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Abstract

Inference for the coefficient of variation in normally distributed popu-
lations is considered. An explicit estimator of a coefficient of variation
that is shared by several populations is proposed. Methods for making
confidence intervals and statistical tests, based on McKay’s approxima-
tion for the coefficient of variation, are provided. Exact expressions for
the first two moments of McKay’s approximation are given. An approx-
imate F-test for equality of a coefficient of variation that is shared by
several populations and a coefficient of variation that is shared by several
other populations is introduced. A simulation study of the performance
of this test is performed.
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1 Introduction

The coefficient of variation c in a single sample with observations y1, y2, . . . , yn

is defined as c = s/m, where m and s are

m =
1
n

n∑

j=1

yj and s =

√√√√ 1
n− 1

n∑

j=1

(yj −m)2, (1)

respectively. In this paper we consider independently and normally distributed
observations with expected value µ > 0, variance σ2 and population coefficient
of variation γ = σ/µ.

We discuss three problems:

(i) Estimation of a coefficient of variation γ that is shared by k populations;
(ii) Confidence interval and test for a coefficient of variation γ that is shared

by k populations;
(iii) Test for equality of a coefficient of variation γ1 that is shared by k1 popu-

lations and a coefficient of variation γ2 that is shared by k2 populations.

Given k estimates c1, . . . , ck of a population coefficient of variation γ that is
shared by k populations, a method is needed for pooling the estimates into one
estimate. Explicitly we want to know if the single estimates shall be weighted
by the number of observations ni, by the degrees of freedom ni−1 or by some
other function of the sample size.

Zeigler (1973) compared several estimators of a coefficient of variation
that is shared by k populations, but considered only the case of equally large
sample sizes, and did not discuss hypothesis tests and confidence intervals.
Tian (2005) studied the problem of making inference about a common γ based
on k samples and suggested a repeated sampling method for calculating a
generalized probability value as defined by Tsui and Weerahandi (1989). A
drawback with resampling methods is that they do not give the same result
whenever applied. There could be a need for a method based on explicit
expressions. Verrill and Johnson (2007) proposed a likelihood ratio based
confidence interval for a coefficient of variation that is shared by k populations.
However, the likelihood ratio test is computationally inconvenient when there
are many populations, and we shall in this paper (Section 4.2) see that it has
too large probability of type I error when the sample sizes are small.

A confidence interval and a test for a coefficient of variation that is shared
by k populations could instead be based on the transformation for the coef-
ficient of variation developed by McKay (1932). This transformation gives
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an approximately χ2 distributed random variable when γ < 1/3, as con-
firmed by Fieller (1932), Pearson (1932), Iglewicz and Myers (1970), and
Umphrey (1983). Forkman and Verrill (2007) showed that McKay’s χ2 ap-
proximation is asymptotically normal with mean n − 1 and variance slightly
smaller than 2(n− 1). Vangel (1996) showed, by Taylor series expansion, that
the error in McKay’s approximation is small when the population coefficient
of variation is small. In this paper we derive exact expressions for the first
two moments of McKay’s approximation.

A test is also introduced, based on McKay’s transformation, for the equal-
ity of a coefficient of variation that is shared by k1 populations and a coefficient
of variation that is shared by k2 populations. Many tests have been proposed
for the special case k1 = k2 = 1: the likelihood ratio test (Lohrding, 1975;
Bennett, 1977; Doornbos and Dijkstra, 1983), the Wald test and the score
test (Gupta and Ma, 1996), Bennett’s test (Bennett, 1976; Shafer and Sulli-
van, 1986), and Miller’s test (Miller, 1991a; Feltz and Miller, 1996; Miller and
Feltz, 1997).

The three problems listed above are considered in Section 2 – 4, respec-
tively. In Section 4.2 we make a small Monte Carlo study of the performance
of the new test for equality of coefficients of variation compared with the
likelihood ratio test, Bennett’s test and Miller’s test.

2 Estimation of a coefficient of variation that is
shared by k populations

Let us consider samples from k normally distributed populations with a com-
mon population coefficient of variation γ, and define the sample coefficients of
variation as in Definition 1.

Definition 1 Let yij = µi + eij, where eij are independently distributed
N(0 , σ2

i ), i = 1, 2, . . . , k and j = 1, 2, . . . , ni, with positive expected values
µi and a positive population coefficient of variation γ = σi/µi that is shared by
the k populations. The coefficient of variation ci of sample i, i = 1, 2, . . . , k,
is defined as ci = si/mi, where mi and si are

mi =
1
ni

ni∑

j=1

yij and si =

√√√√ 1
ni − 1

ni∑

j=1

(yij −mi)2, (2)

respectively.
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We shall, throughout this paper, assume that the population coefficient
of variation γ is smaller than 1/3. By this assumption the expected value is
larger than 3 standard deviations, and the probability of negative observations
is, for small sample sizes, negligible.

The joint probability density function of the observations {yij} can be
written as

k∏

i=1

(2π)−ni/2 exp
(

1
µiγ2

ni∑

j=1

yij − 1
2µ2

i γ
2

ni∑

j=1

y2
ij −

ni

2γ2
+ ni log µiγ

)
. (3)

Thus, by the factorization theorem, the 2k dimensional statistic

S =
{ ni∑

j=1

yij ,

ni∑

j=1

y2
ij

}k

i=1

is sufficient for η = {1/(µiγ
2) , 1/(µ2

i γ
2)}, and since there is a one-to-one

correspondence between η and β = (γ, µ1, µ2, . . . , µk), S is also sufficient for
β. By writing (3) as

exp
(
− 1

2γ2

k∑

i=1

ni∑

j=1

(yij − µi)2

µ2
i

+
k∑

i=1

ni log µiγ −
k∑

i=1

ni

2
log(2π)

)
,

we see that
k∑

i=1

ni∑

j=1

(yij − µi)2

µ2
i

is complete and sufficient for γ2, when µi, i = 1, 2, . . . , k, are known. When
µi, i = 1, 2, . . . , k, are unknown, µi could be estimated by mi. Thus consider

U =
1∑k

i=1(ni − 1)

k∑

i=1

ni∑

j=1

(yij −mi)2

m2
i

=
∑k

i=1(ni − 1) c2
i∑k

i=1(ni − 1)
, (4)

with notation according to Definition 1, as an estimator of γ2.

Theorem 1 Let γ be a coefficient of variation that is shared by k populations,
as defined in Definition 1. Let v =

∑k
i=1(ni − 1) and Uv = U as defined by

(4). Assume that (ni − 1)/v → λi > 0 as v →∞. Then

√
v (Uv − γ2) d−→ N(0 , 2γ4 + 4γ6), as v →∞.
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Proof. With notations according to Definition 1

√
ni (mi − µi, s

2
i − σ2

i )
d−→ N(0 ,V), i = 1, 2, . . . , k,

where

V =
(

σ2
i 0
0 2σ4

i

)
.

Referring to Serfling (1980, p.124)

√
ni (c2

i − γ2) d−→ N(0 ,g′Vg), i = 1, 2, . . . , k,

where, evaluated at {mi, s
2
i } = {µi, σ

2
i },

g′ =
(

∂c2
i

∂mi
,
∂c2

i

∂s2
i

)
=

(−2σ2
i

µ3
i

,
1
µ2

i

)
.

Thus √
ni (c2

i − γ2) d−→ N(0, 2γ4 + 4γ6), i = 1, 2, . . . , k,

and, since
∑k

i=1 λi = 1,

√
v (U − γ2) =

k∑

i=1

√
ni − 1

v

√
ni − 1 (c2

i − γ2) d−→ N(0 , 2γ4 + 4γ6). ¤

We now consider
T = g(U) =

√
U, (5)

with U from (4) as an estimator of γ. According to Theorem 2 the estimator
(5) is asymptotically normally distributed with mean γ and variance (γ2/2 +
γ4)/

∑k
i=1(ni − 1).

Theorem 2 Let γ be a population coefficient of variation that is shared by
k populations, as defined by Definition 1, and let v =

∑k
i=1(ni − 1). Let

Tv =
√

Uv, where Uv = U as defined by (4). Then

√
v (Tv − γ) d−→ N(0 , γ2/2 + γ4), as v →∞. (6)

Proof. By Theorem 1,
√

v Uv
d−→ N(γ2 , 2γ4 + 4γ6) as v → ∞. Then, by

application of Theorem 3.1A in Serfling (1980),

√
v Tv =

√
v f(Uv)

d−→ N(f(γ2) , (f ′(γ2))2(2γ4 + 4γ6)), as v →∞,

4



and (6) follows since (f ′(γ2))2(2γ4 + 4γ6) = γ2/2 + γ4. ¤

The expected values of the coefficients of variation ci are not defined since
the densities of mi, i = 1, 2, . . . , k, are positive in neighborhoods of zero. As
a consequence the expected value of the estimator T , as defined by (5), does
not exist. Nevertheless, when the expected values µi are sufficiently large, say
larger than 3σi, the probability of averages mi close to zero are negligible in
most applications, and we expect ci, i = 1, 2, . . . , k, to be close to γ. According
to Theorem 2 the estimator T is asymptotically unbiased. We shall now derive
a bias correction for the case of small sample sizes.

By a second order series expansion of T , as a function of {mi , s
2
i }, i =

1, 2, . . . , k,

E(T ) ≈ γ +
1
2

k∑

i=1

(
∂2T

∂(s2
i )2

V ar(s2
i ) +

∂2T

∂m2
i

V ar(mi)
)

= γ +
1
2

k∑

i=1

(−(ni − 1)2

4v2γ3µ4
i

2σ4
i

ni − 1
+

(ni − 1) γ

vµ2
i

(
3− ni − 1

v

)
σ2

i

ni

)

= γ − γ

4v
+

γ3

2v

k∑

i=1

ni − 1
ni

(
3− ni − 1

v

)
, (7)

where the partial second derivatives are evaluated at {mi , s
2
i } = {µi , σ

2
i },

i = 1, 2, . . . , k, and v =
∑k

i=1(ni − 1). By (7), we expect T to be close to
γ(1−1/(4v)) when γ is small. Thus, a bias adjusted estimator of a population
coefficient of variation γ that is shared by k populations is given by

γ̂ =
(

1− 1

4
∑k

i=1(ni − 1)

)−1
√∑k

i=1(ni − 1) c2
i∑k

i=1(ni − 1)
,

with notations as in Definition 1.

3 Confidence interval and test for a coefficient of
variation that is shared by k populations

In this section we consider the problems of making a confidence interval for a
coefficient of variation γ that is shared by k populations and testing the statis-
tical hypothesis that γ equals some specific value γ0. We suggest that McKay’s
approximation, as defined by Definition 2, is utilized for these purposes.
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Definition 2 McKay’s approximation for the coefficient of variation of sam-
ple i, as defined by Definition 1, is given by

Ki =
(

1 +
1
γ2

)
(ni − 1)c2

i

1 + c2
i (ni − 1)/ni

. (8)

The distribution of McKay’s approximation (8) is known to be well approx-
imated by a central χ2 distribution with ni − 1 degrees of freedom, provided
that γ < 1/3.

The distribution of

ui =
c2
i

1 + c2
i (ni − 1)/ni

, i = 1, 2, . . . , k, (9)

is consequently well approximated by a distribution with expected value

θ =
γ2

1 + γ2
= γ2 − γ4 + γ6 . . . (10)

and variance inversely proportional to ni − 1.
Since the distribution of McKay’s approximation Ki is, approximately,

central χ2 distributed with ni − 1 degrees of freedom,
∑k

i=1 Ki is, approxi-
mately, central χ2 distributed with

∑k
i=1(ni − 1) degrees of freedom. Thus∑k

i=1 Ki =
∑k

i=1(ni−1)ui/θ could be used as an approximate pivotal quantity
for constructing a confidence interval for θ as defined by (10). This approxi-
mate 100(1− α)% confidence interval for θ can be written

[∑k
i=1(ni − 1)ui

χ2
1−α/2

,

∑k
i=1(ni − 1)ui

χ2
α/2

]
,

where χ2
α denotes the 100α:th percentile of a central χ2 distribution with∑k

i=1(ni − 1) degrees of freedom, and ui is defined by (9). The corresponding
approximate 100(1− α)% confidence interval for γ is

[√√√√
∑k

i=1(ni − 1)ui

χ2
1−α/2 −

∑k
i=1(ni − 1)ui

,

√√√√
∑k

i=1(ni − 1)ui

χ2
α/2 −

∑k
i=1(ni − 1)ui

]
. (11)

Consider the statistical null hypothesis H0: γ = γ0. This hypothesis is
equivalent to the hypothesis H0: θ = θ0, where θ0 = γ2

0/(1+γ2
0). Thus we can

use ∑k
i=1(ni − 1)ui

θ0
(12)
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as an approximately central χ2 distributed, with
∑k

i=1(ni− 1) degrees of free-
dom, test statistic of the hypothesis H0: γ = γ0.

The proposed confidence interval (11) and test (12) rely on the adequacy of
McKay’s approximation. Since we are interested in the adequacy, we end this
section with an investigation of the first two moments of the approximation,
as functions of the population coefficient of variation γ and the sample size n.

Theorem 3 Let γ be the coefficient of variation as defined by Definition 1,
and let K = K1 be McKay’s approximation for the coefficient of variation in
a sample with n = n1 observations, as defined by Definition 2. The first and
second moments of McKay’s approximation are

E(K) =
n(n− 1) h(γ, n)

2θ
,

E(K2) =
n(n2 − 1)(n(1 + γ2) h(γ, n)− 2γ2)

4θ2
,

where θ = γ2/(1 + γ2) and, for t = 0, 1, 2 . . .,

h(γ, n) =





γ2(1− exp(−1/γ2)), n = 2

t∑
r=0

(−1)r

(
γ2

t + 3/2

)r+1
Γ(t + 3/2)

Γ(t + 3/2− r)

+(−1)t+1

(
γ2

t + 3/2

)t+3/2
2 Γ(t + 3/2)√

π
d

(√
t + 3/2

γ

)
, n = 3 + 2t

t∑
r=0

(−1)r

(
γ2

t + 2

)r+1
Γ(t + 2)

Γ(t + 2− r)

+(−1)t+1

(
γ2

t + 2

)t+2

Γ(t + 2)

(
1− exp(− t + 2

γ2
)

)
, n = 4 + 2t,

with
d(x) = exp(−x2)

∫ x

0
exp(z2) dz.

Proof. Forkman and Verrill (2007) showed that Kθ/n is type II noncentral
beta distributed with parameters (n − 1)/2, 1/2 and n/γ2. Consequently
X = 1 − Kθ/n is type I noncentral beta distributed with parameters 1/2,
(n− 1)/2 and n/γ2. Then, according to Marchand (1997),

E(X) = 1− (n− 1)h(γ, n)
2

, (13)

E(X2) = 1− (n2 − 1) γ2

2n
+

(n− 1)(n− 3 + (n + 1)γ2)h(γ, n)
4

, (14)

7



and the theorem follows since E(K) = n(1 − E(X))/θ and E(K2) = n2(1 −
2E(X) + E(X2))/θ2. ¤

The function d, required for odd sample sizes in Theorem 3, is Dawsons’s
integral, which has been tabulated by Abramowitz and Stegun (1972). Since
exp(−(t + 2)/γ2) ≈ 0, t = 0, 1, 2 . . ., Theorem 3 makes it easy to calculate
approximate first and second moments, especially for even sample sizes. For
example,

E(K) ≈





1 (1 + γ2), n = 2

3
(

1 +
γ2

2
− γ4

2

)
, n = 4

5
(

1 +
γ2

3
+

2γ4

9
+

8γ6

9

)
, n = 6,

and

E(K2) ≈





3 (1 + 2γ2 + γ4), n = 2

15 (1 + γ2 − γ4 − γ6), n = 4

35
(

1 +
8γ2

3
+ 5γ4 + 6γ6 +

8γ8

3

)
, n = 6.

Notice that when γ is small, n = 2, 4, 6, E(K) approximately equals n − 1
and E(K2) approximately equals (n − 1)(n + 1), which is the exact first and
second moments, respectively, of a χ2 distributed random variable with n− 1
degrees of freedom.

4 Test for equality of a coefficient of variation that
is shared by k1 populations and a coefficient of
variation that is shared by k2 populations

We now introduce a statistical test for the hypothesis that a coefficient of
variation γ1 that is shared by k1 populations equals a coefficient of variation
γ2 that is shared by k2 populations. Definition 3 makes clear the setting and
what we mean by coefficients of variation in this case.

Definition 3 Let yrij = µri + erij, where erij are independently distributed
N(0, σ2

ri), r = 1, 2, i = 1, 2, . . . , kr and j = 1, 2, . . . , nri, with positive expected
values µri and positive population coefficients of variation γr = σri/µri. The
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coefficient of variation cri, r = 1, 2, i = 1, 2, . . . , kr, is defined as cri = sri/mri,
where mri and sri are

mri =
1

nri

nri∑

j=1

yrij and sri =

√√√√ 1
nri − 1

nri∑

j=1

(yrij −mri)2 , (15)

respectively.

4.1 A test for equality of coefficients of variation

Consider the hypothesis H0: γ1 = γ2. Let

uri =
c2
ri

1 + c2
ri(nri − 1)/nri

, r = 1, 2, i = 1, 2, . . . , kr,

and

θr =
γ2

r

1 + γ2
r

, r = 1, 2,

with notation according to Definition 3. Since
∑kr

i=1(nri−1)uri/θr is approxi-
mately central χ2 distributed with

∑kr
i=1(nri−1) degrees of freedom, and since

θ1 = θ2 when the hypothesis is true,

F =
∑k1

i=1(n1i − 1)u1i/
∑k1

i=1(n1i − 1)∑k2
i=1(n2i − 1)u2i/

∑k2
i=1(n2i − 1)

(16)

is approximately F distributed with
∑k1

i=1(n1i− 1) and
∑k2

i=1(n2i− 1) degrees
of freedom. Thus F could be used as an approximately F distributed test
statistic for the hypothesis of equal coefficients of variation.

When k1 = k2 = 1, the test statistic F , as defined by (16), simplifies to

F =
c2
1/(1 + c2

1(n1 − 1)/n1)
c2
2/(1 + c2

2(n2 − 1)/n2)
, (17)

where cr = cr1 and nr = nr1, r = 1, 2, as defined by Definition 3. According
to Theorem 4 the distribution of the logarithm of F , as defined by (17), equals
the distribution the logarithm of an F distributed random variable plus some
error variables that are in probability of small orders.

Theorem 4 Let γ = γ1 = γ2 as defined by Definition 3, with k1 = k2 = 1.
Let X be an F distributed random variable with n1 − 1 and n2 − 1 degrees of
freedom, let Z be a standardized normal random variable, and let U1 and U2
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be χ2 distributed random variables with n1 − 1 and n2 − 1 degrees of freedom,
respectively. Let X, Z, U1 and U2 be independent. Then

log F
d= log X + 2Zγ

√
1
n1

+
1
n2

+
(

U1

n1
− U2

n2

)
γ2 + R(n1, n2, γ), (18)

where F is defined by (17) and

R(n1, n2, γ) = Op(max{n−1
1 γ2, n−1

2 γ2, γ4}).
Proof. Write log F as

log F = log c2
1

(
1 +

(n1 − 1)c2
1

n1

)−1

− log c2
2

(
1 +

(n2 − 1)c2
2

n2

)−1

. (19)

Let Wr = Ur/(nr − 1), r = 1, 2, and let Z1 and Z2 be independent stan-
dard normal random variables. The distributions of the averages mr1 and
the standard deviations sr1, r = 1, 2, as defined by Definition 3, equals the
distributions of µr1 + Zrσr1/

√
nr and µr1γ

√
Wr, respectively. Thus c2

r equals
Wrγ

2/(1+Zrγ/
√

n)2 in distribution. The distribution of the first term in (19)
consequently equals the distribution of

log W1γ
2 − log

(
1 +

2Z1γ√
n1

+
Z2

1γ2

n1
+

(n1 − 1)W1γ
2

n1

)

= log W1γ
2 +

2Z1γ√
n1

+
Z2

1γ2

n1
+

(n1 − 1)W1γ
2

n1

−1
2

(
2Z1γ√

n1
+

Z2
1γ2

n1
+

(n1 − 1)W1γ
2

n1

)2

+ . . .

= log W1γ
2 +

2Z1γ√
n1

+
(n1 − 1)W1γ

2

n1
+ Op

(
max{γ2

n1
, γ4}

)
, (20)

where Op denotes order in probability, defined as in Azzalini (1996). The
corresponding calculations can be made also for the second term in (19), and
(18) follows. ¤

4.2 Simulation study

In this section we investigate, by Monte Carlo technique, the significance levels
and powers of the introduced approximate F-test (17), for the hypothesis H0:
γ1 = γ2 when k1 = k2 = 1. We also study the likelihood ratio test, Bennett’s
test as modified by Shafer and Sullivan (1986), and Miller’s test. These tests
are, for quick reference, given in the Appendix.
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In each simulation two samples with n1 and n2 observations, respectively,
were randomly generated 20 000 times in Release 13 of MATLAB (The Math-
works Inc., Natick, MA, USA). The observations belonged to normal distri-
butions with expected values 100 and 1000, and with coefficients of variation
γ1 and γ2, respectively. The tests were performed with significance level 5%
against the alternative hypothesis of unequal coefficients of variation, i.e. the
tests were two-sided.

Four cases were studied. The type I errors of the tests were investigated
in Case 1–3, and the powers of the tests were investigated in Case 4. The
first case had small coefficients of variation (5%) and equal sample sizes. The
second case had large coefficients of variation (25%) and equal sample sizes.
The third case had large coefficients of variation (25%) and unequal sample
sizes. In the fourth case one coefficient of variation was 10% and the other 5%,
and the sample sizes were equal. In the balanced cases, where n = n1 = n2,
(Case 1, 2 and 4), the sample sizes 2–20 were investigated, i.e. 19 simulations
were made per case. In the unbalanced cases (Case 3), n1 = 4 but n2 varied
from 2 to 20. Thus 19 simulations were made also for Case 3.

The results of the simulation study are presented in Figure 1–4, with one
figure for each investigated case. The likelihood ratio test showed too large
frequency of type I error (Figure 1–3), especially for sample sizes smaller than
10. When n1 = 2 the frequency of rejected hypotheses was larger than 20%
with the likelihood ratio test (Case 1–3). Bennett’s test was also too liberal,
though not as liberal as the likelihood ratio test (Figure 1–3). Miller’s test
performed better than the likelihood ratio test and Bennett’s test with regard
to type I error, but had problems when n1 = 2 (Figure 1–3). The approximate
F-test, introduced in this paper, was the only test that produced almost correct
frequency of rejected hypotheses in all cases (Figure 1–3). The likelihood ratio
test and Bennett’s test, which were too liberal, showed better power for small
sample sizes than Miller’s test and the approximate F-test (Figure 4).

5 Discussion

In applications with constant, or almost constant, coefficients of variation it is
usually appropriate to assume that the data follows lognormal distributions.
One should thus always consider working on the log scale (Cole, 2000). After
log transformation of the data the usual tests for equality of variances, such as
Bartlett’s test, could be applied. It is, however, not always appropriate to as-
sume that the data is lognormally distributed. In immunoassays, for example,
normally distributed errors in the volumes of samples could result in normally
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Figure 1: Case 1. Probability of type I error when γ1 = γ2 = 5% and n =
n1 = n2. Significance level 5%.
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Figure 2: Case 2. Probability of type I error when γ1 = γ2 = 25% and
n = n1 = n2. Significance level 5%.
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Figure 3: Case 3. Probability of type I error when γ1 = γ2 = 25% and n1 = 4.
Significance level 5%.
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Figure 4: Case 4. Power when γ1 = 5%, γ2 = 10% and n = n1 = n2. Signifi-
cance level 5%.
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distributed measurements of concentration with constant coefficient of varia-
tion. In this paper we have discussed inference for the coefficient of variation
when there are reasons to believe that the data is normally distributed.

Since it is often necessary to relate the standard deviation to the level
of the measurements, the coefficient of variation is a widely used measure
of dispersion. Coefficients of variation are often calculated on samples from
several independent populations, and questions about how to compare them
naturally arise. There is a need for an explicit estimator of a population
coefficient of variation that is shared by several populations. Such an estimator
has been given in this paper.

For making confidence intervals we have considered McKay’s approxima-
tion, which is valid only when the population coefficient of variation γ is
smaller than 1/3. Coefficients of variation are usually calculated on positive
data, such as measurements of concentration, weight or length. Given that
the positive measurements are approximately normally distributed γ is smaller
than 1/3, because otherwise the expected value is smaller than 3 standard de-
viations, and the probability of negative observations is not negligible.

Over the years many tests have been proposed for equality of coefficients
of variation. In this paper an additional test has been introduced: the ap-
proximate F-test. Unlike many other tests the new test could be applied not
only when there are one estimate per population coefficient of variation, but
also when there are several. The small simulation study reported in this pa-
per indicated good performance of the approximate F-test, especially with
regard to type I error. It would, however, be interesting to see results from
a larger simulation study, including more cases, several tests and an investi-
gation of robustness. As already pointed out, the methods proposed in this
paper are intended for normally distributed data. Miller (1991b) suggested
a nonparametric test for equality of coefficients of variation that is useful for
other distributions and recommended by Fung and Tsang (1998).
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Appendix: The likelihood ratio, Bennett’s, and
Miller’s test

Let mr = mr1 and cr = cr1 denote the average and the coefficient of variation,
respectively, in the r:th sample, r = 1, 2, as defined by Definition 3.

The likelihood ratio test statistic can be written as

−2 log λ = n1 log
n1(γ̃µ̃1)2

(n1 − 1) c2
1m

2
1

+ n2 log
n2(γ̃µ̃2)2

(n2 − 1) c2
2m

2
2

, (21)
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where λ is the likelihood ratio and γ̃, µ̃1 and µ̃2 are the maximum likelihood
estimates of γ, µ1 and µ2, respectively. These are, according to Gerig and
Sen (1980),

µ̃1 =
n1m1µ̃2

(n1 + n2)µ̃2 − n2m2
, µ̃2 = − q

2p
+

√
q2

4p2
− r

p

and

γ̃ =
1
µ̃2

√
(n2 − 1) c2

2m
2
2

n2
+ m2

2 −m2µ̃2, (22)

where

p = (n1 + n2)c2
1 + n2,

q = −(2n2c
2
1 + 2n2 − n1)m2,

r =
(n2

2(c
2
1 + 1)− n2

1(c
2
2 + 1))m2

2

n1 + n2
.

Asymptotically (21) is χ2 distributed with 1 degree of freedom.
Bennett’s test statistic, as modified by Shafer and Sullivan (1986), can be

written as

(n1 + n2 − 2) log
(

1
n1 + n2 − 2

(
(n1 − 1)c2

1

1 + c2
1(n1 − 1)/n1

+
(n1 − 1)c2

1

1 + c2
1(n1 − 1)/n1

))

−(n1 − 1) log
(

(n1 − 1)c2
1

(n1 − 1)(1 + c2
1(n1 − 1)/n1

)

−(n2 − 1) log
(

(n2 − 1)c2
2

(n2 − 1)(1 + c2
2(n2 − 1)/n2)

)
,

which should be compared with a χ2 distribution with 1 degree of freedom.
Miller’s test statistic (Miller, 1991), which should be compared with a

standard normal distribution, is

(c1 − c2)
(

c2

2(n1 − 1)
+

c4

n1 − 1
+

c2

2(n2 − 1)
+

c4

n2 − 1

)−1/2

,

where c = ((n1 − 1)c1 + (n2 − 1)c2)/(n1 + n2 − 2).
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