(
1 +

n1 − 1
n1

c2
1

)−1

d= log W1 + log γ2 − log
(

1 + 2
Z1γ√

n1
+

Z2
1γ2

n1
+

n1 − 1
n1

W1γ
2

)
(17)

Expansion of the last term in (17) yields

log
(

1 + 2
Z1γ√

n1
+

Z2
1γ2

n1
+

n1 − 1
n1

W1γ
2

)

= 2
Z1γ√

n1
+

Z2
1γ2

n1
+

n1 − 1
n1

W1γ
2 − 1

2

(
2

Z1γ√
n1

+
Z2

1γ2

n1
+

n1 − 1
n1

W1γ
2

)2

+ · · ·

= 2
Z1γ√

n1
+

n1 − 1
n1

W1γ
2 + Op

(
max{ γ2

n1
, γ4}

)

where Op denotes order in probability (Azzalini, 1996). The corresponding
calculations can of course be made also for the second term in (16). Now let U1

and U2 be independent χ2 distributed random variables with n1−1 and n2−1
degrees of freedom respectively, and let Z be an independent standardized
normal random variable. Then log F can be written

log F
d= log X + 2

√
1
n1

+
1
n2

Zγ +
(

1
n1

U1 − 1
n2

U2

)
γ2 + R(n1, n2, γ),

where R(n1, n2, γ) = Op(max{n−1
1 γ2, n−1

2 γ2, γ4}). Note that the dis-
tribution of log F consequently equals the distribution of log X +
Op(max{n−1/2

1 γ, n
−1/2
2 γ, γ2}). We conclude that the distribution of log F and

log X are similar especially if the coe�cient of variation is small or the sample
sizes are large.

4.3 A generalized approximate F -test
In applications there are often many independent samples from populations
with a common coe�cient of variation γ. In a recent article Tian (2005)
addresses the problem of making inference about γ in this situation. Tian
suggests a repeated sampling method for calculating a generalized probability
value as de�ned by Tsui andWeerahandi (1989). An easy calculated alternative
is obtained in the following way. Let yjk = µj+ejk, where ejk are independently
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distributed N(0, γ2µ2
j ) with 0 < µj and 0 < γ < 1/3, j = 1, 2, . . . , r and

k = 1, 2, . . . , nj . Then, by (3), with θj = (nj − 1)/nj ,
∑r

j=1(nj − 1)c2
j/(1 + θjc

2
j )

γ2/(1 + γ2)
(18)

is approximately χ2 distributed with
∑

j nj − r degrees of freedom. Thus (18)
can be used as an approximately χ2 distributed test statistic for the hypothesis
that the common coe�cient of variation equals γ.

We shall also derive a useful extension of the approximate F -test. Let
yijk = µij + eijk, where eijk are independently distributed N(0, γ2

i µ2
ij) with

0 < µij and 0 < γi < 1/3, i = 1, 2; j = 1, 2, . . . , ri and k = 1, 2, . . . , nij . If the
hypothesis H0 : γ1 = γ2 is true, then by (18)

G =

(∑r2
j=1 n2j − r2

)∑r1
j=1

(n1j−1)c21j

1+θ1jc21j(∑r1
j=1 n1j − r1

)∑r2
j=1

(n2j−1)c22j

1+θ2jc22j

, (19)

with θij = (nij − 1)/nij , is approximately F -distributed with
∑

j n1j − r1 and∑
j n2j − r2 degrees of freedom.

5 An immunoassay example
Brunnée et al. (1996) compares two methods for measuring concentration of
speci�c IgE antibodies in blood samples. A new system, ELItest, was com-
pared with the established Pharmacia CAP system (PCS). Among other things
the variations between and within assays were studied. Speci�c IgE for the al-
lergens mite, cat and birch was measured for 3 sera with very di�erent levels
of concentration. The intra assay coe�cients of variation were calculated on 8
measurements performed on the same day, and the inter assay coe�cients of
variation were calculated on 10 measurements made on di�erent days. Brunnée
et al. (1996) perform no hypothesis tests of the coe�cients of variation. This
is very representative for studies of precision in diagnostic measuring instru-
ments. Usually no tests are performed, since there is no well-known method
for doing it.

The reported intra assay coe�cients of variation are given in Table 1 to-
gether with calculated approximate F -tests (14). No di�erences are signi�cant
at level 5%. Observe that this is also true for the third sample of allergen
mite, although the estimate of the coe�cient of variation in ELItest (18.6%)
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Table 1: The approximate F -test (14) applied to intra assay coe�cients of
variation (CV) reported by Brunnée et al. (1996)

ELItest CV (%) PCS CV (%)
Allergen (n = 8) (n = 8) F P -value
Mite 6.6 9.5 0.485 0.360
Mite 3.3 4.8 0.473 0.345
Mite 18.6 8.3 4.904 0.052
Cat 6.9 10.0 0.478 0.352
Cat 4.5 5.5 0.670 0.610
Cat 4.2 4.6 0.834 0.817
Birch 4.7 9.2 0.262 0.099
Birch 3.8 5.4 0.496 0.375
Birch 4.8 8.2 0.344 0.182

is more than twice as large as the estimate of the coe�cient of variation in
Pharmacia CAP System (8.3%). The result is however close to the border of
being signi�cant (p-value 0.052), and it is notable that all other samples show
smaller coe�cients of variation in ELItest than in Pharmacia CAP System.

If we assume that each method has a constant intra assay coe�cient of
variation we can apply the generalized approximate F -test given in (19). The
hypothesis of equal intra assay coe�cients of variation is not rejected, because
G = 1.046 with 63 degrees of freedom in the numerator and 63 degrees of
freedom in the denominator (P -value 0.8597). However, this result is to large
extent dependent on the third sample of allergen mite. If the estimate of the
coe�cient of variation in ELItest (18.6%) is considered to be an outlier, maybe
because of suspected errors in the performance of the assay, and accordingly
excluded from the calculation of the hypothesis test the result is clearly sig-
ni�cant. Then G = 2.285 with 63 degrees of freedom in the numerator and 56
degrees of freedom in the denominator (P -value 0.0020).

Suppose that we require that the intra assay coe�cient of variation is
smaller than 10%. Consider the hypothesis that the common intra assay coef-
�cient of variation is 10% in Pharmacia CAP System. The test statistic (18)
equals 36.16, which shall be compared with a χ2 distribution with 63 degrees
of freedom. In conclusion the intra assay coe�cient of variation is signi�cantly
smaller than 10% (P -value 0.0026).

Table 2 includes the inter assay coe�cients of variation as reported by
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Table 2: The approximate F -test (14) applied to inter assay coe�cients of
variation (CV) reported by Brunnée et al. (1996)

ELItest CV (%) PCS CV (%)
Allergen (n = 10) (n = 10) F P -value
Mite 20.1 11.7 2.883 0.131
Mite 16.5 10.1 2.629 0.166
Mite
Cat 26.9 10.3 6.465 0.010
Cat 13.9
Cat
Birch 32.6 15.6 4.073 0.048
Birch 16.5 12.7 1.671 0.456
Birch 17.4 8.0 4.632 0.032

Brunnée et al.(1996) and the corresponding results of the proposed approxi-
mate F -test given in (14). Due to missing values, only 6 comparisons can be
made. Di�erences are signi�cant at level 5% in 3 cases, all of advantage to the
established system.

Note that the test statistic G given in (19) shall not be applied to the
inter assay coe�cients of variation. There are 7 estimates of the inter assay
coe�cient of variation in ELItest, but they are not independent since they are
based on the same 10 days. Neither the 6 estimates of the inter assay coe�cient
of variation in Pharmacia CAP System are independent.

6 A simulation study
6.1 Objective
We shall by Monte Carlo technique investigate the signi�cance levels and pow-
ers of the tests reported in Section 3 and the approximate F -test (14) intro-
duced in Section 4.1.

6.2 Methods
The following tests were included in the study: the approximate F -test (14),
the likelihood ratio test (6), Miller's test (8), Bennett's test (7), Doornbos
and Dijkstra's test (11), the Wald test (9), the score test (10), the naive test
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(13) and the log test (12). In each simulation two samples with n1 and n2

observations respectively were randomly generated 20 000 times in Release 13
of MATLAB (The Mathworks Inc., Natick, MA, USA). The observations be-
longed to normal distributions with expected values 100 and 1000, and with
coe�cients of variation γ1 and γ2 respectively. The tests were performed with
signi�cance level 5% against the alternative hypothesis of unequal coe�cients
of variation, i.e. the tests were two-sided. With the various ?2-tests the null hy-
pothesis was rejected when the test statistic was larger than the 95th percentile
of the χ2 distribution. When using F -tests the null hypothesis was rejected
if the test statistic was smaller than the 2.5th percentile or larger than the
97.5th percentile of the F -distribution. With Miller's test the null hypothesis
was rejected when the test statistic was smaller than the 2.5th percentile or
larger than the 97.5th percentile of the standard normal distribution.

Four cases were studied. The type I errors of the tests were investigated in
Case 1-3, and the powers of the tests were investigated in Case 4. The �rst case
had a small coe�cient of variation (5%) and equal sample sizes. The second
case had instead a large coe�cient of variation (25%), and still equal sample
sizes. The third case had large coe�cients of variation but unequal sample
sizes, since n1 was �xed to 4. In the fourth case one coe�cient of variation
was 5% and the other 10%, and the sample sizes were equal. The size, n2, of
the second sample varied from 2 to 20 in all cases. Thus 19 simulations were
made per case.

6.3 Results
All the tables and �gures are attached in the end of the paper.

The results of the simulations according to Case 1 is reported in Table 3
and illustrated in Figure 1. The �gure shows that three tests performed well
with regards to type I error: the approximate F -test, the naive test and the
log test all showed relative frequencies of rejections close to the signi�cance
level 5%. Miller's test, Bennett's test and the Wald test worked well when
the sample sizes were not very small. The likelihood ratio test, Doornbos and
Dijkstra's test and the score test required large sample sizes.

The results of the simulations according to Case 2 is reported in Table 4 and
illustrated in Figure 2. In this case the coe�cient of variation was large (25%).
The approximate F -test showed nevertheless almost correct probability of type
I error (5%). The naive test rejected the null hypothesis with a probability
somewhat larger than 5%. The log test, interestingly, did not work in a proper
way. Miller's test, Bennett's test and the Wald test behaved well when the
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sample sizes were not very small. The likelihood ratio test, Doornbos and
Dijkstra's test and the score test required large sample sizes.

The results of the simulations according to Case 3 is reported in Table 5
and illustrated in Figure 3. In this case, with unequal sample sizes and at
least one small sample size (n1 = 4) in combination with a large coe�cient
of variation, the approximate F -test was the only test that showed nearly
correct probability of type I error (5%). The Wald test, which showed good
performance in Case 1 and Case 2, did not perform well in this case. Neither
did the likelihood ratio test nor Doornbos and Dijkstra's test. The log test
had too large relative frequency of rejected hypotheses, and the score test had
too small. Miller's test, Bennett's test and the naive test worked better, but
not as good as the approximate F -test.

The results of the simulations according to Case 4 is reported in Table 6
and illustrated in Figure 4. For all tests the powers increased with the number
of observations and reached a level of app. 80% when the sample sizes were
20. The likelihood ratio test showed large power for small sample sizes, but
it also rejected the null hypothesis when it was true, see Figure 1. The score
test and Doornbos and Dijkstra's test never rejected the hypothesis of equal
coe�cients of variation when the sample sizes were small. Miller's test and the
Wald test had very small powers when n1 = n2 = 2, otherwise they worked
similar as the approximate F -test, Bennett's test, the naive test and the log
test.

6.4 Conclusions
The likelihood ratio test, the Wald test, Doornbos and Dijkstra's test and the
log test all showed poor performance with regard to type I error in at least
one of Case 1-3. For this reason they are not recommended for use. The
results of the score test were not as good as the results of the other tests,
neither considering type I error nor considering power. The naive test worked
similar as the approximate F -test, but had too large probability of type I error
when the coe�cient of variation was large. Three tests performed well: the
approximate F -test, Miller's test and Bennett's test. Miller's test did however
not work properly when the sample sizes were very small, and Bennett's test
rejected the true null hypotheses too often. The approximate F -test was the
only test that showed almost correct probability of type I error when the sample
sizes were small.
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7 Discussion
Warren (1982) writes: �While workers in many �elds recognize the imprecision
in a sample mean, and will now routinely compute a standard error, or a con�-
dence interval, for the mean, many of these same workers will treat the sample
coe�cient of variation as if it were an absolute quantity. Inferences based on
this measure of variability may then be questionable. Nevertheless, it should
be possible to persuade such workers that, as with the sample mean, some
measure of precision should be attached to the sample coe�cient of variation."
Though many years have passed since Warren made this re�ection the situa-
tion has not changed. Researchers still lack standard methods for expressing
the precision in estimated coe�cients of variation. The purpose of this article
has been to explore tests that have been suggested but are seldom used, and
to contribute to the knowledge about how to make valid statistical inference.

For the hypothesis of equal coe�cients of variation we have proposed a new
easily calculated test statistic F , which is approximately F -distributed. We
have shown that all moments of F are close to the moments of an F -distributed
random variable if the unknown common coe�cient of variation is su�ciently
small. We have also proved that the logarithm of F in distribution equals the
logarithm of an F -distributed random variable plus some error variables that
are in probability of small orders.

We have made a simulation study that is unique and important since many
of the tests have never been compared with each other. The study revealed
that several proposed tests have erroneous type I errors when the sample sizes
are small. The likelihood ratio test, the Wald test, the score test and Doornbos
and Dijkstra's test shall not be used unless the sample sizes are large. One
of the most interesting results of the simulation study is that a variance test
carried out on log values, i.e., the �log test", performs badly when the coe�cient
of variation is not small. This is a key result since statisticians often use the
logarithmic transformation when the standard deviation is proportional to the
average. The proposed approximate F -test was the only test that showed
almost correct probability of type I error when the sample sizes were small.

Unlike several tests the proposed approximate F -test is easily generalized
to a situation with many independent estimates of the coe�cients of variation.
We have made the appropriate extension and introduced the generalized ap-
proximate F -test. In this test estimates based on many observations are more
important than estimates based on few observations. Each estimate is, after a
transformation, simply weighted by its degrees of freedom. This method also
manages the problem considered by Tian (2005) of testing an a priori common
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coe�cient of variation.
The coe�cient of variation is the predominant measure of dispersion in

diagnostic research. The measurements are often assumed to be normally
distributed. We have studied a real example with immunoassay data in which
the precisions of two diagnostic instruments were compared. The random
variations in the blood sample concentrations were measured by coe�cients of
variation, but no statistical tests were performed in the original article. We
have presented a method for analysing the data. Our basis has been that
medical researchers often do right when calculating coe�cients of variation,
but are in need of statistical tools for evaluation, exactly as Warren (1982)
pointed out.
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Tables and Figures
The signi�cance level is 5% in all cases. In tables 3-6, following notation is
used: F = F -test (14), R = Likelihood ratio test (6), M = Miller's test (8),
B = Bennett's test (7), D = Doornbos and Dijkstra's test (11), W = Wald
test (9), S = Score test (10), N = Naive test (13), L = Log test (12).

Table 3: Case 1: Pr(Type I error) in percentages when γ1 = γ2 = 0.05.

n1 n2 F R M B D W S N L
2 2 4.56 24.28 1.00 8.85 0.00 1.97 0.00 4.56 4.57
3 3 5.12 15.30 6.35 7.65 - 6.55 0.00 5.14 5.17
4 4 4.92 11.17 6.17 6.72 0.00 6.34 0.31 4.93 5.01
5 5 5.15 9.83 6.23 6.51 0.02 6.31 2.19 5.19 5.23
6 6 4.66 8.46 5.71 5.84 0.43 5.76 2.73 4.69 4.73
7 7 5.05 8.15 5.84 5.98 1.05 5.90 3.64 5.13 5.18
8 8 5.02 7.69 5.72 5.82 1.61 5.77 3.77 5.04 5.12
9 9 4.83 7.12 5.38 5.42 1.78 5.39 3.84 4.86 5.00
10 10 4.78 6.80 5.28 5.35 2.10 5.31 3.94 4.81 4.95
11 11 4.95 6.85 5.53 5.59 2.45 5.56 4.32 4.99 5.18
12 12 5.04 6.65 5.53 5.56 2.60 5.53 4.40 5.07 5.25
13 13 4.91 6.51 5.42 5.49 2.88 5.46 4.39 4.97 5.01
14 14 5.11 6.60 5.57 5.60 3.21 5.59 4.61 5.17 5.29
15 15 4.98 6.27 5.30 5.33 3.23 5.33 4.53 5.03 5.13
16 16 4.93 5.99 5.18 5.21 3.31 5.20 4.55 4.98 5.09
17 17 4.87 5.92 5.21 5.21 3.24 5.21 4.47 4.90 5.07
18 18 5.23 6.30 5.55 5.58 3.56 5.58 4.86 5.28 5.37
19 19 4.94 5.99 5.29 5.30 3.61 5.29 4.61 5.00 5.31
20 20 5.16 5.97 5.42 5.42 3.96 5.42 4.87 5.20 5.34
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Figure 1: Case 1. Probability of type I error when γ1 = γ2 = 0.05 and n1 = n2.
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Table 4: Case 2: Pr(Type I error) in percentages when γ1 = γ2 = 0.25.

n1 n2 F R M B D W S N L
2 2 5.02 24.69 0.32 9.18 0.00 0.37 0.00 5.20 5.34
3 3 4.91 14.78 5.50 7.57 - 3.59 0.00 5.38 6.01
4 4 5.16 11.64 5.89 7.02 0.00 4.31 0.37 5.75 7.13
5 5 5.21 10.02 5.77 6.53 0.07 4.62 2.31 5.96 7.95
6 6 5.07 9.00 5.66 6.21 0.53 4.65 3.17 6.01 8.76
7 7 4.96 8.29 5.46 5.97 0.96 4.58 3.54 5.95 9.25
8 8 4.87 7.49 5.21 5.63 1.43 4.43 3.70 5.84 9.66
9 9 5.05 7.46 5.48 5.84 2.14 4.66 4.07 6.21 10.42
10 10 5.04 7.15 5.37 5.72 2.33 4.71 4.20 6.15 10.92
11 11 5.48 7.19 5.82 6.03 2.87 5.23 4.76 6.61 11.33
12 12 4.96 6.37 5.22 5.42 2.73 4.75 4.40 5.97 11.30
13 13 4.93 6.52 5.22 5.48 2.92 4.69 4.37 6.17 11.53
14 14 4.96 6.38 5.17 5.31 3.14 4.74 4.50 6.18 11.79
15 15 5.24 6.70 5.48 5.69 3.41 5.03 4.75 6.63 12.69
16 16 4.81 6.13 5.03 5.15 3.30 4.64 4.46 6.11 12.58
17 17 5.35 6.39 5.56 5.64 3.64 5.14 4.94 6.51 13.20
18 18 5.03 6.26 5.29 5.51 3.52 4.86 4.70 6.47 13.39
19 19 4.84 5.74 4.99 5.09 3.54 4.70 4.52 6.06 13.08
20 20 4.99 5.88 5.15 5.24 3.87 4.85 4.73 6.23 13.55
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Figure 2: Case 2. Probability of type I error when γ1 = γ2 = 0.25 and n1 = n2.
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Table 5: Case 3: Pr(Type I error) in percentages when γ1 = γ2 = 0.25.

n1 n2 F R M B D W S N L
4 2 5.17 21.56 3.49 8.36 0.00 20.45 2.24 5.55 6.00
4 3 5.29 13.95 5.48 7.59 - 6.49 1.35 5.85 6.84
4 4 5.11 11.55 5.77 6.92 0.00 4.22 0.47 5.69 7.10
4 5 5.31 11.02 5.90 6.98 0.00 5.50 1.82 6.09 7.64
4 6 5.15 10.38 5.38 6.53 0.00 6.91 2.54 5.95 7.77
4 7 5.20 10.68 5.18 6.71 0.01 9.22 2.62 6.13 8.19
4 8 4.87 10.02 4.79 6.33 0.05 10.50 2.50 5.67 7.78
4 9 5.03 10.48 4.67 6.27 0.14 12.12 2.74 5.85 8.09
4 10 4.86 10.60 4.43 6.19 0.21 13.51 2.81 5.81 8.18
4 11 5.19 11.00 4.53 6.29 0.27 14.77 2.97 6.12 8.10
4 12 5.18 10.58 4.56 6.46 0.44 15.34 2.86 6.24 8.38
4 13 5.27 10.84 4.37 6.56 0.48 16.38 3.08 6.26 8.75
4 14 5.05 10.84 4.20 6.29 0.43 17.10 2.92 6.15 8.46
4 15 5.04 10.58 4.08 6.06 0.61 17.75 2.75 6.02 8.40
4 16 4.91 11.09 3.93 6.12 0.63 18.82 2.69 5.94 8.13
4 17 4.98 11.08 4.00 6.15 0.68 19.11 2.90 6.11 8.18
4 18 4.79 10.72 3.73 5.88 0.78 19.18 2.62 5.71 7.92
4 19 5.24 11.23 4.01 6.34 0.87 19.87 2.89 6.24 8.43
4 20 5.10 11.38 3.86 6.30 1.07 20.28 2.68 6.12 8.35
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Figure 3: Case 3. Probability of type I error when γ1 = γ2 = 0.25 and n1 = 4.
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Table 6: Case 4: Power in percentages when γ1 = 0.05 and γ2 = 0.10.

n1 n2 F R M B D W S N L
2 2 6.15 30.44 1.25 11.77 0.00 1.91 0.00 6.17 6.18
3 3 9.72 26.19 12.03 14.56 - 11.99 0.00 9.82 9.95
4 4 15.09 29.05 18.04 19.34 0.00 17.92 1.43 15.30 15.68
5 5 20.52 32.27 23.38 24.31 0.28 23.32 11.32 20.84 21.22
6 6 26.65 37.40 29.71 30.38 4.72 29.63 19.42 26.98 27.68
7 7 32.51 41.86 35.14 35.59 12.30 35.03 26.77 32.88 33.43
8 8 38.76 47.13 41.21 41.56 20.38 41.14 34.15 39.15 39.82
9 9 44.07 51.27 46.19 46.62 28.07 46.14 40.14 44.40 45.04
10 10 49.47 55.97 51.51 51.76 34.83 51.47 46.07 49.85 50.47
11 11 54.16 59.92 55.96 56.13 41.80 55.94 51.36 54.54 55.12
12 12 57.96 63.13 59.54 59.73 47.12 59.50 55.50 58.37 58.77
13 13 63.40 68.02 64.93 65.05 53.97 64.90 61.58 63.74 64.44
14 14 67.23 71.28 68.53 68.65 58.74 68.51 65.52 67.57 68.29
15 15 69.55 73.20 70.73 70.81 62.58 70.70 68.18 69.89 70.47
16 16 73.44 76.36 74.30 74.39 67.03 74.27 72.15 73.69 74.10
17 17 76.04 78.92 76.94 77.06 70.64 76.94 74.90 76.37 76.90
18 18 78.72 81.13 79.43 79.49 74.03 79.41 77.58 78.96 79.48
19 19 81.09 83.26 81.82 81.88 77.13 81.80 80.19 81.39 81.79
20 20 83.68 85.59 84.37 84.42 80.02 84.33 82.98 83.95 84.26
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Figure 4: Case 4. Power when γ1 = 0.05, γ2 = 0.10 and n1 = n2.
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