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Abstract

In this paper, a general autoregressive model with Markov switching is
considered, where the autoregression may be of an infinite order. The
consistency of the maximum likelihood estimators for this model is ob-
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1 Introduction

In economic and financial studies, more and more researchers think it may be
more reasonable to consider that there are different economic states behind
an economic system, and the outcomes of the system depend on these states.
For example, in the analysis of the US annual GNP (gross national product)
growth rate series, Hamilton (1989) treated the expansion and recession
periods as two states (called regimes in econometric literature), and assumed
that the shift between these two regimes was governed by a Markov chain.
But the Markov chain is unobservable, the inference has to be based only
on the observations, the outcomes of some economic variables. Hamilton
(1989) then studied the GNP series with a (linear) autoregressive model with
Markov switching. The original model (Hamilton, 1989) may be written as

(Yt − µXt) =
∑s

i=1 βi(Yt−i − µXt−i) + εt,

where {Yt} are the observations in question, βi, i = 1, ..., s, are coefficients,
Xt is the regime at time t, µXt is a constant depending on the regime Xt (as-
suming two regimes in his model) and εt is distributed as Gaussian, N(0, σ2).
Hamilton (1989) showed that this model better fits the data than other, e.g.
one-regime autoregressive models.

During the last two decades, the idea of Markov switching has been widely
accepted and applied to many areas. See e.g. McCulloch and Tsay (1994)
and Doucet et al. (2000) among others. In this paper, we are interested in a
general autoregressive model with Markov switching (GARMS)

Yt = fθ(Ȳs
t−1, Xt; εt), (1)

where {εt} is an independent, identically distributed (i.i.d.) innovation pro-
cess, Ȳs

t−1 denotes observations {Ys, ..., Yt−1} from possibly an infinite past,
i.e. s may equal to −∞. By convention, this set is empty when s > t − 1.
The parameter θ may depend on the regimes Rt, and is assumed to be finite-
dimensional. An infinite-dimensional setting sounds attractive but is techni-
cally formidable. fθ is a family of measurable functions indexed by θ and
has implicit requirements imposed by the (conditional) density of Yt. The
maximum likelihood (ML) estimation of model (1) will be considered.

When s > t− 1, i.e. the conditional distribution of Yt does not depend on
lagged Y ’s but only on Xt, model (1) leads to an important class of models,
called hidden Markov models (HMMs). HMMs are widely used in many dif-
ferent areas such as engineering, biology, physiology, and econometrics. The
readers are referred to the monograph by MacDonald and Zucchini (1997) and
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references therein for a comprehensive introduction. The asymptotic proper-
ties of the ML estimator (MLE) for HMMs are well developed. Baum and
Petrie (1966) and Petrie (1969) studied the consistency and asymptotic nor-
mality of the MLE for probabilistic functions of a Markov chain where ob-
servations and the Markov states both take finite values. Leroux (1992) ini-
tially proved the consistency of MLE for general HMMs using ergodic theorem
of subadditive processes from Kingman (1973) and the idea of Wald (1949).
The asymptotic normality of MLE for general HMMs was obtained by Bickel
and Ritov (1996) and Bickel et al. (1998) for Markov chain with finite state
space. This result was extended to HMMs with compact state-space regimes
by Jensen and Petersen (1999). The proofs of asymptotic normality in these
papers follow the classic Cramér method, i.e. involving a central limit theorem
of the Fisher score function and a law of large numbers for the observed Fisher
information.

When s = t − 1, i.e. a first order autoregression in (1), Yao and Attali
(2000) studied the stability of this process, including conditions under which
there exist a stationary solution and moments of {Yt} and limit theorems
can be applied. Francq and Roussignol (1998) considered the stability of the
process when s = t − 1. In addition, they obtained the consistency of the
MLE in this case. Yao (2001) also studied the condition for the existence of
a square-integrable stationary solution when (1) is an ordinary autoregressive
(AR) process (with coefficients depending on the regimes). In these works,
the Markov chain has a finite state space.

A natural and interesting case is that of s less than t−1 but finite. The fi-
nite order autoregressive model with Markov switching is called ARMS model.
In fact, the results for ARMS model are available only rather recently. Follow-
ing basically Leroux’s (1992) idea on HMMs, Krishnamerthy and Rydén (1998)
obtained the consistency of the MLE when the Markov chain of this model has
a finite state space. Douc et al. (2004) not only extended it to continuous state
space but also proved the asymptotic normality of MLE for both stationary
and non-stationary observation sequences. It is worth noting that the ARMS
model includes the ARCH with Markov switching (MS-ARCH) model as a
special case, which is non-linear and incorporates the idea of Markov regimes
into the conditional variance equation of the seminal ARCH model (Engle,
1982). Therefore, the results of Douc et al. (2004) also cover the previous
findings for MS-ARCH models by, e.g. Cai (1994) and Francq et al. (2001).

In this paper, we will consider the GARMS model (1) where the condi-
tional density of Yt can depend on all past observations, from possibly an
infinite past, and the Markov chain has a finite state space. The ML estima-
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tion of this model is discussed and the consistency is proved. The assumptions
for consistency are discussed using examples of finite and infinite order Markov
switching autoregressive (MS-AR) models. Simulation studies with these ex-
amples are also reported. This paper is organized as follows. The notation
and assumptions for the model are introduced and discussed in Section 2. In
Section 3 the consistency of the MLE is proved. For the examples of finite
and infinite order MS-AR models, conditions associated with the consistency
are discussed in Section 4. Simulation studies using these two models are con-
ducted to illustrate the consistency. The asymptotic normality of the MLEs is
also conjectured by the numerical experiment. In Section 5 some conclusions
are drawn.

2 Notation and assumptions

Let {Xt}t∈Z be the Markov chain with finite state E = {1, 2, ..., d}, where d
is assumed known and fixed. Its transition probability matrix is A = (αkl),
where αkl = P (Xt = l|Xt−1 = k), k, l ∈ E. We assume that

(A1) The Markov chain {Xt}t∈Z is aperiodic and irreducible.

An aperiodic and irreducible Markov chain has a unique stationary distri-
bution. Denote this stationary distribution vector as π and π(k) = P (Xt =
k) > 0 for all k ∈ E.

Let {Yt}t∈Z be a real-valued observable sequence governed by (1). Assume
that given the distribution of εt, the regime Xt = k, observations ȳs

t−1 and
function fθk

, the conditional distribution of Yt has a density q(yt|ȳs
t−1; θk)

with respect to some Lesbegue measure. Here θk, k ∈ E, belong to a finite-
dimensional parameter space Θ. For {Yt}, further assume that

(A2) {Yt}t∈Z is a strictly stationary and ergodic process.

Remark 1. Stationarity and ergodicity are usually assumed so as to be able
to apply ergodic theorems. In the HMMs case, these properties carry over
from the irreducibility of finite state Markov chain (Leroux, 1992, Lemma
1). For the ARMS model, Krishnamurthy and Rydén (1998) assumed the
process {(Xt, Yt, ..., Yt−s+1)}t∈Z (with s finite) to be stationary and ergodic.
Douc et al. (2004) first obtained the consistency and asymptotic normality
for stationary {Yt} and then extended the results to a non-stationary case.
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The conditions for the existence of such a stationary and ergodic solution
of (1) have been investigated in some special cases. For the first order au-
toregressive model, i.e. s = t − 1 in (1), conditions were obtained by Francq
and Roussignol (1998) and Yao (2001). Roughly speaking, they required that
the function fθ should have some property like Lipschitz continuity and that
the autogressive system (1) is “contractive on average”. These conditions are
usually not easy to verify except by simulations, and the details can be found
in the two references. Yao and Attali (2000) also considered the conditions
for the existence of moments (larger than one) and for limit theorems to be
applied when s = t− 1 in (1). However, the conditions for the general model
(1) are still unknown.

Denote the parameters that characterize this model wholly as φ, which
belongs to a parameter space Φ, a subset of the Euclidean space. That is,
formally we have A(φ) = (αkl(φ)) and θk(φ) ∈ Φ for k, l ∈ E. The usual case
is just φ = {α11, α12, ..., αdd, θ1, ..., θd} (θk may be a vector), and αkl(·) and
θk(·) equal to coordinate projections. The true parameter is denoted by φ0

and assume φ0 ∈ Φ. With the Euclidean distance λ(·, ·) , it is assumed that

(A3) For each l and k in E, αkl(·) and θk(·) are continuous on Φ, and
q(yt|ȳs

t−1; θk(φ)) is continuous on Φ for all realizations ȳs
t−1.

Suppose that observations {y1, ..., yn} are given while the Markov chain
{Xt} is not observed. In this paper, we will study the consistency of the
estimator of the parameter φ using MLE. The likelihood we work with has the
form

L∗n(yn, ..., y1;φ) =
∑

(x1,...,xn)

π(x1)

{
n∏

t=2

α(xt−1, xt)

} {
n∏

t=1

q(yt|ȳ1
t−1; θxt(φ))

}
.

(2)
The MLE is defined as any parameter φ̂n that maximizes the likelihood L∗n
over a compact subset of Φ. Its existence is guaranteed from the continuity
assumption (A3) and the compactness. The likelihood (2) can be numerically
maximized rather quickly by observing that it can be rewritten as a product of
matrices. Let Mt(yt;φ) be the diagonal matrix diag{q(yt|ȳ1

t−1; θk(φ)), k ∈ E},
yielding

L∗n(yn, ..., y1; φ) = πM1(y1; φ)

{
n∏

t=2

Mt(yt;φ)A(φ)

}
1, (3)

where 1 is an d× 1 vector of ones.
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Remark 2. The initial state probabilities π(x1) in (2) may be taken as arbi-
trary positive quantities without changing the asymptotic property of model.
However, using the stationary distribution of the Markov chain is the most
convenient way to handle the initial state. Other possibilities include condi-
tioning on it and then maximizing the likelihood with or without respect to
it. For more discussions on the initial state, see e.g. Douc et al. (2004).

It will facilitate our proofs if we approximate the likelihood (2) by the
conditional likelihood conditioning on all observations ȳ−∞0 , which is

Ln(yn, ..., y1|ȳ−∞0 ; φ)

=
∑

(x1,...,xn)∈En

π(x1)

{
n∏

t=2

α(xt−1, xt)

}{
n∏

t=1

q(yt|ȳ−∞t−1 ; θxt(φ))

}

= πM
′
1(y1;φ)

{
n∏

t=2

M
′
t(yt; φ)A(φ)

}
1, (4)

where M
′
t(yt; φ) = diag{q(yt|ȳ−∞t−1 ; θk(φ)), k ∈ E}. Define p∗(Yt|Ȳ1

t−1; φ) as
the conditional density of Yt given Ȳ1

t−1 and g∗(Yt|Ȳ1
t−1; φ) as its logarithm;

similarly define p(Yt|Ȳ−∞
t−1 ; φ) as the conditional density of Yt given Ȳ−∞

t−1 and
its logarithm g(Yt|Ȳ−∞

t−1 ; φ).
Denote the term “almost surely under φ0” by a.s.−Pφ0 and the following

assumption is needed.

(A4) ∀ φ ∈ Φ, 0 < mink∈E q(Yt|Ȳ−∞
t−1 ; θk(φ)) ≤ maxk∈E q(Yt|Ȳ−∞

t−1 ; θk(φ))
< ∞ for all Ȳ−∞

t a.s. − Pφ0 ; and there exists a neighborhood of φ,

V (φ) = {φ′ : λ(φ, φ
′
) ≤ δ} such that Eφ0

[
supφ

′∈V (φ) |g(Yt|Ȳ−∞
t−1 ;φ

′
)|

]

< ∞ for some δ > 0.

Assumption (A4) implies that, among others, there exists at least one
compact subset of Φ containing φ0, V (φ0), over which the expectation under
φ0 of |g(Yt|Ȳ−∞

t−1 ; φ)| is uniformly finite. Similar conditions as (A4) are also
found in, e.g. Francq and Roussignol (1998) or Douc et al. (2004).

The last assumption concerns the identifiability of the parameters. Be-
cause the label of the Markov regimes can be switched without changing the
law of the model, the parameters are not strictly identifiable up to permu-
tation. Leroux (1992) henceforth defined an equivalence class which consists
of parameters that induce the same law for the observations and stated the
consistency result on the equivalence class of the MLE. However, we will use a
more convenient and essentially equivalent assumption from Francq and Rous-
signol (1998).
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(A5) For any φ1 and φ2 ∈ Φ, if for all Ȳ−∞
t , p(Yt|Ȳ−∞

t−1 ; φ1) = p(Yt|Ȳ−∞
t−1 ;φ2)

a.s.− Pφ0 , then φ1 = φ2.

3 The consistency of MLE

We prove the consistency of MLE in this section. Our methods are benefitted
from the paper of Francq and Roussignol (1998). First, as we noted before,
we approximate the likelihood L∗n by Ln over a compact subset of Φ. In
fact, (A2) and (A4) imply that the amount of information from Ȳ−∞

0 will be
equivalently revealed by Ȳ1

n when n tends to ∞. Hence it is expected that the
approximation holds for some more general likelihood functions as Lemma 1
shows.

Lemma 1 Suppose that a process {Yt}t∈Z satisfies Assumptions (A2) and
(A4). Let L∗n, Ln, g∗(Yt|Ȳ1

t−1; φ) and g(Yt|Ȳ−∞
t−1 ; φ) be defined as before except

that the likelihoods L∗n and Ln do not necessarily have the form of (2) and (4),
respectively. Then, for all φ in a compact subset of Φ,

lim
n→∞

1
n

log L∗n(Ȳ1
n;φ) = lim

n→∞
1
n

log Ln(Ȳ1
n|Ȳ−∞

0 ; φ)

= Eφ0g(Yt|Ȳ−∞
t−1 ; φ) a.s.− Pφ0 . (5)

Proof. Since we confine us to a compact set, the expectation of |g(Yt|Ȳ−∞
t−1 ; φ)|

is uniformly finite by (A4). In addition, g(Yt|Ȳ−∞
t−1 ; φ) is stationary and er-

godic, which is carried over from the stationarity and ergodicity of {Yt} (see,
e.g. Stout, 1974, Theorem 3.5.8). Then the second equality of (5) follows from
applying the ergodic theorem, e.g. Stout (1974, Theorem 3.5.7), by observing
that

1
n

log Ln(Ȳ1
n|Ȳ−∞

0 ;φ) =
1
n

n∑

t=1

g(Yt|Ȳ−∞
t−1 ; φ). (6)

Similarly,
1
n

log L∗n(Ȳ1
n; φ) =

1
n

n∑

t=1

g∗(Yt|Ȳ1
t−1; φ). (7)

Now we need to show that (7) asymptotically equals to (6) a.s. as n →∞.
Analogous to Karlin and Taylor (1975, p.502), define

ZT
t = sup

l≥T
|g∗(Yt|Ȳt−l

t−1; φ)− g(Yt|Ȳ−∞
t−1 ; φ)|.
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Then {ZT
t } is stationary, ergodic from (A2) and Eφ0 |ZT

t | < ∞. We have

lim sup
n→∞

∣∣∣∣∣
1
n

n∑

t=1

{g∗(Yt|Ȳ1
t−1;φ)− g(Yt|Ȳ−∞

t−1 ; φ)}
∣∣∣∣∣

≤ lim sup
n→∞

1
n

n∑

t=1

∣∣g∗(Yt|Ȳ1
t−1; φ)− g(Yt|Ȳ−∞

t−1 ; φ)
∣∣

≤ lim sup
n→∞

1
n

n∑

t=T+1

ZT
t = Eφ0 [Z

T
t ].

But as T →∞, ZT
t → 0, and the interchange of limit and expectation can be

justified to give limT→∞Eφ0 [Z
T
t ] = 0. This completes the proof. ¤

Next, define

Rn(φ) =
1
n

log
L∗n(Yn, ..., Y1; φ)
L∗n(Yn, ..., Y1; φ0)

and we have the following lemma.

Lemma 2 Assume (A1)-(A2) and (A4)-(A5). For any φ in a compact subset
of Φ,

lim
n→∞Rn(φ) = lim

n→∞
1
n

log
Ln(Yn, ..., Y1|Ȳ−∞

0 ;φ)
Ln(Yn, ..., Y1|Ȳ−∞

0 ; φ0)
≤ 0, a.s.− Pφ0 .

The limit equals to zero a.s. if and only if φ = φ0.

Proof. The first equality is from Lemma 1. By Lemma 1 and Jensen’s
inequality,

lim
n→∞

1
n

log
Ln(Yn, ..., Y1|Ȳ−∞

0 ;φ)
Ln(Yn, ..., Y1|Ȳ−∞

0 ; φ0)
= Eφ0 log

p(Yt|Ȳ−∞
t−1 ; φ)

p(Yt|Ȳ−∞
t−1 ; φ0)

≤ log Eφ0

p(Yt|Ȳ−∞
t−1 ; φ)

p(Yt|Ȳ−∞
t−1 ;φ0)

= 0.

From (A5), the limit equals to zero if and only if φ = φ0. ¤

Lemma 3 Assume (A1)-(A5). For any φ1 in a compact subset of Φ and
φ1 6= φ0, there exists a neighborhood V (φ1) of φ1 such that

lim sup
n→∞

sup
φ∈V (φ1)

Rn(φ) < 0, a.s.− Pφ0 .
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Proof. In view of Lemma 2, we will show

lim sup
n→∞

sup
φ∈Vr(φ1)

1
n

log
Ln(Yn, ..., Y1|Ȳ−∞

0 ; φ)
Ln(Yn, ..., Y1|Ȳ−∞

0 ;φ0)
< 0, a.s.− Pφ0 ,

where Vr(φ1) = {φ : λ(φ, φ1) ≤ 1/r}, and r is large enough such that Vr(φ1) is
contained in the compact subset of Φ and Lemma 2 holds for all θ ∈ Vr(φ1).
It is equivalent to show

lim
n→∞

1
n

log sup
φ∈Vr(φ1)

Ln(Yn, ..., Y1|Ȳ−∞
0 ; φ)

< lim
n→∞

1
n

log Ln(Yn, ..., Y1|Ȳ−∞
0 ; φ0), a.s.− Pφ0 (8)

provided that the limit in the left hand side of (8) exists.
Define the matrix norm ‖ . ‖ as the sum of all element of the matrix. From

equation (4), it follows that

min
k

π(k)q(Y1|Ȳ−∞
0 ; θk(φ))

∥∥∥∥∥
n∏

t=2

M′
t(Yt; φ)A(φ)

∥∥∥∥∥ ≤ Ln(Yn, ..., Y1|Ȳ−∞
0 ; φ)

≤ max
k

π(k)q(Y1|Ȳ−∞
0 ; θk(φ))

∥∥∥∥∥
n∏

t=2

M′
t(Yt;φ)A(φ)

∥∥∥∥∥ .

From (A1) and (A4), we obtain that

lim
n→∞

1
n

log Ln(Ȳ1
n|Ȳ−∞

0 ; φ) = lim
n→∞

1
n

log

∥∥∥∥∥
n∏

t=2

M′
t(Yt;φ)A(φ)

∥∥∥∥∥ , a.s.− Pφ0 .

(9)
Define Sr

2,n(Yn) = supφ∈Vr(φ1) ‖
∏n

t=2 M′
t(Yt; φ)A(φ)‖ . Because this matrix

norm is multiplicative, it follows that, over Vr(φ1),

sup
φ

∥∥∥∥∥
n+k′∏

t=2

M′
t(·)A(φ)

∥∥∥∥∥ ≤ sup
φ

∥∥∥∥∥
n∏

t=2

M′
t(·)A(φ)

∥∥∥∥∥ · sup
φ

∥∥∥∥∥
n+k′∏

t=n+1

M′
t(·)A(φ)

∥∥∥∥∥ ,

where M′
t(·) is M′

t(Yt; φ). This is just

log Sr
2,n+k′(Yn+k′) ≤ log Sr

2,n(Yn) + log Sr
n+1,n+k′(Yn+k′)

for any positive integers n(≥ 2), k′ and r. The process {log Sr
2,n(Yn)}n≥2 is

hence subadditive. It is stationary and ergodic following from Assumption
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(A2) by, e.g. Stout (1974, Theorem 3.5.8). In addition, Eφ0 log Sr
2,n(Yn) is

finite from (A4). Therefore, the ergodic theorem for the subadditive processes
(Kingman, 1973, p.855) or an improved version (e.g. Liggett, 1985) can be
applied to declare that limn→∞ 1

n log Sr
2,n(Yn) exists and equals to

γr(φ1) = inf
n>1

1
n

Eφ0 log Sr
2,n(Yn), a.s.− Pφ0 . (10)

At the same time, for the random matrix sequence {M′
t(Yt; φ)A(φ)}, t =

2, 3, ..., the top Lyanunov exponent can be defined as

γ(φ) = lim
n→∞

1
n

Eφ0 log

∥∥∥∥∥
n∏

t=2

M′
t(Yt;φ)A(φ)

∥∥∥∥∥

= inf
n>1

1
n

Eφ0 log

∥∥∥∥∥
n∏

t=2

M′
t(Yt; φ)A(φ)

∥∥∥∥∥ , (11)

since we have Eφ0 log+ ||M′
t(Yt; φ)A(φ)|| < ∞ by (A4) (log+ x =

max(log x, 0)). From Furstenberg and Kesten (1960), we have

γ(φ) = lim
n→∞

1
n

log

∥∥∥∥∥
n∏

t=2

M′
t(Yt; φ)A(φ)

∥∥∥∥∥ , a.s.− Pφ0 . (12)

Thus, by equations (9) and (12), Lemma 2 yields γ(φ) < γ(φ0) for all φ ∈
Vr(φ1). Particularly, for φ1, there exist ε > 0 and nε ∈ N such that

1
nε

Eφ0 log

∥∥∥∥∥
nε∏

t=2

M′
t(Yt; φ1)A(φ1)

∥∥∥∥∥ < γ(φ0)− ε. (13)

Note that by (A4) and the dominated convergence theorem, it follows that

lim
r→∞

1
nε

Eφ0 log Sr
2,nε

(Ynε) =
1
nε

Eφ0 log

∥∥∥∥∥
nε∏

t=2

M′
t(Yt; φ1)A(φ1)

∥∥∥∥∥ . (14)

From (10), it follows that γr(φ1) ≤ 1
nε

Eφ0 log Sr
2,nε

(Ynε) for all r. For r large
enough, (13) and (14) together with assumption (A3) give us

γr(φ1) ≤ 1
nε

Eφ0 log

∥∥∥∥∥
nε∏

t=2

M′
t(Yt; φ1)A(φ1)

∥∥∥∥∥ +
ε

2
< γ(φ0)− ε

2
,

which implies (8). ¤
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Lemma 3 implies the strong consistency of the MLE for the GARMS model
(1) over any compact subset of Φ containing φ0, denoting it as Φ∗. From (A4),
we can at least choose this subset as V (φ0) and restricts the results of lemmas
to V (φ0).

Theorem 1 For the GARMS model (1), assume (A1)-(A5). Let φ̂n be an
MLE sequence over Φ∗, satisfying

L∗n(Yn, ..., Y1; φ̂n) = sup
φ∈Φ∗

L∗n(Yn, ..., Y1; φ), a.s.− Pφ0

then φ̂n tends to φ0 a.s. as n →∞.

Proof. Suppose that φ̂n didn’t tend to φ0 with probability one as n →∞, i.e.,
for arbitrarily large integer N , there exist a δ > 0 and at least one n∗, n∗ ≥ N
such that λ(φ̂n∗ , φ0) ≥ δ with a positive probability. By Lemma 3, it follows
that L∗n∗(Yn∗ , ..., Y1; φ̂n∗) is strictly less than L∗n∗(Yn∗ , ..., Y1; φ0) with a positive
probability. However, by the definition of MLE, with probability one, we have

L∗n∗(Yn∗ , ..., Y1; φ̂n∗) = sup
φ∈Φ∗

L∗n∗(Yn∗ , ..., Y1; φ) ≥ L∗n∗(Yn∗ , ..., Y1; φ0).

This contradiction gives our result. ¤

4 Examples and simulation study

An interesting example of the GARMS is the AR model with Markov switch-
ing. It is denoted by MS-AR to distinguish from the ARMS model. Some
examples of finite order MS-AR model from Krishnamurthy and Rydén (1998)
and Francq and Zaköıan (2001) are re-examined, particularly focusing on the
stationarity of the processes and consistency of the MLEs. Such examples are
of interest since they showed apparently opposite conclusions between Krish-
namurthy and Rydén (1998) and Francq and Zaköıan (2001). In addition,
an infinite order MS-AR model is discussed, and the conditions for the consis-
tency, particularly the stationarity condition, are investigated. The simulation
study with this model is presented, which confirms the consistency of the MLE
and suggests the asymptotic normality.
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4.1 Finite order MS-AR models

A finite order MS-AR model is a particular example of GARMS with linear
function f , defined as

p∑

i=0

µi(Xt)Yt−i = c(Xt) + σ(Xt)ηt, (15)

where (Xt) is the underlying Markov chain with d regimes and transition
probabilities (αkl), k, l ∈ E, µ0(k) = 1 for all values of k, and µ’s, c, and σ
are regime dependent parameters. ηt is an i.i.d. innovation and independent
of (Xt). This model has been studied by Krishnamurthy and Rydén (1998)
amongst others.

Krishnamurthy and Rydén (1998) reported a number of simulation studies
for (15) and illustrated the consistency of the MLE under different settings.
One of their examples (Krishnamurthy and Rydén, 1998, Example 5) has the
following setting:

(i) p = 2, d = 2 in (15) with true parameters µ1(1) = −1, µ2(1) = −0.8,
σ(1) = 1, µ1(2) = 2, µ2(2) = −0.5, σ(2) = 0.25, α12 = α21 = 0.99, and
c(1) = c(2) = 0.

Note that in (i), although the processes Yt−Yt−1−0.8Yt−2 = ηt and Yt+2Yt−1−
0.5Yt−2 = 0.25ηt are non-stationary, the resulting process is strictly stationary
and has finite second moment, because of the rapid regime switching, as stated
by Krishnamurthy and Rydén (1998). However, besides the rapid regime
switching, the different signs of µ1(1) and µ1(2) play an important role in the
stationarity of this process. If we change µ1(1) to 1, the resulting process will
not be stationary any more (see the condition (19)) in this case. For model (i),
the consistency of the MLE can be achieved and verified by our experiments.

By contrast, Francq and Zaköıan (2001) reported a numerical result for
model:

(ii) p = 1, d = 2 in (15) with true parameters µ1(1) = 0, σ(1) = 1, µ1(2) =
−1.11, σ(2) = 4, α12 = 0.9, α21 = 0.2, c(1) = 0, and c(2) = 1.

Although the parameters in (ii) satisfy the stationarity condition (Francq and
Zaköıan, 2001, Theorem 2), the estimates they obtained (Francq and Zaköıan,
2001, Table 1) are rather poor. In other experiments, they required the pa-
rameter spaces were within the (weakly) stationary region, but produced no
better estimates. It questions the result for consistency. However, the sample
size that Francq and Zaköıan (2001) used, 50, is surprisingly small, compared
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Table 1: The true value, mean and standard deviation of the MLEs of model
(ii) in Section 4.1, obtained from 30 replications, each of size 1000.

µ1(1) µ1(2) σ(1) σ(2) α12 α21 c(1) c(2)
True value 0 -1.11 1 4 0.9 0.2 0 1

Mean 0 -1.109 1.013 3.98 0.902 0.197 -0.014 1.002
SD 0.004 0.009 0.064 0.092 0.06 0.016 0.087 0.16

with the 5000 used in (i) by Krishnamurthy and Rydén (1998). Moreover,
Francq and Zaköıan (2001) randomly selected the start values during the max-
imization of the likelihood, which may frequently result in local maxima of
the likelihood function. This was pointed out by Krishnamurthy and Rydén
(1998), who used the true value as the start values in model (i). Therefore,
in the first experiment, we re-examine the model (ii), but increase the sample
size to 1000 and start the maximization of the likelihood function with the
true parameter values. The stationarity conditions are not imposed on the
parameters during the maximization. The true values, mean and standard
deviation (SD) of the MLE for model (ii) are reported in Table 1. Only 30
replications are used in our study, and the biases and standard deviations are
significantly reduced compared with the result of Francq and Zaköıan (2001,
Table 1). Note that Francq and Zaköıan (2001) made use of 1000 replications.
It is clear that the result for consistency is satisfactory in our study and the
apparent ‘counter-example’ of Francq and Zaköıan (2001) is only due to the
inappropriate numerical settings.

4.2 The infinite order MS-AR model

An infinite order MS-AR model can be defined in the mean-square sense by

∞∑

i=0

µi(Xt)Yt−i = c(Xt) + σ(Xt)ηt. (16)

It is worth noting that, in a finite order MS-AR model (15),
{(Xt, Yt, ..., Yt−p+1)} is an Markov process, which plays an important role in
the proofs of Krishnamurthy and Rydén (1998) and Douc et al. (2004), while
there is no analogue in (16). We confine us to a finite-dimensional parameter
space. One way is to assume µi(k) = 0 for i larger than some positive inte-
ger p and all values of k, which just reduces (16) to the finite order MS-AR
model (15). Alternatively, we may also assume that µi are functions of some
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(probably vectorial) parameter ψ. For example, consider the following model

Yt =
∞∑

i=1

ψi(Xt)Yt−i + σ(Xt)ηt, (17)

where (Xt) is the Markov chain with d regimes. Note that ψi is ψ raised to
power i, and the absolute values of ψ(k), k ∈ E, are assumed to be strictly less
than 1. A (regime dependent) constant term can also be added to (17).

The conditions associated with Assumptions (A1-A5) will be illustrated
under (17) with a frequently used two-regime Markov chain, i.e. d = 2. All
positive transition probabilities ensure (A1). Assume that the innovation ηt is
a standard normal, the continuity assumption (A3) follows. Since assumption
(A4) is a moment requirement, it will be satisfied with a standard normal ηt

and a stationary solution of (17). For the identifiability assumption (A5), it
suffices to label the regimes such that σ(1) ≤ σ(2).

The condition for stationarity of model (17) is not obvious. Francq and
Zaköıan (2001, Theorems 1 and 2) obtained the sufficient conditions for strict
and second order stationarity, respectively, for an ARMA model with Markov
switching (MS-ARMA) defined as

p∑

i=0

µi(Xt)Yt−i =
q∑

j=0

νj(Xt)σ(Xt−j)ηt−j , (18)

where µ0(k) = 1, and ν0(k) = 1, k ∈ E. As in the case of ordinary ARMA,
these conditions concern only the parameters in the autoregressive part, as
well as the transition probabilities. For the first order MS-AR model, their
strict stationarity condition (using notations from (17)) is

d∑

k=1

π(k) log |ψ(k)| < 0,

which is fulfilled with the condition |ψ(k)| < 1, k ∈ E. However, the strict
stationarity condition in the general case requires a strictly negative top Lya-
punov exponent of a sequence of designated matrices, which is difficult to
verify in practice except by simulation.

For the second order stationarity condition, assume that d = 2 and the
autoregression in (17) were of p order. Let τ(k) = (ψ(k), · · · , (ψ(k))p−1), and
the p× p matrix

D(k) =
(

τ(k) (ψ(k))p

Ip−1 0

)
,
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where Ip−1 is the identity matrix of size p − 1. Define then the 2p2 × 2p2

matrix

p̃ =
(

α11(D(1)⊗D(1)) α21(D(1)⊗D(1))
α12(D(2)⊗D(2)) α22(D(2)⊗D(2))

)
,

where ⊗ denotes the Kronecker product, and α’s are the transition probabili-
ties of the Markov chain. The condition for second order stationarity is that
the spectral radius (or maximum eigenvalue) ρ(·) of p̃ is less than 1, i.e.

ρ(p̃) < 1. (19)

When p = 1, (19) reduces to the stationarity condition for a first order MS-AR
model. The condition consists of




α11α22ψ
2(1)ψ2(2)− α12α21ψ

2(1)ψ2(2) < 1,

α11α22ψ
2(1)ψ2(2)− (α11ψ

2(1) + α22ψ
2(2))− α12α21ψ

2(1)ψ2(2) > −1,

α12α21ψ
2(1)ψ2(2)− α11α22ψ

2(1)ψ2(2)− (α11ψ
2(1) + α22ψ

2(2)) < 1.

It turns out that the assumption |ψ(k)| < 1, k = 1, 2, suffices for the above
three inequalities.

For p ≥ 2, the size of matrix p̃ is at least eight and its eigenvalues usually
have to be calculated numerically. Recall that an upper bound of the eigen-
values of a matrix is the maximum value of the sums of absolute values in
each row and column, and the coefficients in (17) decrease exponentially along
the autoregression order. Our numerical experiments show that a process of
(17) with |ψ(k)| < 1/2, k = 1, 2, will not become explosive no matter what
(positive) values the transition probabilities take. It may be worth noting that
if Xt has only one regime in (17), the stationarity condition can be shown to
be |ψ| < 1/2.

Simulation studies using (17) are conducted. In this experiment, sequences
that have size 100, 250, 500, and 1000, respectively, are generated from (17).
150 replications for each sample size are generated. Every observation is de-
pending on all previous observations in the same sequence through (17). The
true values are used as the start values in the maximization of the likelihood
(3), which is necessary for the maximization for such a complicated likelihood
with multiple parameters. In real applications, we may maximize the like-
lihood several times using randomly chosen parameters (with |ψ(k)| < 1/2
and 0 < αkl < 1, k, l = 1, 2), and select the parameters that maximize the
likelihood to conduct the final estimation.

The true values, and the mean and standard deviation of the MLEs are
summarized in Table 2. The regime 1 (i.e. Xt = 1) can be used to in-
dicate a more volatile state in practice, with rapid change between each
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Table 2: The true value, mean and standard deviation of the MLEs of param-
eters for model (17), obtained from 150 replications and sequences of size 100,
250, 500, and 1000, respectively.

ψ(1) ψ(2) σ(1) σ(2) α12 α21

True value -0.4 0.3 1 0.5 0.7 0.2
mean: n = 100 -0.356 0.299 0.865 0.467 0.715 0.322

n = 250 -0.366 0.305 0.946 0.483 0.690 0.270
n = 500 -0.394 0.300 0.979 0.491 0.675 0.214

n = 1000 -0.394 0.299 0.988 0.497 0.699 0.213
SD: n = 100 0.306 0.088 0.264 0.106 0.277 0.247

n = 250 0.224 0.068 0.166 0.056 0.227 0.181
n = 500 0.172 0.043 0.109 0.038 0.160 0.099

n = 1000 0.107 0.026 0.064 0.024 0.099 0.055

time period, stronger persistence, and shorter average duration as implied
by 1/(1 − α11) = 10/7 units of time (see, e.g. Kim and Nelson, 1999); while
another one indicates a more normal state. As can be seen from Table 2,
the biases of the estimates usually decrease, and the SDs always decrease as
the sample size increases, which confirms the consistency of the MLE for the
infinite order MS-AR model (17). The simulation study gives also valuable
information on the number of observations needed in order to obtain a reason-
able estimate. It can be argued that less than 250 observations, corresponding
to the daily data of a (business) year, are not enough, two years’ data produce
estimates that have only marginal biases (at most 7% of the true value in our
experiment). The SDs of the estimates are further decreased if four years’ data
are available. It should be mentioned that the SDs are related to the transition
probabilities in the finite sample experiments. The SDs for estimates under
regime 1 in our experiments are all larger than the correspondences under
regime 2. This can be explained to some extent by the fact that P (Xt = 1)
is much less than P (Xt = 2), hence less observations are available in regime 1
than in regime 2.

In addition, the quantile-quantile (QQ) plot of the MLEs is reported in
Figure 1. It suggests that the MLEs for this model should be asymptotically
normal, by observing that the QQ points usually fall into the zero-one line,
the line through the 25% and 75% sample quantiles and the corresponding
normal quantiles. It is confirmed by the Kolmogorov-Smirnov normality test.
The null hypothesis that the estimate is normal cannot be rejected at at least
95% level. Experiments using other parameters (with |ψ| < 1/2), or including
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Figure 1: The QQ plot for the MLEs of an infinite order RS-AR model (17),
with zero-one line.

intercepts in (17), have been carried out. The results (not reported) also
support the consistency and conjecture of asymptotic normality of the MLEs.

5 Conclusions

In this paper, a GARMS model that has the form (1) is considered. The order
of autoregression in this model can be infinite. Not only that the popular
HMMs are special cases of (1), our model also generalizes the ARMS models
studied by Francq and Roussignol (1998), Krishnamerthy and Rydén (1998),
and Douc et al. (2004) among others. The MLE of model (1) is studied
and proven to be consistent. Our methods are benefitted from Francq and
Roussignol (1998). The assumptions are rather common, with the origin to
Wald (1949) and followed by Leroux (1992), Francq and Roussignol (1998),
Krishnamerthy and Rydén (1998), and Douc et al. (2004). It is perhaps
attractive to consider an infinite-dimensional parameter space. However, in an
infinite-dimensional space, it is difficult even to define a distance that reserves
the compactness of the parameter space and is simultaneously feasible for the
proof of consistency. The results for infinite-dimensional parameters are still
unknown.

The finite order and infinite order MS-AR models are taken as examples.
The conditions under which the general assumptions (A1-A5) are possibly
satisfied are discussed for an infinite order MS-AR model. The simulation
studies demonstrate the assumptions and the consistency of the MLEs. An
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apparently ‘counter-example’ for the consistency of finite order MS-AR model
from Francq and Zaköıan (2001) is shown to be a result of inappropriate ex-
perimental setups. The numerical experiments using the infinite order MS-AR
model also suggest that the MLEs for this model are asymptotically normal.

Douc et al. (2004) proved the asymptotic normality of the MLE when the
s is finite in (1). It is the first asymptotic normality result, to the authors’
knowledge, for a Markov switching model including an autoregression. Other
results, including those of Bickel et al. (1998) and Jensen and Petersen (1999)
were all dedicated to the HMMs. However, Douc et al. (2004) made use of
the Markov property of process {(Xt, Ȳs

t )} (s finite), which does not hold any
more for the GARMS model (1) with s = −∞. An approach that will be
feasible in this case still needs to be investigated.
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