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Abstract

A method is proposed for designing nonlinear univariate calibration of
measuring instruments. The problem addressed is how to select a set
of design points (standards or calibrators) in order to minimize the er-
rors in the inverse predictions. The method utilizes knowledge not only
about the expected values of the curve parameters, but also about the
covariance matrix. A design criterion is suggested for analytical proce-
dures, according to which the coefficient of variation and the area under
the precision profile are minimized.
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1 Introduction

An instrument measuring a physical quantity is calibrated when the relation-
ship between its response and the physical quantity is established. Mathemat-
ically the calibration curve, established by the calibration, is a function from
a physical quantity to a response. The physical quantity is the independent
variable, and the response is the dependent variable. The calibration curve is
fitted to measurements of entities with known physical quantities. These en-
tities are often called standards or calibrators. The known physical quantities
are called design points.

Calibration curves are for example used in many analytical procedures
for determining the concentration of an analyte in a biological sample. The
calibrators are samples with known concentrations, and the design points are
the concentrations of the calibrators.

Calibrated measuring instruments are used for inverse prediction. Re-
sponses are translated into estimates of physical quantities via the calibration
curve. The problem discussed in this article is how to select the design points
in such a way that the inverse predictions, i.e. the estimates of the independent
variable, are optimized with respect to a design criterion.

The errors in the inverse predictions are dependent on the parameters of
the calibration curve. This makes the search for an optimal design difficult,
because the parameters are not known in advance. Indeed, the calibration is
performed in order to estimate the unknown current parameter values.

Since the parameters are not known designs are often optimized locally, i.e.
conditioned on some a priori decided fixed parameter values that are consid-
ered typical for the method. A second approach is to assume that the parame-
ters belong to a pre-specified multivariate distribution and look for a Bayesian
optimal design. Such were reviewed by Chaloner and Verdinelli (1995). As
explained by François et al. (2004) the Bayesian approach “is not conceptually
difficult, but computer intensive because it requires a multidimensional inte-
gration over the parameters space at each cycle of the design search.” They
argued that the first approach, to search for a locally optimal design, “is quite
realistic since calibration is an iterative process where the researcher often has
some knowledge on the expected model parameters.” Kuljus et al. (2006), on
the other hand, argued in a related problem that since the parameters are
unknown there is not much use of a local optimization.

In this article a third approach is suggested, which is more complex than
the first approach, but perhaps more convenient than the second. Knowledge
often exists not only about the expected values of the parameters, but also
about the variances. A measuring instrument manufacturer may know typical
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parameters values, but also that the parameter values vary, dependent on
e.g. temperature or humidity, and that some parameters are correlated. This
variation could be described by a covariance matrix Σ. The method proposed
in this article utilizes knowledge not only of the model parameters’ expected
values, but also of their covariance matrix Σ. It is, however, not necessary to
specify an exact multivariate distribution for the parameters. The idea is to
consider the curve parameters as random, and to estimate the unconditional
variance and bias in the inverse prediction by linear approximations.

The covariance matrix of the parameters should not be confused with the
covariance matrix of the parameter estimates, which is dependent on a specific
parameter vector β. When the function is linear in the parameters the covari-
ance matrix of the parameter estimates is σ2(X′X)−1, where X is the design
matrix, provided that the errors are uncorrelated with constant variance σ2.
A reasonable strategy in optimization problems is to search for a design that
minimizes the determinant of (X′X)−1 (Atkinson and Donev 1992). When
the function is nonlinear in the parameters, which is often the case in ana-
lytical procedures, the covariance matrix can be approximated by σ2(F′F)−1,
where F denotes the matrix of partial derivatives of the function with respect
to the parameters. The determinant of (F′F)−1 is a common design crite-
rion in nonlinear regression, suggested by Box and Lucas (1959). We shall
instead minimize the errors in the inverse predictions, as suggested for linear
calibration by Ott and Myers (1968) and Buonaccorsi (1986). Ott and My-
ers (1968) considered minimization of the integral over the measuring range
of the mean square error. Buonaccorsi (1986) focused on the asymptotic vari-
ance. Rocke and Jones (1997) considered the problem of selecting design points
for immunoassays using the four-parameter logistic function. They suggested
maximization of the reciprocal of the asymptotic variance over the measuring
range on the logarithmic scale and suggested a method for the case that the
calibrators are manufactured by serial dilution with constant dilution ratios.
François et al. (2004) studied the design problem of nonlinear calibration in
a more general setting. They recommended minimization of the integral over
the measuring range of the asymptotic variance in the inverse predictions. We
shall, for analytical procedures, propose that the precision profile is used as
design criterion, based on the coefficient of variation.

2 Method

The model is described in Section 2.1. Calculations relevant for locally optimal
designs are presented in Section 2.2. The new method, based on random
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curve parameters, is described in Section 2.3. The design criterion for the
optimization is considered in Section 2.4.

2.1 The model

Assume that the calibration curve f = f(ξ, β), with parameter vector β =
(β1, β2, . . . , βp), is a strictly monotonic continuous function of the physical
quantity ξ . Let ξ = (ξ1, ξ2, . . . , ξm) be a vector of m design points. Let
fi(β) = f(ξi, β) and f(β) = (f1(β), f2(β), . . . , fm(β))′. Let F(β) denote the
m× p matrix of partial derivatives ∂fi( β)/∂βj . Let y = f(β) + ε, where the
error vector ε has expected value 0 and diagonal covariance matrix D. Assume
that the rank of F(β) is p and, throughout this article, that all required
derivatives and moments exist.

Let ξ, without index, denote the unknown parameter that shall be esti-
mated by inverse prediction (e.g. the concentration of a sample). We observe a
response y = µ+e, where µ = f(ξ,β), and assume that e varies, independently
of ε, with expected value 0 and variance σ2.

The generalized least squares estimate of β is the b that minimizes the
generalized least squares, i.e.

(y − f(b))′D−1(y − f(b)) = min
β

(y − f(β))′D−1(y − f(β)). (1)

It is well known that b is the ordinary least squares estimate in a trans-
formed model C−1y = C−1f(β) + C−1ε, where C is such that D = CC′.
Jennrich (1969) showed that b exists, under mild regularity conditions, and
studied asymptotic properties. If the number of distinct design points is finite,
then b is consistent as the number of replicates per design point is increasing
(Malinvaud 1970; Gallant 1975). Given some further regularity conditions (Se-
ber and Wild 1989), b is asymptotically normally distributed with expected
value β and covariance matrix

V(β) = (F(β)′D−1F(β))−1, (2)

where we write V(β) to indicate that the covariance matrix V of b is depen-
dent on β.

Provided that b is close to β

f(b) ≈ f(β) + F(β)(b− β). (3)

Substituting (3) in (1), yields (ε−F(β)(b−β))′D−1(ε−F(β)(b−β)), which
is minimized when b = β+F−1(β)ε. Thus, when b varies near β, the variance
in b approximately equals (2) even if the number of design points is small.
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The physical quantity ξ is estimated by x = f−1(y,b), where f−1 denotes
the inverse of f considered as a function of ξ. In a neighborhood of (µ,β),

x = ξ + k(β)(y − µ) + g′(β)(b− β) + O(δ2), (4)

where δ is the radius of the neighborhood and

k(β) =
∂f−1

∂y

∣∣∣∣
(y,b)=(µ,β)

, g(β) =
∂f−1

∂b

∣∣∣∣
(y,b)=(µ,β)

. (5)

Notice, as will be important in Section 2.3, that k(β) and g(β), as defined by
(5), can be calculated for a given ξ by

k(β) =
(

∂f

∂x

)−1∣∣∣∣
(x,b)=(ξ,β)

, (6)

g(β) = −∂f

∂b

(
∂f

∂x

)−1∣∣∣∣
(x,b)=(ξ,β)

. (7)

2.2 Fixed curve parameters

In this subsection we study the variance and the expected value of the inverse
prediction x of ξ, conditioned on β.

Under assumption that the variance of the last term in (4) is small

V ar(x|β) ≈ k2(β)σ2 + g′(β)V(β)g(β), (8)

since y and b are independent. The first term in (8) is the variance σ2 of the
observation in response transformed via linear approximation into variance
in inverse prediction. The second term is the asymptotic covariance matrix
V(β) of the curve parameter estimates transformed via linear approximation
into variance in inverse prediction. The approximate conditional variance in
x is thus composed of two parts, one caused by the variation in the measure-
ment of the entity with unknown ξ, and one caused by the variation in the p
measurements of the design points.

The bias in nonlinear regression is known to be an order of magnitude
smaller than the standard errors of the parameter estimates (Box 1971). Let
Ai(β) denote the p×p matrix with elements ∂2fi( β)/(∂βr∂βs), i = 1, 2, . . . ,m.
Box (1971) showed that, with the additional assumption of normally dis-
tributed measurements, E[b − β] ≈ V(β)F′(β)D−1z(β), where the elements
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of the vector z(β) are zi(β) = −tr{V(β)Ai(β)}/2, i = 1, 2, . . . ,m. Thus,
by (4),

E(x|β) ≈ ξ + g′(β)V(β)F′(β)D−1z(β), (9)

and approximately the bias equals c(β) = g′(β)V(β)F′(β)D−1z(β).

2.3 Random curve parameters

In Section 2.2 we assumed that β was a fixed known parameter vector. We
now extend the theory by assuming that β is a random parameter vector with
expected value β0 and covariance matrix Σ. We study the variance and the
expected value of the inverse prediction given known β0 and Σ.

The unconditional variance includes two terms, the mean of the conditional
variance and the variance in the conditional mean. The variance in the inverse
prediction is thus, by (8) and (9),

V ar(x) = E(V ar(x|β)) + V ar(E(x|β))
≈ σ2E(k2(β)) + E(g′(β)V(β)g(β))

+ V ar(g′(β)V(β)F−1(β)D−1z(β)), (10)

where calculation of k(β) and g(β) for a given ξ is made possible by (6)
and (7) respectively. The third term on the right hand side in (10) is the
variance in the bias, which is often very small. For this reason we focus
on σ2E(k2(β)) and E(g′(β)V(β)g(β)) and make Taylor series expansions of
k2(β) and g′(β)V(β)g(β), as functions of β, about β = β0. To make notation
easier we write g′Vg(β) instead of g′(β)V(β)g(β). Referring to Kollo and
von Rosen (2005, p. 152),

k2(β) = k2(β0) + (β − β0)
′ dk2

dβ

∣∣∣∣
β=β0

+
1
2
((β − β0)

′)⊗2vec
(

d2k2

dβ2

)′∣∣∣∣
β=β0

+ r, (11)

where in a neighborhood of β0, for some ρ in the neighborhood, the error term
r is

r =
1
6
((β − β0)

′)⊗3vec
(

d3k2

dβ3

)′∣∣∣∣
β=ρ

.

The vectorization operator vec stacks the columns of the the matrix, one under
the other. The Kroneckerian power A⊗k of A is defined in Appendix A.
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Similarly,

g′Vg(β) = g′Vg(β0) + (β − β0)
′ d(g′Vg)

dβ

∣∣∣∣
β=β0

+
1
2
((β − β0)

′)⊗2vec
(

d2(g′Vg)
dβ2

)′∣∣∣∣
β=β0

+ s, (12)

where in a neighborhood of β0, for some ς in the neighborhood, the error term
s is

s =
1
6
((β − β0)

′)⊗3vec
(

d3(g′Vg)
dβ3

)′∣∣∣∣
β=ς

.

By (10), (11) and (12),

V ar(x) ≈ σ2k2(β0) + g′Vg(β0) +
σ2

2
vec′Σ vec

(
d2k2

dβ2

)′∣∣∣∣
β=β0

+
1
2

vec′Σ vec
(

d2(g′Vg)
dβ2

)′∣∣∣∣
β=β0

, (13)

provided that the variance in the bias, i.e. the last term in (10), could be
neglected. The p × p matrix d2(g′Vg)/dβ2 in (13) can be calculated via the
first and second order derivatives of g(β) and F(β). The formulas are given
in Appendix B.

The unconditional expectation is, by (9),

E(x) = E(E(x|β)) ≈ E(ξ + g′(β)V(β)F′(β)D−1z(β)).

By a Taylor series expansion of the bias c(β) = g′(β)V(β)F′(β)D−1z(β)
about β = β0

c(β) = c(β0) + (β − β0)
′ dc

dβ

∣∣∣∣
β=β0

+
1
2
((β − β0)

′)⊗2vec
(

d2c

dβ2

)′∣∣∣∣
β=β0

+ t, (14)

where in a neighborhood of β0, for some τ , the error term t is

t =
1
6
((β − β0)

′)⊗3vec
(

d3c

dβ3

)′∣∣∣∣
β=τ

,

(Kollo and von Rosen, 2005). The expectation of the second term in (14) is
zero and the following terms are often small. Then

E(x) ≈ ξ + g′(β0)V(β0)F
′(β0)D

−1z(β0). (15)
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2.4 Optimization

We have in Section 2.2 and 2.3 seen how to calculate the variance and the
expected value of the inverse prediction of the unknown quantity ξ. We now
want to find an optimal set of design points that minimizes the variance and
the bias in the inverse prediction. Generally we want to minimize a function
hξ of the variance and the expected value. This function could be the variance
or the mean square error, but it could also be the coefficient of variation γ as
defined by

γ =
√

V ar(x)/E(x). (16)

The coefficient of variation (16) is often used in analytical procedures and is
recommended e.g. by De Silva et al. (2003).

If β is considered as fixed and the search, for a locally optimal design, is
made given a known β equation (8) and (9) could be used for calculating hξ.
In this article we propose that β is instead modeled as a random variable, and
that hξ is calculated by

V ar(x) ≈ σ2k2(β0) + g′Vg(β0) +
σ2

2
vec′Σ vec

(
d2k2

dβ2

)′∣∣∣∣
β=β0

+
1
2

vec′Σ vec
(

d2(g′Vg)
dβ2

)′∣∣∣∣
β=β0

,

from (13), and

E(x) ≈ ξ + g′(β0)V(β0)F
′(β0)D

−1z(β0),

from (15).
In practice ξ is unknown, because it is the unknown quantity that shall be

measured by the instrument. For this reason we want to minimize the function
hξ for all ξ that belong to the measuring range. The design criterion, which
we want to minimize over ξ, is consequently

∫
hξπξ dξ, (17)

where π is a prior probability density function of ξ. Typically we assume
that ξ belongs to a measuring range [α, ω], where often α is the lowest design
point and ω is the largest. We then want to minimize the function hξ for all
ξ, with weights defined by the prior distribution πξ, which takes the value 0
outside [α, ω].

We shall in the following example let hξ equal the coefficient of variation,
estimated by

√
V ar(x)/E(x) as calculated by (13) and (15) under assumption

of an expected parameter vector β0 and a covariance matrix Σ.
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3 Example

ImmunoCAP ECP (Phadia AB, Uppsala, Sweden) is an immunoassay method
for monitoring inflammation in asthma. It measures concentration of
eosinophil cationic protein in serum. The variance in the measuring errors
needs to be small when repeated measurements, perhaps including several
calibrations, are made on the same subject. The measuring range of Immuno-
CAP ECP is 2 – 200 µg/l. Calibration is made with the four-parameter logistic
function

f(ξ, β) = β2 +
β1 − β2

1 + (ξ/β3)β4
, (18)

which describes a sigmoid curve when ξ is set off on logarithmic scale. This
function is often used for calibration of analytical procedures. The parameter
β1 is the expected response at concentration ξ = 0 µg/l, and β2 is the limit of
f when ξ →∞. When ξ equals β3 the expected response f equals (β1 +β2)/2.
The slope of the curve is controlled by β4. The inverse of the four-parameter
logistic function is, by (18),

f−1(y, β) = β3

(
y − β1

β2 − y

) 1
β4

.

We let γ̂, as an estimate of the coefficient of variation (16), be defined as
the square root of the right hand side of (13), divided by the right hand side
of (15). We use as design criterion

∫ 200

2
hξπξ dξ =

1
log(100)

∫ log 200

log 2
γ̂ d(log ξ), (19)

where hξ = γ̂ and πξ = (ξ log 100)−1. With this criterion the coefficient of
variation is averaged over the measuring range on logarithmic scale. In a
precision profile the coefficient of variation is plotted against concentration
ξ over the measuring range (Dudley et al. 1985). It is sensible to display
the measuring range on the logarithmic scale since subjects are often more
evenly distributed on the logarithmic scale than on the original scale and
since the logistic function (18) represents a logistic regression of the proportion
(µ− β1)/(β2− β1) on log ξ. By use of the design criterion (19) the area under
the precision profile on the logarithmic scale is minimized. For a given set of
design points, we calculate the integral (19) numerically by the trapezoidal
rule.

The calibration curve (18) is fitted by generalized least squares. In our
search for an optimal design we assume that the diagonal covariance matrix
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D has diagonal elements φ(fi(β0))θ, i = 1,2,. . . ,4, and that σ2 = φµθ, where
φ = 0.00067, θ = 1.88 and β0 = (40, 34000, 150, 1.4)′. We assume that β is a
random vector with expected value β0 and covariance matrix

Σ =




100 −7680 −80 2.4
−7680 10240000 12800 −900
−80 12800 400 −0.64
2.4 −900 0.64 0.16


 .

To prevent extrapolation outside the measuring range we fix the lowest design
point to 2 µg/l and the highest to 200 µg/l. We search for an optimal set
of 3 intermediate design points, using MATLAB 6.5 (The Mathworks Inc.,
Natick, MA, USA) and the function fminsearch. This function makes use
of the simplex search method by Nelder and Mead (1965) and algorithms
given by Lagarias, Reeds, Wright and Wright (1998). In each step we let
MATLAB perform the quadrature based on 1 000 points equally spaced on
the logarithmic scale. With starting value (2.00, 10.0, 50.0, 100, 200)′ the
search algorithm converges after 93 iterations at x = (2.00, 6.66, 18.0, 82.3,
200)′, where the integral (19) equals 2.8389%. Rounded into (2.00, 7.00, 18.0,
80.0, 200)′ the integral is only slightly larger: 2.8392%.

Figure 1 is the precision profile for this choice of design points. The solid
line in Figure 1 is the calculated coefficient of variation γ̂ under assumption of
random parameters. The bias, as calculated by the last term of (15) and ex-
pressed as a percentage of concentration, is for comparison included in Figure 1
as a dotted line.

If we instead consider β = (40, 34000, 150, 1.4)′ as a fixed parameter
vector, and calculate γ̂ as the square root of the right hand side of (8), divided
by the right hand side of (9), the algorithm converges after 98 iterations at the
locally optimal design x = (2.00, 5.70, 13.2, 60.2, 200)′, where the integral (19)
equals 1.9727%.

4 Discussion

A locally optimal design is a design that is optimized for a given fixed param-
eter vector. There is no guarantee that a locally optimal design gives small
errors also for other parameter vectors. This is a problem since the parame-
ters are likely to change. Otherwise it would not be necessary to calibrate the
instrument. We must require of a good design for calibration that it performs
well under varying curve parameters.
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Figure 1: Precision profile for the set of design points x = (2.00, 7.00, 18.0,
80.0, 200)′. The integral of the coefficient of variation (solid line) is mini-
mized over the measuring range on logarithmic scale. The bias (dotted line),
illustrated as a percentage of concentration, is small in comparison with the
standard deviation.
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Section 2.2 included approximations useful for the search of a locally
optimal design, similar as those presented by Rocke and Jones (1997) and
François et al. (2004). The equations of Section 2.2 were extended in Section
2.3 to make possible a search basad on the assumption of a random parameter
vector.

In order to model the more correct assumption of random parameters
not only the expected parameter values are needed but also the variances
and covariances. These could be estimated from a dataset of measurements
performed under varying conditions. An instrument manufacturer could for
example perform precision studies in countries with different climatic condi-
tions and estimate the variation in the calibration curves. It is more difficult
to make the assumptions required by bayesian optimization about the exact
mathematical form of the multivariate distribution of the parameters. The
method introduced in this article, based on the equations given in Section 2.3,
only requires the expected values and the covariance matrix.

The minimization of the area under the precision profile is closely re-
lated to the average variance criterion, called V -optimality by Atkinson and
Donev (1992), AV -optimality by Buonaccorsi (1986) and, to emphasize the
application on inverse prediction, VI-optimality by François et al. (2004).

Many authors have studied the problem of designing non-linear regression
under the assumption of normally distributed measurements. It should be
noted, however, that the assumption of normality, in this article, is only needed
for the estimation of the bias. As illustrated by the example the bias in the
inverse prediction is often small compared with the standard deviation. It
could thus be acceptable to simplify the method by neglecting the bias and
build the design criterion on a function of the variance alone.

Usually it is also assumed, e.g. by François et al. (2004), that the inverse
calibration function has an analytical form. According to Schwenke and Mil-
liken (1991) a confidence interval based on V(β), as defined by (2), requires
the existence of a closed form for the inverse of the nonlinear function. How-
ever, equation (7) can be used for differentiation of the inverse function when
no closed form exists.

When the function include many parameters a large number of first
and second order derivatives need to be calculated. A software package for
symbolic mathematics makes it easier. Sometimes search algorithms, such as
the simplex method used in the example of Section 3, do not find the global
minimum, but stop at a local minimum. For this reason it could be wise to
begin with a grid search over the parameter space.
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Appendix A: Direct product

The Kronecker product A⊗B of the p× q matrix A and the m×n matrix B
is defined as

A⊗B =




a11B . . . a1qB
...

...
ap1B . . . apqB


 .

The Kroneckerian power is given by

A⊗k = A⊗ . . .⊗A︸ ︷︷ ︸
k times

.

Appendix B: Matrix derivatives

Following Kollo and von Rosen (2005), define the matrix derivative of order k
of Y by X as

dkY
dXk

=
d

dX

(
dk−1Y
dXk−1

)
,

where
dY
dX

=
dvec′Y
dvecX

.

According to this definition

F(β) =
(

df
dβ

)′
.

Let Ip denote the p × p identity matrix, and let the partitioned matrix Kp,q

denote the pq×pq commutation matrix, in which the (j, i)–th element in block
(i, j) equals one, and all the other elements in that block equal zero.
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By application of the rules for matrix differentiation (Kollo and
von Rosen 2005, p. 149)

d2(g′Vg)
dβ2 = 2

(
d2g
dβ2 (Vg ⊗ Ip) +

d(Vg)
dβ

(
dg
dβ

)′ )

− d2(F′D−1F)
dβ2

(
(Vg)⊗2 ⊗ Ip

)

−
((

d(Vg)
dβ

⊗ vec′(Vg)
)

+
(

vec′(Vg) ⊗ d(Vg)
dβ

))(
d(F′D−1F)

dβ

)′
,

where
d(Vg)

dβ
=

dg
dβ

V − d(F′D−1F)
dβ

V⊗2 (g ⊗ Ip),

d(F′D−1F)
dβ

=
dF
dβ

Kp,m((D−1F)⊗ Ip) +
dF
dβ

(Ip ⊗ (D−1F))

and

d2(F′D−1F)
dβ2 =

d2F
dβ2 (Kp,m ⊗ Ip)((D−1F)⊗ Ip2)

+
((

dF
dβ

(Ip ⊗ D−1)
)
⊗ vec′Ip

)

(
Ip ⊗Km,p ⊗ Ip

)(
Ip2 ⊗

(
dF
dβ

Kp,m

)′ )

+
d2F
dβ2 (Ip ⊗ (D−1F)⊗ Ip)

+
((

dF
dβ

(Ip ⊗D−1)
)
⊗ vec′Ip

)
Kmp,p2

(
Ip ⊗Kp,p ⊗ Im

)(
Ip2 ⊗

(
dF
dβ

)′ )
.
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