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1 Introduction

In the context of a heteroscedastic random effects one-way ANOVA model,
there is a considerable amount of literature dealing with inference about the
common mean, random effect variance component as well as the error variance
components. The earliest work in this area is due to Cochran (1937, 1954).
Other notable works are due to Rao (1977), Hartley and Rao (1978), Rao,
Kaplan and Cochran (1981), Harville (1977), Vangel and Rukhin (1999), and
Rukhin and Vangel (1998). Some related works are reported in Fairweather
(1972), Jordan and Krishnamoorthy (1996) and Yu, Sun and Sinha (1999).

The basic premise underlying the model is that repeated measurements are
made on the same quantity by several laboratories using different instruments
of varying precisions. Often non-negligible between-laboratory variability may
be present and the number of measurements made at each laboratory may
also differ. The inference problems of interest are on the fixed common mean,
inter-laboratory variance component and also the intra-laboratory variances.
It should be mentioned that there is a huge literature on estimation of the
common mean when inter-laboratory variance is assumed to be absent (see
Yu, Sun and Sinha (1999) and the references therein).

Assume that there are k laboratories, and that there are ni measurements
from the ith laboratory, i = 1, . . . , k. Denoting by Xij the jth replicate
measurement obtained from the ith laboratory, the model is

Xij = µ + τi + eij , (1)

where µ is the common mean, τ1, . . . , τk are the random laboratory effects,
assumed to be independent normal with mean 0 and variance σ2

τ , and the
laboratory measurement errors eij ’s are assumed to be independent and nor-
mally distributed with V ar(eij) = σ2

i , j = 1, . . . , ni, i = 1, . . . , k. Moreover,
τi’s and eij ’s are also assumed to be independent. Here σ2

τ is known as the
inter-laboratory (between) variance, and σ2

1, . . . , σ
2
k are known as the intra-

laboratory (within) variances. There are several papers dealing with the esti-
mation of the mean µ (see Rukhin and Vangel (1998) and Vangel and Rukhin
(1999)). Our interest in this paper is in the improved estimation of the between
and within laboratory variances: σ2

τ , σ2
1, . . . , σ

2
k.

By sufficiency, without any loss of generality, inference about the common
mean and the variance components can be based on the overall sample mean
X̄ =

∑
ij Xij/

∑
ni, the individual lab means Yi =

∑
j Xij/ni, and the within

1



lab corrected sum of squares S2
i =

∑
j(Xij − Yi)2. Obviously,

(a) X̄ ∼ N [µ, σ2
τ

∑
n2

i /n2 +
∑

niσ
2
i /n2], where n =

∑
ni,

(b) Yi ∼ N [µ, σ2
τ + σ2

i /ni],
(c) S2

i ∼ σ2
i χ

2
ni−1.

We note that {S2
i } is independent of {Yi}. Estimators of within lab

variances σ2
i are usually based on S2

i , which are typically unbiased estimators
or their best multiples. There are several unbiased quadratic estimators of
σ2

τ . Notably among them are the two derived in Rao, Kaplan and Cochran
(1981), given below. It should be mentioned that, following a general result
of LaMotte (1973), any unbiased quadratic estimator of σ2

τ is bound to
assume negative values for some data points. Moreover, the non-uniqueness
of the unbiased estimators of σ2

τ follows from the fact that the set of minimal
sufficient statistics {X̄, Yi, i = 1, . . . , k, S2

i , i = 1, . . . , k} is not complete.
Define

ȳ =
∑

niYi/n,

ȳ∗ =
∑

Yi/k.

Then the two unbiased estimators mentioned above can be written as

σ̂2
τ1 =

∑
(Yi − ȳ∗)2/(k − 1)−

∑ S2
i

kni(ni − 1)
, (2)

σ̂2
τ2 =

1

n−
∑

n2
i

n

{∑
ni(Yi − ȳ)2 −

∑ (n− ni)S2
i

n(ni − 1)

}
. (3)

Observe that in the balanced case, i.e. n1 = n2 = · · · = nk, the estimators are
identical.

Our primary objective in this paper is to derive improved quadratic esti-
mators of σ2

τ with a smaller mean squared error compared to any quadratic un-
biased estimator. It turns out, that such improved estimators exist quite gen-
erally. In particular, we derive conditions under which our proposed quadratic
estimator dominates the two unbiased estimators given in (2)−(3). This is in
the same spirit as in Kelly and Mathew (1993, 1994), though in somewhat dif-
ferent contexts. However, our proposed improved estimators can also assume
negative values although with a smaller probability. We recommend that suit-
able modifications along the lines of Kelly and Mathew (1993, 1994) be done
to obtain nonnegative (non-quadratic) improved estimators.
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Following arguments in Mathew et al. (1992), we also derive simple es-
timators of the error variances σ2

1, . . . , σ
2
k, which have smaller mean squared

errors compared to their unbiased estimators or best multiples of the unbi-
ased estimators. We should point out that Vangel and Rukhin (1999) discuss
the maximum likelihood estimators of the parameters in our model and also
provide a brief Bayesian discussion on this problem. Naturally due to the
complicated nature of the likelihood, exact inference based on the likelihood
is impossible, and one has to depend on large sample theory.

The organization of the paper is as follows. In section 2, we address the
problem of improved estimation of between lab variance σ2

τ . A brief Bayesian
analysis of the problem is also taken up in this section. Rather than concen-
trating on the posterior distribution of the variance parameters via highest
posterior density (HPD) regions as in Vangel and Rukhin (1999), our main
focus here is to study numerically the frequentist properties (mean and vari-
ance) of the Bayes estimator of σ2

τ . In section 3 we deal with the problem of
improved nonnegative estimation of within lab variances σ2

1, . . . , σ
2
k. Finally,

in section 4, we analyze two data sets arising in the context of our model.

2 Improved estimation of σ2
τ

In this section we discuss the problem of improved estimation of the between
lab variance σ2

τ . Like the unbiased estimators of σ2
τ which can assume negative

values, our proposed improved estimators which are essentially some variations
of the unbiased estimators can also assume negative values. We first deal with
improved quadratic estimators in a non-Bayesian framework in section 2.1. In
section 2.2 Edgeworth expansion is carried out and in section 3, we derive and
study some properties of the Bayes estimator of σ2

τ .

2.1 Improved quadratic estimators of σ2
τ

Writing Y = (Y1, . . . , Yk)′, N = diag(n1, . . . , nk), n = (n1, . . . , nk)′, and 1 to
be a vector of ones, the two unbiased estimators σ̂2

τ1 and σ̂2
τ2 can be expressed

as

σ̂2
τ1 = Y ′(I − 11′/k)Y/(k − 1)−

∑ S2
i

kni(ni − 1)
, (4)

σ̂2
τ2 =

n

n2 −∑
n2

i

{
Y ′(N − nn′

n
)Y −

∑ (n− ni)S2
i

n(ni − 1)

}
. (5)
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Consider now the general estimator

σ̂2
τ = Y ′AY +

∑
ciS

2
i ,

where we assume A to be symmetric and satisfying A1 = 0 (since we would
like to have σ2

τ translation invariant). Then the unbiasedness of σ̂2
τ requires

that trA = 1 and ci = −aii/{ni(ni − 1)}, i = 1, . . . , n. Hence a general form
of a translation invariant quadratic unbiased estimator of σ2

τ is given by

σ̂2
τ = Y ′AY −

∑ aiiS
2
i

ni(ni − 1)
(6)

with trA = 1 and A1 = 0. The variance of such an unbiased estimator is
easily obtained as

V ar(Y ′AY −
∑ aiiS

2
i

ni(ni − 1)
) = 2{

∑

ij

(
σ2

i

ni
+ σ2

τ )(
σ2

j

nj
+ σ2

τ )a
2
ij

+
∑ a2

iiσ
4
i

n2
i (ni − 1)

}, (7)

where we have also used the fact that Y ′AY and {S2
i } are independently

distributed. Later on we also need the third moment,

E[(σ̂2
τ )

3] = E[(Y ′AY )3]−E[(Y ′AY )2]
∑

aii/ni

+ E[Y ′AY ]{V ar[
aiiS

2
i

ni(ni − 1)
] + (

∑
aii/ni)2}

+ E[(
∑ aii

ni(ni − 1)
S2

i )3]. (8)

Now V ar[
∑ aii

ni(ni−1)S
2
i ] is obtained from (7), and

E[(
∑ aii

ni(ni − 1)
S2

i )3] =
∑ a3

ii

n3
i (ni − 1)3

E[(S2
i )3]

+ 3
∑

i,k:i 6=k

a2
iiajj

n2
i (ni − 1)2nj(nj − 1)

E[S2
i ]E[(S2

j )2]

+ 6
∑

i6=j 6=k

aiiajjakk

ninjnk
.

If n = 2 the last term disappears. Moreover, since S2
i /σ2

i is χ2
ni−1,

E[S2
i /σ2

i ] = ni − 1,

E[(S2
i /σ2

i )
2] = (ni − 1)2 + 2(ni − 1)
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and
E[(S2

i /σ2
i )

3] = (ni − 1)3 + 6(ni − 1)2 + 8(ni − 1).

It remains to express E[Y ′AY ], E([Y ′AY )2] and E([Y ′AY )3] in (8). Because
A1 = 0 we may assume that Y ∼ Nk(0, Σ), where

Σ = σ2
τIk + diag(σ2

1/n1, σ
2
2/n2, . . . , σ

2
k/nk).

Then

E[Y ′AY ] = tr(ΣA), (9)
E([Y ′AY )2] = (tr(ΣA))2 + 2tr(ΣAΣA), (10)
E([Y ′AY )3] = (tr(ΣA))3 + 6tr(ΣA)tr(ΣAΣA) + 8tr(ΣAΣAΣA). (11)

Thus, E[(σ̂2
τ )

3] has been derived.
We now observe the following facts from the variance expression in (7).

(a) The coefficient of σ4
τ in (7) is 2tr(AA) = 2

∑
ij a

2
ij;

(b) The coefficient of σ4
i in (7) is 2a2

ii/ni(ni − 1);
(c) The coefficient of σ2

i σ
2
τ in (7) is 4

∑
j a2

ij/ni.
(d) The coefficient of σ2

i σ
2
j in (7) is 4a2

ij/ninj .

If we choose aii = 1/k, aij = −1/k(k − 1), i 6= j, i.e.

A =
1

k − 1
(I − 1k(1′k1k)−1′k),

we have σ̂2
τ1. The choice aii = ni(n−ni)

n2−∑
n2

i
, aij = − ninj

n2−∑
n2

i
, i 6= j, leads to σ̂2

τ2.
The Cauchy-Schwarz inequality yields, if trA = 1 and A1 = 0,

12 = (trA)2 = (tr{A(I− 1k(1′k1k)−1′k)}2 ≤ tr(AA)tr(I− 1k(1′k1k)−1′k)

and equality holds if A = (I−1k(1′k1k)−1′k)/(k−1). Thus, the minimization of∑
ij a2

ij subject to trA = 1 and A1 = 0 results in the unique solution aii = 1/k,
aij = −1/k(k−1) for i 6= j and the following proposition has been established.

Proposition 2.1. Among translation invariant quadratic unbiased es-
timators of σ2

τ , σ̂2
τ1 given in (4) minimizes the coefficient of σ4

τ in the
variance.

In order to obtain improved quadratic estimators of σ̂2
τ , consider the per-

turbed estimator

σ̂2
τp = c{Y ′AY −

∑ diaiiS
2
i

ni(ni − 1)
}, (12)
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where A again satisfies trA = 1 and A1 = 0, and c, d1, . . . , dk are to be suitably
chosen. Obviously, the bias of such an estimator is given by

bias[σ̂2
τp] = E[c(Y ′AY −

∑ diaiiS
2
i

ni(ni − 1)
)]− σ2

τ

= −(1− c)σ2
τ + c

∑ (1− di)aiiσ
2
i

ni
. (13)

and, similar to the derivation of (7), the variance of this estimator can be
obtained as

V ar[c(Y ′AY−
∑ diaiiS

2
i

ni(ni − 1)
)]=2c2{

∑

ij

(
σ2

i

ni
+σ2

τ )(
σ2

j

nj
+σ2

τ )a
2
ij +

∑ a2
iid

2
i σ

4
i

n2
i (ni − 1)

}.

Hence, the mean squared error of (12) is readily obtained as

MSE[σ̂2
τp] = 2c2{

∑

ij

(
σ2

i

ni
+ σ2

τ )(
σ2

j

nj
+ σ2

τ )a
2
ij +

∑ a2
iid

2
i σ

4
i

n2
i (ni − 1)

}

+ {(1− c)σ2
τ − c

∑ (1− di)aiiσ
2
i

ni
}2. (14)

Moreover, from the calculations concerning E[(σ̂2
τ )

3] we obtain

E[(σ̂2
τp)

3] = c3E[(Y ′AY )3]− 3c3E[(Y ′AY )2]
∑

i

diaii/ni

+ 3c3E[Y ′AY ]{V ar[
∑

i

diaiS
2
i

ni(ni − 1)
] + (

∑

i

diaii/ni)2}

− E[(
∑

i

diaiS
2
i

ni(ni − 1)
)3].

All moments can easily be obtained from the previously presented moment
formulas, for example,

E[(
∑

i

diaiS
2
i

ni(ni − 1)
/σ2

i )
3] =

∑

i

d3
i a

3
ii

n3
i (ni − 1)3

+ 3
∑

i,i6=k

d2
i dja

2
iiajjE[(S2

i )2]E[S2
j ]

n2
i (ni − 1)2nj(nj − 1)

+ 6
∑

i6=j 6=k

didjdkaiiajjakk

ninjnk
.

As before, we observe the following facts:
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(a) The coefficient of σ4
τ in (14) is 2c2

∑
ij a2

ij + (1− c)2;

(b) The coefficient of σ4
i in (14) is c2a2

ii

n2
i
{2 + 2d2

i
ni−1 + (1− di)2};

(c) The coefficient of σ2
i σ

2
τ in (14) is 4c2

∑
j a2

ij/ni − 2c(1− c)aii(1− di)/ni;

(d) The coefficient of σ2
i σ

2
j , i 6=j, in (14) is

4c2a2
ij

ninj
+ 2c2aiiajj

ninj
(1− di)(1− dj).

Obviously, di = di0 = (ni − 1)/(ni + 1) minimizes the coefficient of σ4
i ,

i = 1, . . . , k, which is independent of A, and c = c0 = (1 + 2
∑

a2
ij)
−1

minimizes the coefficient of σ4
τ .

If we compare the MSE of σ̂2
τ and σ̂2

τp we obtain

(i) The difference, say a, of the coefficients of σ4
τ in (7) and (14) equals

a = 2
∑

ij

a2
ij − 2c2

∑

ij

a2
ij − (1− c)2 ≥ 0. (15)

(ii) The difference, say 2bi, of the coefficients of σ4
i in (7) and (14) equals

2bi =
2a2

ii

ni(ni − 1)
− c2a2

ii

n2
i

{2 +
2d2

i

ni − 1
+ (1− di)2} ≥ 0. (16)

(iii) The difference, say ei, of the coefficients of σ2
i σ

2
τ in (7) and (14) equals

ei = 4
∑

j

a2
ij/ni − 4c2

∑

j

a2
ij/ni + 2c(1− c)aii(1− di)/ni ≥ 0. (17)

(iv) The difference, say 2fij , of the coefficients of σ2
i σ

2
j , i 6= j, in (7) and (14)

equals

2fij =
4a2

ij

ninj
− 4c2a2

ij

ninj
− 2c2aiiajj(1− di)(1− dj)/ninj , i 6= j. (18)

Thus, besides σ4
τ and σ4

i the coefficient of σ2
i σ

2
τ is also smaller in the MSE

of the estimator σ̂2
τp compared to the unbiased estimator σ̂2

τ with trA = 1
and A1 = 0. This may not be true for the coefficient of σ2

i σ
2
j for i 6= j.

However, an improvement in MSE over the unbiased estimator σ2
τ1 is still

possible. The risk difference, i.e. the difference in MSE, is non-negative if and

only if (u, v′)B(
u
v

) ≥ 0, where for all u = σ2
τ and v′ = (σ2

1, . . . , σ
2
k) with

non-negative components and

B =




a b1 b2 . . . bk

b1 e1 f12 . . . f1k
...

...
...

...
...

bk fk1 fk2 . . . ek


 .
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Thus, B has to be copositive. However, a and bi are non-negative and therefore
it is enough to consider when

v′B1v ≥ 0,

where B1 is the submatrix of B with the first column and row removed.
To give some useful necessary and sufficient conditions for B1 to be copos-

itive seems difficult. However, if fij ≥ 0 then obviously B1 is copositive, and
with c = (1 + 2

∑
ij a2

ij)
−1 and di = (ni − 1)/(ni + 1) this holds if and only if

∑

ij

a2
ij ≥ −1

2
+

√
1
4

+
1
2

aiiajj

a2
ij

1
(ni + 1)(nj + 1)

, (19)

for all i, j.
From now on we will consider some special cases. Let us start by assuming

that all fij are equal, i.e. f = fij , as well as for i = 1, 2, . . . , k, b = bi and
e = ei. Thus

B =
(

a b1′k
b1k (e− f)Ik + f1k1′k

)
. (20)

Since a and b are non-negative it is enough to focus on

v′((e− f)Ik + f1k1′k)v. (21)

Since (e − f)Ik + f1k1′k = eIk + f(1k1′k − Ik) and if f ≥ 0 we always have
that (21) is non-negative. Now turning to the case when f < 0 it is observed
that by the Cauchy-Schwarz inequality

v′((e− f)Ik + f1k1′k)v ≥ (e + (k − 1)f)v′v.

Thus, if f < 0 and (21) should be non-negative (e + (k − 1)f) ≥ 0 must hold.

Theorem 2.2. If f = fij, b = bi and e = ei, i, j = 1, 2, . . . , k, in
(16) − (18) a necessary and sufficient condition for the risk difference of
(7) and (14) to be non-negative is that either f ≥ 0 or if f < 0 then
(e + (k − 1)f) ≥ 0 must hold.

When ni = n0, i = 1, 2, . . . , k, i.e. the balanced case, and d0 = (n0 −
1)/(n0 + 1) the two special unbiased estimators σ̂2

τ1 and σ̂2
τ2, given by (4) and

(5), are identical and will be compared to σ̂2
τp, given by (12).
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Thus, with aii=1/k, aij = −1/k(k−1), i 6=j, resulting in c0 =(k−1)/(k+1),
and the above choice of d0, it follows from (15)−(18) that

a =
4

(k − 1)(k + 1)
, (22)

b =
2

n0k(k − 1)
− 2(k − 1)

n0k(k + 1)2
n0 − 1
n0 + 1

, (23)

e =
2

k2n0(n0 − 1)
− 2(k − 1)2

n2
0k

2(k + 1)2
n0 + 2
n0 + 1

, (24)

f =
2

k2(k − 1)2n2
0

− 2
k2(k + 1)2n2

0

{1 +
2(k − 1)2

(n0 + 1)2
}. (25)

Now f ≥ 0 means that n ≥ 1√
k
(k − 1)2 − 1 holds, and if f ≤ 0 the necessary

and sufficient condition for risk improvement is that (e + (k + 1))f > 0. The
quantity (e + (k + 1))f can be shown to be to a third degree polynomial in k
and n.

Theorem 2.3. If ni = n0, i = 1, 2, . . . , k, and aii = 1/k, aij = −1/k(k − 1),
i 6= j, a necessary and sufficient condition for the risk difference of σ̂2

τ1 = σ̂2
τ2,

given by (4) and (5), and σ̂2
τp, given by (12), to be positive is that either f ≥ 0

or if f < 0 then (e + (k− 1)f) > 0 must hold, where the constants a, b, e and
f are given by (22)− (25).

If we briefly look at the unbalanced case, with c = (k − 1)/k + 1) and
di = (ni − 1)/(ni + 1), the estimator σ̂2

τp has a smaller MSE than σ̂2
τ1, if the

following condition holds:

(ni + 1)(nj + 1) ≥ (k − 1)4/2k, i 6= j. (26)

A sufficient condition for (26) to hold is mini(ni) + 1 ≥ (k − 1)2/
√

2k.
The theorem is illustrated in Section 4.
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2.2 Edgeworth expansion

In order to compare the densities of σ̂2
τ with σ̂2

τp, ordinary Edgewoth expan-
sions will be performed. From Kollo and von Rosen (1998) it follows that

fy(x) ≈ fx(x) + (E[y]− E[x])f1
x(x)

+
1
2
{V ar[y]− V ar[x] + (E[y]−E[x])2}f2

x(x)

− 1
6
{c3[y]− c3[x] + 3(V ar[y]− V ar[x])(E[y]− E[x])

+ ((E[y]−E[x])3}f3
x(x),

where fy(x), fx(x) are the densities of y and x, respectively, f i
x(x), i = 1, 2, 3

is the ith derivative of fx(x) and c3[y] is the third order cumulant of y. Now,
let fx(x) represent the normal density with mean σ2

τ and variance equal to
V ar[σ̂2

τ ]. Of course we could have chosen densities other than the normal,
for example the chi-square, but there is no appropriate criteria for choosing
between different distributions and therefore the normal was used. By using
the normal distribution with mean and variance suggested above we obtain

fσ̂2
τ
(x) ≈ (1 +

1
6
c3[σ̂2

τ ]((x− σ2
τ )

3 − 3V ar[σ̂2
τ ])/V ar[σ̂2

τ ]
3)fx(x).

Here c3[σ̂2
τ ] is calculated via

c3[σ̂2
τ ] = E[(σ̂2

τ )
3]− 3E[(σ̂2

τ )
2]σ2

τ + 2(σ2
τ )

3.

The approximate density for σ̂2
τp equals

fσ̂2
τp

(x) ≈ (1− bias[σ̂2
τp](x− σ2

τ )/V ar[σ̂2
τ ]

+
1
2
(V ar[σ̂2

τp]− V ar[σ̂2
τ ] + bias[σ̂2

τp]
2)((x− σ2

τ )
2 − V ar[σ̂2

τ ])/V ar[σ̂2
τ ]

2

+
1
6
{c3[σ̂2

τp] + 3(V ar[σ̂2
τp]− V ar[σ̂2

τ ])bias[σ̂2
τp] + bias[σ̂2

τp]
3}

× ((x− σ2
τ )

3 − 3V ar[σ̂2
τ ])/V ar[σ̂2

τ ]
3)fx(x).

Moreover, c3[σ̂2
τp] is calculated via

c3[σ̂2
τ ] = E[(σ̂2

τ )
3]− 3E[(σ̂2

τ )
2]E[σ̂2

τ ] + 2(E[σ̂2
τ ])

3.
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When comparing the approximate densities we get

fσ̂2
τp

(x)− fσ̂2
τ
(x) ≈ bias[σ̂2

τp](x− σ2
τ )/V ar[σ̂2

τ ]fx(x)

− 1
2
(MSE[σ̂2

τp]− V ar[σ̂2
τ ])((x− σ2

τ )
2

− V ar[σ̂2
τ ])/V ar[σ̂2

τ ]
2fx(x). (27)

Observe that the difference MSE[σ̂2
τp] − V ar[σ̂2

τ ] is negative. With the help
of (27) we may evaluate the impact of bias[σ̂2

τp] and MSE[σ̂2
τp]. If bias is not

severe and if MSE[σ̂2
τp] is significant smaller than V ar[σ̂2

τ ] we observe that
the improved variance estimator is less skewed. Indeed this is a very good
estimator although the new estimator may be somewhat biased. In Figure 1
in the next paragraph the distributions are presented in a particular simulation
experiment.

2.3 Bayes estimators of σ2
τ ; a comparison study

Here we will briefly compare, in a small simulation study and in the balanced
case, the unbiased estimator, the improved estimator, Bayesian estimators
based on different priors for σ2

τ and the maximum likelihood estimator. As
Bayes estimator we are going to take the posterior mean. The model together
with a vague prior can easily be implemented in Bayesian estimation pro-
grams such as for example WinBUGS (Spiegelhalter et al., 2003; Sturtz et
al., 2005) and proc mixed in SAS (SAS Institute, 2005). In WinBUGS, via
suitable choices of parameters in the inverse gamma distribution we used a
non-informative Jeffrey prior, where it was assumed that the variance param-
eters were independently distributed. For the mean a flat prior was supposed
to hold, i.e. a constant. The Metropolis-Hastings algorithm was used to gen-
erate a chain consisting of 10000 observations where the last 1000 were used
for calculating the posterior mean. When performing a Bayesian analysis in
proc mixed in SAS either a complete flat prior was used, i.e. the posterior den-
sity equals the likelihood, or based on the information matrix a Jeffrey prior
was used as a simultaneous prior for all variances which is somewhat different
from WinBUGS, where independence was assumed to hold. For the mean a
constant prior was used. In proc mixed the importance sampling algorithm
was used and once again the posterior mean was calculated via the last 1000
observations in a generated chain of 10000 observation. In order to evaluate
the distributions of the estimators 1000 data sets were generated.

In the artificially created data sets 9 labs with 2 repeated measurements
on each were considered. Moreover, the variation differed between the labs,

11



i.e. we assumed a heteroscedastic model. Thus, the situation is rather extreme
with 11 parameters and 18 observations with pairwise dependency. In Table
1 the set-up of the simulation study is given. The choice of parameter values
follows the data presented in Vangel & Rukhin (1999, Table 1).

Table 1. Parameter values used in the simulation study.

ni µ σ2
τ σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

2 13 .50 .03 .23 .32 .07 .34 .32 .06 .21 .10

It follows from Table 2 (see below) that the unbiased estimator is close to
σ̂2

bn and the perturbed estimator σ̂2
τp is close to σ̂2

bJ . Moreover, σ̂2
bf slightly

overestimates the parameter whereas it is clear that the maximum likelihood
is too biased to be of any use. We may also observe that σ̂2

τ , σ̂2
τp and σ̂bn have

similar quadratic variations. However, if we look at Figure 1, which is showing
the posterior distributions for all estimators one can see that the distributions
look rather different. The unbiased estimator, the perturbed one and σ̂2

bn are
more symmetric than the others with a smallest tail for σ̂2

τp. Thus, despite of
some bias, σ̂2

τp is competitive to the others.

Table 2. The mean, median, standard deviation, min and max values of
1000 simulations are presented, σ̂2

τ is given in (4), σ̂2
τp is given in (12), σ̂2

bn is
the mean posterior Bayes estimator with non-informative prior calculated in
WinBUGS, σ̂2

bf and σ̂2
bJ are the mean posterior Bayes estimators calculated in

proc mixed in SAS with flat and Jeffrey prior distributions and σ̂2
MLE is the

maximum likelihood estimator calculated in proc mixed in SAS.

estimator mean median std. dev. minimum maximum
σ̂2

τ 0.507 0.460 0.272 0.045 1.840
σ̂2

τp 0.419 0.382 0.217 0.064 1.490
σ̂2

bn 0.381 0.433 0.212 0.109 1.537
σ̂2

bJ 0.406 0.344 0.299 0.013 1.568
σ̂2

bf 0.589 0.543 0.356 0.009 1.760
σ̂2

MLE 0.278 0.236 0.247 0.0001 1.241

Figure 1. The distribution (posterior for the Bayes estimators) based on
1000 simulations are presented for σ̂2

τ , given in (4) and σ̂2
τp, given in (12), the
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mean posterior Bayes estimator with non-informative prior, σ̂2
bn, calculated in

WinBUGS, σ̂2
bf and σ̂2

bJ , the mean posterior Bayes estimators calculated in
proc mixed in SAS with flat and Jeffrey prior distributions, respectively, and
σ̂2

MLE , the maximum likelihood estimator, calculated in proc mixed in SAS.

3 Improved estimators of within lab variances
σ2

1, . . . , σ
2
k

In this section, following ideas of Stein (1964) and Mathew et al. (1992), we
derive improved estimates of the error variances σ2

1, . . . , σ
2
k, in the sense of

providing estimates with a smaller mean squared error. Towards this end, we
first prove a general result.

As in section 2 let Yi ∼ N [µ, σ2
τ +θ2] be independent of S2

i ∼ θ2χ2
mi

where,
mi = ni − 1, σ2

τ ≥ 0 and θ2 = σ2
i /ni > 0. Assume µ, σ2

τ , θ2 all unknown.
For estimating θ2, define θ̂2 = S2

i /(mi + 2) and θ̃2 = (S2
i + Y 2

i )/(mi + 3) if
(S2

i + Y 2
i )/(mi + 3) ≤ S2

i /(mi + 2), and S2
i /(mi + 2), otherwise. Then the

following result holds.

Proposition 3.1. θ̃2 has a smaller MSE than θ̂2 uniformly in the un-
known parameters.

Proof. Let W = Y 2
i /S2

i , and consider the estimate T = φ(W )S2
i where φ(.) is

a nonnegative function of W . Note that both θ̃2 and θ̂2 are special cases of T .

13



Then the MSE of T can be expressed as

MSE(T ) = E[T − θ2]2 = E[E(φ(W )S2
i − θ2)2|W ].

For a given W = w, an optimum choice of φ(w), minimizing the above MSE,
is given by

φopt(w) = E[S2
i |w]θ2/E(S2

i |w).

Suppose that
φopt(w) ≤ (1 + w)/(mi + 3), (28)

holds uniformly in the parameters. Because of the convexity of MSE(T ), it
follows then that, given any φ(w), defining φ0(w) = min[φ(w), (1+w)/(mi+3)]
results in T0 = φ0(W )S2

i having a smaller MSE than T . The theorem follows
upon taking φ(w) = 1/(mi + 2).

Finally we prove (28). Noting that Y 2/(θ1 + θ2), where the index i is
omitted, has a noncentral chisquare distribution with 1 df and non-centrality
parameter λ = µ2/(θ1 + θ2), the joint pdf of Y 2 and V can be written as

f(y2, v) = Km[exp(−y2/2(θ1 + θ2))
∞∑

j=0

dj(y2)j− 1
2 (θ1 + θ2)−(j+ 1

2
)]

× [exp(−v/2θ2)v
m
2
−1(θ2)−m/2], (29)

where Km and dj are constants whose actual values are not necessary in our
context. Making the transformation from (Y 2, V ) to (W = Y 2

V , V ) yields the
joint pdf of W,V as

f(w, v) = Km[vexp(−wv/2(θ1 + θ2))
∞∑

j=0

dj(wv)j− 1
2 (θ1 + θ2)−(j+ 1

2
)]

× [exp(−v/2θ2)v
m
2
−1(θ2)−m/2]. (30)

It is now directly verified that

φopt(w) =
E[V |w]θ2

E[V 2|w]
.

2

Remark. Stein’s (1964) result follows as a special case when θ1 is taken as
0. The result in Mathew et al. (1992) also follows as a special case when it is
assumed that µ = 0.
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4 Applications

There are many practical applications of the assumed basic model (1) in the
literature with a main focus on the estimation of the common mean µ. For
example see Jordan and Krishnamoorthy (1996), Yu et al. (1999), Rukhin
and Vangel (1998), and Vangel and Rukhin (1999). We consider two of them,
i.e. Rukhin and Vangel (1998), and Vangel and Rukhin (1999), with the
purpose to illustrate the estimation of the variance components.

Example 4.1. In this example we examine the data reported in Willie and
Berman (1995) and analyzed in Rukhin and Vangel (1998) about concentra-
tion of several trace metals in oyster tissues. The data appear in Rukhin and
Vangel (1998; Table 1). Here k = 28 and n3 = 2, n1 = n2 = n4 . . . = n28 = 5.
Our object is to provide efficient estimates of σ2

τ and σ2
1,. . .,σ

2
28. However,

in order to have balanced data we exclude from the analysis the laboratory
with n3 = 2. Following the conditions and analysis in section 2, our proposed
estimates equal (remember that in the balanced case σ̂2

τ1 = σ̂2
τ2) σ̂2

τp = 1.55
whereas σ̂2

τ1 = 1.63. Here f < 0 and (e + (k− 1)f) > 0 and thus σ̂2
τp improves

σ̂2
τ1. We may note that for the complete data set, i.e. k = 28, f < 0 and we

get σ̂2
τ1 = 1.89 and its improved estimator equals 1.80. Moreover, σ̂2

τ1 = 1.74
versus 1.66 for the improved version. Turning to the within (laboratory)
variances we have that the observations are relatively large in relation to the
variation. Therefore Y 2

i in the definition of the estimators is larger than Vi

and it follows that the estimators θ̂2 and θ̃2 are identical.

Example 4.2. In this example we examine the data reported in Li
and Cardozo (1994) and analyzed in Vangel and Rukhin (1999) about dietary
fibre in apples. Here k = 9 and n1 = n2 = . . . = n9 = 2, i.e. we have again
a balanced case. Following the analysis in section 2, our proposed estimates
equal σ̂2

τp = 0.39 whereas σ̂2
τ1 = 0.47. Here f < 0 and (e + (k − 1)f) > 0 and

thus σ̂2
τp improves σ̂2

τ1. For the within variances we observe that θ̂2 and θ̃2

are identical.
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