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Abstract

In this article we consider a pg-dimensional random vector z distributed
normally with mean vector € and the covariance matrix A, assumed to
be positive definite. On the basis of N independent observations on the
random vector z, we wish to estimate parameters and test the hypothesis
H: A=V ®X%, where ¥ = (¢45) : ¢ x g and ¥ = (0y5) : p x p, and A =
(¢i;X), the Kronecker product of ¥ and . That is instead of %pq(pq—i—l)
parameters, it has only %p(p +1)+ %q(q + 1) — 1 parameters. When
this model holds, we test the hypothesis that ¥ is an identity matrix,
a diagonal matrix or of intraclass correlation structure. The maximum
likelihood estimators (MLE) are obtained under the hypothesis as well
as under the alternatives. Using these estimators the likelihood ratio
tests (LRT) are obtained. Moreover, it is shown that the estimators are
unique.
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1 Introduction

When analyzing multivariate data it is often assumed that the m-dimensional
random vector x is normally distributed with mean vector # and covariance
matrix A. In many data analysis, it is often required to assume that A has
the intraclass correlation structure, that is,

A= 02[(1 - p)Im + plmllm]a

where —ﬁ <p<1,0%>0, I, is the m x m identity matrix, and 1,, is an
m-vector of ones, 1,, = (1,...,1). In other cases it is assumed that A has a
block compound symmetry structure which, when m = pq, can be written as

B B --- A
where A : p X p is a positive definite (written later A > 0), and B = B’ such
that A > 0.

The estimation and testing problems that arise in the intraclass correlation
model and compound symmetry models have been considered extensively in
the literature, see for example, Wilks (1946), Votaw (1948), Srivastava (1965),
Olkin (1973), and Arnold (1973).

However, not much work has been done for a positive definite block co-
variance matrix A, namely when A = ¥ ® ¥, where ¥ ® ¥ is the Kronecker
product of a ¢ x ¢ matrix ¥ = (¢;;) with a p x p matrix ¥ = (o;;) given by

A = (¢ii%) : pg x pg, m = pq.

When A is unstructured the model belongs to the exponential family whereas
when A = ¥ ® X it belongs to the curved exponential family. Thus we may
expect that estimation and testing are more complicated under the ” Kronecker
structure” than in the unstructured case.

As an example of a block covariance matrix, consider a p-dimensional
random vector x representing an observation vector at p time-points on a
characteristic of an individual or a subject. If we take observations on ¢
characteristics at p time-points, then these observations can be represented
as ZL(1ys- - L(q) where g(i)’s are p-vectors. Since the observations have been
taken on the ¢ characteristics of the same individual, z(;)’s may not be inde-
pendently distributed. If the mean vector of Ty s p (i)’ then we need to define
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the parameter

cov(z iy, z5)) = Bl(zay = pp )2y — 1))

J

1,7 =1,...,q, called the covariance between the p-vectors Z(;) and Z(j)-
When we choose

and assume normality, then the distribution of the pg random vectors

(@ays s Z(g))" ™~ Npg(p, ¥ @ %), (1.2)
where
= ()" (1.3)

It may be noted that we have used the standard notation for defining the
vectorization of a matrix, namely,

vee(z (), -+ Zig) = (@) - -5 Zg)) -

As noted in the literature, see e.g. Galecki (1994) and Naik and Rao (2001),
since (c¥) ® (¢~1¥) = ¥ ® %, all the parameters of ¥ and X are not defined
uniquely. Thus, without any loss of generality we assume that

wqq =1 (1.4)

The MLE of Wand ¥ are not available in the literature. The condition (1.4) or
equivalently if we assume that for ¥ = (0y5) : p X p, opp = 1 instead of Py = 1,
makes it technically more difficult to obtain the MLE of ¥ and X..

To distinguish between different cases we shall write ¥* when 14, = 1 and
write ¥, when 1;; = 1, 4 = 1,...,¢. Similarly, we shall write X* when the
restriction o,, = 1 is imposed, and ¥ remains unrestricted. Naik and Rao
(2001) have also considered the problem but did not obtain the MLE of ¥ and
v,

Furthermore, Roy and Khattree (2005) gave many references where U®@3 is
considered, in particular when ¥ has a compound symmetry structure. In time
series analysis (e.g. see Shitan and Brockwell, 1995) one has also considered the
”Kronecker structure” but unlike this paper one usually has only 1 observation
matrix and hence has to impose various structures on ¥ ® .

In many cases, it is very likely that

vu=1,1i=1,...,q, (1.5)



instead of only ¢4, = 1. That is, Z(1) -+ L(g)s have the same covariance
matrix 3. When this assumption is made we shall write the covariance matrix

of the pg-vector @/(1)’ e ,il(q))/ as

\I/,;@E, \I/p: (1/)1'3'), with wii:L i:1,...,q. (16)

For estimation and testing we require N iid (independent and identically
distributed) observations on the pg-vector (g’( .,g’(q))’ . These N observa-
tion vectors will be denoted by

1)

(gl(l)]7 . a@l(q)‘j),, ]: 1, ,N (17)
Let
Xj = (£(1)j7---,£(q)j):p><q,jzl,...,N,
M = (Hl,...,ﬁq):qu
and

X = (X1,...,XnN) :pxqN. (1.10)
It has been shown by Srivastava and Khatri (1979, pp.170-171) that

vec(X;) = (Q/(l)j7 . ,g/(q)j)' ~ Npg(vec(M), T* @ %)

if and only if its pdf is given by
1
(2m) 7298|729 et~ JXTH X — M)W, - M)}, (L)

where etr{A} stands for the exponential of the trace of the matrix A, tr{A} =
SP L ai, A = (a;j). Srivastava and Khatri (1979, pp. 54-55, pp. 170-171)
used the pdf (1.11) to define the distribution of the random matrix X; and
used the notation

X] ~ NP#](M?E?\II*) (112)

to write the pdf of X; given in (1.11) which is also the pdf of vec(X;). We
shall follow the same notation.

From the pdf (1.11) it is clear that the role of ¥ and ¥ can be interchanged
by considering the vectorization of X J’ For example, from (1.11), the pdf of
vec(X}) will be given by

1
(2m) 3PS "2 Petr (S0 (XG - MYSTHX, - M)}, (L3)
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and
X; ~ qu(M’,\Il*,E). (1.14)

Thus, if we wish to test a hypothesis about ¥ = (0;;), we may assume that
opp = 1 for the general case and 0;; = 1,7 =1,...,p, for the second case with
no restrictions on the elements of ¥, or, any other representation that may be
helpful in estimation and testing problems.

The organization of this paper is as follows. In Section 2, we present a
method of estimating M or p, ¥ and ¥,, that is ¥ with diagonal elements
equal to one. The maximum likelihood method is rather messy and so we
provide a heuristic method in giving consistent estimators of ¥, and . These
estimators, however, may also be useful in taking as the initial values in solving
the maximum likelihood equations iteratively for the general case when only
1gq=1, which is done in Section 3. In Section 4, we test the hypothesis that
the general pg x pg covariance matrix A = ¥ ® ¥ against the alternative that
the covariance matrix is not of Kronecker product structure, when N > pq.
The three other testing problems concerning the ¥ matrix are considered in
Sections 5 and 6. The testing problems concerning the means which may
follow the growth curve models of Pothoff and Roy (1964) as discussed in the
works of Srivastava and Khatri (1979) and Kollo and von Rosen (2005) will
be considered in a subsequent communication. In Section 7 a small simulation
study is presented and finally in Section 8 fundamental results concerning the
uniqueness of the MLEs from sections 3 and 5 are verified.

2 Estimation of M, ¥ and ¥ ,: heuristic method

Let Xi,..., Xy beiid N, (M,%,¥*), N > max(p,q). Then the pdf of X =
(X1,...,Xn) is given by

(2) " 2P4|3| "2 Na || Npetr{ i X; - M) HX; — M)} (2.1)
7j=1
Let
1 X
X:N;Xj. (2.2)



Then

N N
S - )TN - M) =Y (X - X)eTH X - XY
j=1 J=1
+ N(X — M)¥* (X — M), (2.3)

Hence, the maximum likelihood estimator of M is given by
M=X. (2.4)

Next consider the case when the diagonal elements of W are all equal to one,
that is, when W is ¥, given in (1.6). In this case, we can estimate 3 by

1 o _
= ;ﬁgj X; - X). (2.5)

It will be shown later that (N/n)S, with n = N — 1, is an unbiased and
consistent estimator of ¥. Writing
X =@y Z(g);
we find that
| XN

q
5= Ng Z@(i)j = Z()) (i), — Zi))"- (2.6)
j=1i=1

Similarly, we can estimate ;x, i # k, by

Yip = ZtT{S —Z) (s — Ty} (2.7)

It will be shown that it is a consistent estimator of ;.

To show the unbiasedness of the estimator (N/n)% and the consistency of
Y and &ik, we proceed as follows. Let IV be an N x N orthogonal matrix with
first row as 1’/ VN and the ith row given by

1 1 1—1 .
92_1:< = ,— ,O,...,O),z:2,...,N.(2.8)

V(i —1)i Vi-=1)i /(i —1)i
That is, if

G=1(9,s---9,): Nxn,n=N-—1, (2.9)



= (\1/%G> (2.10)

is an orthogonal matrix of Helmert’s type,

1
IT' = Iy, IyG =0, G'G = Iy, and GG' = Iy — 1y1y.

Since I' is an orthogonal matrix, it follows that I' ® I, is also an orthogonal
matrix. Hence, letting

Y=W,2)=(X1,...,Xn)T ® 1), (2.11)

we find that the transformation from X to Yi, Z is one-to-one with the Ja-
cobian of the transformation equal to one, where Y7 : p X ¢, and Z : p X gn,
n = N — 1. Furthermore,

(X1, XN)(INn@ U (X, Xn) =YV @ 1) (In® U, ) (T @ )Y
= Y(In@U, )WY =V1oU 'Y+ Z(L,e¥ )7 (2.12)

It follows from (2.10) that

1 _
Vi = (Xp,..., Xn0)(EFE ®1,) = VNX,

VN
Z = (Zi,...,%Z) = X(G® ). (2.13)
Hence,
N N
X - X)X - X) =) X0, X - NXT, X
j=1 j=1
=X(In@ U, HX -V, 'Y =Y(Iyo U, )Y - Vv ty/
_ —1 /
=Z(I,ov,")Z, (2.14)
and

NX -M)¥, N (X -M)=11-0)¥,'(Y1-0), 06=VNM. (2.15)

Y1~ Npye(©,3,7,)
which is independently distributed of Z1,..., Z,, where

iid
Zj ~ Npq(0,5,%,).



Let
Zj= (é(l)j,...,é(q)j) pxq, j=1,...,n, n=N—1.
Then
Elzy> 2(3y;)) = You®, and E(Z;Z}) = (tr¥,)%.
Also, from (2.5)

N
1 - 1
S = —E X; X! - NXX'|= —[XX'-Vn1Y]
Nq[j_l J<%g ] Nq[ 1 1]
1 ! !/

1

1 n
727 = —SN"Z;Z', n=N-1. (2.16

Hence,

N 1
7E(S) = (*tT“pr)E == E, if d}pii = 1, 1= 1, .5 q.
n q

Since (Z;Z}/q) are iid with mean X, when ,; = 1, i = 1,...,¢, S is a
consistent estimator of ¥. Thus, we get the following theorem.

Theorem 2.1. Let Xi,..., Xy be iid Npqo(M,3,V,), where ¥, = (i5),
Ypii=1,1=1,...,q. Then,

N, 1<
—S=—) (X;-X)(X; - X),n=N -1,
n an( J )(X; ), n

1s an unbiased estimator of X as well as consistent, if N — oo.

Corollary 2.1. When ¥ = I, S is the maximum likelithood estimator of X.
Similarly, in terms of Z(i)j

- 1 g .
Ypik = 7Nptr{5 D DETE
Jj=1

Since, when v,; = 1, ¢ = 1,...,¢q, S — X in probability and
E_%g(k)jg’(i)jil_%, j =1,...,N, are independently distributed with means
Ypirdp, it follows that zﬁm-k are consistent estimators of 1;; when all the diag-
onal elements of ¥, are all one. Thus, we have the following theorem.

Theorem 2.2. Let Xi,..., Xy be iid Npo(M,%,V,), where ¥, has all the
diagonal elements equal to one. Then, 1, defined in (2.7) is a consistent
estimator of Yk, i # k, (i,k) =1,...,q.



3 Maximum Likelihood Estimators of M, > and U*
(Ygq = 1)

We consider the same model as in Section 2 except that now the ¢ x ¢ matrix
U* is of the general form. That is, for ¥* = (¢;), we only assume that
Yqq = 1. The MLE of M remains the same as in (2.4) and therefore we start
with the likelihood

N
1 1 1
(2m) 2PN g 2N | TPV etr {1 ) TR TIXG 0 X (3.1)
=1
where
Xie=X;—X,i=1,...,N. (3.2)

Due to the constraint 14, = 1, it needs special attention. Let

o — < ‘If/n Y1 >, Ty (g—1) % (g—1). (3.3)
glq qq

From Srivastava and Khatri (1979, Corollary 1.4.2 (i), p. 8), it follows since
gq = 1, that

c1_ (00 I\ - .
Y 1:<o 1>+<—q¢} )Wl}q(l“‘ ).

1q

where
\Ijloq = \Pll — glqyllq : (q — 1) X (q — 1) (34)
Moreover,
| = [Wrag| = W11 — 0, 0 |
Thus (3.1) equals
1 1 1
(2m) 2PV || T2 Wy 4| 72PN

Ig— -
etr{—3 SN S (Xigg Xy + Xic ( = > v (L~ ) X0h



where X;. = (Xje1 : Xieq): (px (¢—1) : px1). By differentiation with respect
to the upper triangle of ¥~ and \Ill_.lq as well as differentiation with respect
to qu we obtain after some manipulations

. I 1\ & -~
Ng¥ = Z chqXZ/cq + Xie ( izl ) l:[ll_olq ( L]*l _91(1 ) XZ(C)’ (35)

ilq
N
NpWiag=>_( Iimr: =, ) XL57'X; foa (3.6)
oq q 71q ’c _wl
i=1 Z1q

and

N
:Z zclE 1Xw(1 Z icq 1XZC(] . (37)
i=1

We first show that the scalar quantity in (3.7),
Z 1q2 Xieg = Np. (3.8)

To prove (3.8), we post-multiply (3.5) by $-1 and take the trace. This gives
qu = Z 'ch 1X7,Cq
i I -1 Iq_l
+ tr{z Uy (o =0y, ) (XETX( 5 ))

= ZX{Cq Xeq + Np tr{l, 1},

using (3.6). This proves (3.8). Thus, we get

N
1 ~
- > XS XKieg. (3.9)
=1

Next, we simplify (3.6). Using (3.8) we get after some calculations

- ~ o~/
Nquhq Z zcl lecl Npﬁlqﬁlq- (310)



Thus,

N
NpUi = X} S Xiar.
i=1
Hence, using (3.8), we get
- Uy P
v = ( v Tl ) (3.11)
— 1 ZZ 1 zclE lXZd Zz 1 zclE IXZCQ
Zz lelcq 1X101 Zz le/cq IXWQ
1 e a
- N Z X! 57X (3.12)
1=
With ¥ defined in (3.11), we can rewrite (3.5) as
NQZX“ (D ¢ (3.13)

Thus, we solve (3.12) and (3.13) directly subject to the condition (3.8). This
we shall call the ”flip-flop” algorithm. The starting value of S can be based
on the estimators obtained in Section 2 and satisfying (3.8).

The next theorem which is proven in Section 8 provides us with an im-
portant result concerning the flip-flop algorithm and the MLEs. For related
works we refer to Lu and Zimmerman (2005) and Dutilleul (1999), where also
other references are given.

Theorem 3.1. Let S and ¥ satisfy the flip-flop algorithm given in (3.12) and
(8.13), satisfying the condition (3.8). If N >max(p,q), then there is only one
solution and the MLEs based on the likelihood given in (3.1) are unique.

The theorem is interesting because in general uniqueness of MLEs in curved
exponential families may not hold. For example, see Drton (2006) where the

SUR-model is discussed.

4 Testing that the Kronecker model holds

Let X1,...,Xx be iid normally distributed p x ¢ matrices. If the Kronecker
model holds, then X; has the pdf given in (1.11). However, in general the
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pg-random vector
vec(X;) ~ Npg(vecM, A), (4.1)

where A is a pgxpq unstructured covariance matrix. It is assumed that A >0.
To estimate A, it is required that N > pg. We shall therefore assume in this
section that N >pq. Thus, we wish to test the hypothesis

H:A=U"®3%
against the alternative A # H. The maximum likelihood estimators of ¥* and
3} have been obtained in Section 3. The MLE of A, under the alternative, is
given by

A= vecch (veeXcj)', N > pg. (4.2)

||Mz

1
N
Thus, the likelihood ratio test (LRT) for H against A is given by

e
TRERL A

From asymptotic theory,

2
—2logAL ~ X(3pa(pa+1)—p(p+1)—Sa(g+1)+1)"

This result may be compared with the result obtained in Roy and Khattree
(2005). Note that if we do not assume 14, = 1 then we are in a testing situation
where not all parameters can be identified under the null distribution, and thus
standard asymptotic results for the LRT are not at disposal (e.g. see Ritz and
Skovgaard, 2005).

5 Testing that U is of intraclass correlation struc-
ture

In order to test that W is of the intraclass correlation structure, we either
assume that

U= (1-p)l,+pl,l,, and ¥ = (o) >0, (5.1)
or assume that

U =0%[(1-p)ly+pl,ly], and opp = 1. (5.2)

11



We consider the model (5.2) with IV iid observation matrices X;, j =1,..., N,
N > max(p, q), and since op, = 1 we denote 3 by ¥*. The approach of Section
3 will be adopted with suitable modifications. In particular the uniqueness of
the estimators has to be shown in a somewhat different way. The pdf of
X = (Xy,...,Xx) is given by (2.1). After maximazing with respect to M,
the likelihood function is given by

(2) 2PN | x| "2 N ||~ 2 NPt { — 2* 12){ UiX )

Making the transformation

U; = XicH,

where H is a ¢ x ¢ orthogonal matrix of the Helmert’s type used earlier in
Section 2. Then

-1
H'U'H=(HVH) ' = ( o0 > =D, 1,
0 7',
where
no= o1+ (g—1)p),
™ = o*(1-p).

Hence, the likelihood is given by

N
pla=t |Elop|_%Nq€tT‘{_% Z STUDIUL, (5.3)
=1

1 —iNp -IN
(2m) "2 NPagy 2 P

where

I,
-1 1 -1 .
ey dpd;) + ( —p(j'/ > El.p ( Ip_l . _glq )

Zlq

and d, is the pth unit base vector of size p. If e, denotes the kth unit base
vector of size ¢ then

tr{S* U, DUy = 1 1tr{2* Wier UL

7yt Ztr{E*_lUiekeﬁﬂUi’} (5.4)
k=2
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as well as
tr{S* U, D7 U} = tr{d,d, U;D; ' U}
Ipfl -1 . 177/
+tr{ Lo St ( Ipo1: =04, )UDS'USY. (5.5)
)

Put U = (U, Us,...,Un) and U; = (Uj; : Uj,)". By using (5.4) and (5.5)
the likelihood in (5.3) leads after some manipulations to the following ML-
equations:

7= —Zt (& 1U6161U}——t {EU(Iy @ ere))U'},  (5.6)
=1
N gq .
T = ZZtr{Z*_lUiekeﬁcU{}
q_l i=1 k=2
1 N q
= — o {WUUN® D epel)U'L, 5.7
Np(q—l){ (In gkk)} (5.7)
N
5, = ZUHD (3 U Dy U, (58)
=1
1 N
~ 1
Siep = Ve (Ip-1: —ot, )UiD; 1U’< P > (5.9)
i=1 01

In the next, in correspondence with (3.8), we are going to show that

N
Nq = Z UpD Uy, = diU; D7 U d,,. (5.10)
=1 =1

Equation (5.9) implies

N
~ ~_ I, S
Nayr =Y (s g, )UD: v (B S
=1 *

13



and taking the trace yields

Ztr{El.p Iy1: =0y, )UD 1U’( p7l )}

_Ulq

N q
= Np —Z tr{dpd;Uﬁl e1e U/} +Np(qg—1) ZZtr{dpd;Uﬁgleke%U{}
i=1 i=1 k=2
N

= Npq— > _d,U;D;'U/d, (5.11)
i=1

which implies (5.10). In (5.11) we used that 7; and 7 respectively can be
written

N
Np7 = Y tr{dpd,Uiere U]}
=1

I o ~
—l—tr{( P~ 11 ) El.lp( Ip1: =0y, )Uiele'lUi'},
91q

N ¢
Np(g—1)7 = ZZ tr{d,d,Userer U}
1=1 k=2
Ip_l S—1 . ~ 17!
+tr{ 5 Zl.p( Ip1: -0y, )UiekekUi}.
—1q

Thus,
| N
Oy = Ng Z UnD;'U;
i=1
which implies that
ZUD Ul = U(IN®D ho'. (5.12)

Thus, similarly to Theorem 3.1 we have the following result which also is
proven in Section 8:

Theorem 5.1. Let $*, 7, and 75 satisfy (5.12), (5.6) and (5.7), with opp =1
supposed to hold. If N > max(p,q), then there is only one solution and the
MLEs based on the likelihood given in (5.3) are unique.

14



Next we obtain the MLE of ¥ with no restriction on the elements of W.
On the lines of Section 3, it follows that for given ¥*, the MLE of VU is given
by

Let

N
i=1 1p pp

Then the MLE of ¥4 ,, Y11, Tip for a given ¥ are given by

a 1 Lyl

Yiep = —|L11 — —2L—],
b Nq[ Nq(p — 1)]

o o Ll

S = Yt Pt
" tor T Ng(p — 1))

~ Llp

T Ng(p— 1)

le 1 .

Thus, the maximum of the likelihood function under the alternative hypothesis
that W is not of the intraclass correlation model is given by

(27) 2PN |8, | "2V [ @]~ 2PN e apaN (5.13)
Similarly, the maximum of the likelihood function under the hypothesis that
V¥ is of intraclass correlation model is given by

(2m) 2PN (S, (H)| 729N (77) 73PN () 2P~ DN = 5N, (5.14)

where il.p(H ) stands for the MLE of X1,, under the null hypthesis. Thus,
the likelihood ratio test for testing the hypothesis that W is of the intraclass
correlation structure is given by
a o LN S N A\ LN Ay (g

Ao = [S1ep S, (H)) 729N [W[2PN (77) 72PN (7) 727 (@- DN, (5.15)
From asymptotic theory, it follows that —2log\s is distributed as chisquare
with %q(q + 1) — 2 degrees of freedom. These results may be compared with
results obtained in Naik and Rao (2001) and Roy and Khattree (2005).
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6 Testing the hypothesis that V*=] and V,=1

In most practical situations, it would be desirable to test the hypothesis
Hy : ¥* =], against the alternative A; # H;

and
Hy : ¥, =1, against the alternative Ay # Hs.

We first consider the hypothesis H1 vs Aj. For this we use the likelihood
ratio procedure. The maximum likelihood estimators S and U of ¥ and ¥ are
given in Section 3. From Corollary 2.1, the maximum likelihood estimator of
> when ¥ = [ is S. Hence, the log of the likelihood rates under the hypothesis
and under the alternative is given by

and

2
—2log A3 ~ X%q(qﬂ)q

asymptotically under the hypothesis H;.

For testing the hypothesis Hs against the alternative As when ¢; = 1, i =
1,...,q, we consider the estimator U, of U, given in Section 2. Under the
hypothesis Ha,

tiw = /b Wi, i £ k

which are independently normally distributed with mean 0 and variance one.
Hence,

Zi<j tzzj - %q(q —1)
q(qg—1)

is asymptotically normally distributed with mean zero and variance one.

T —

7 Simulation study

In this section we present a small simulation study indicating that the proposed
algorithm in Section 3 is working practically when finding the MLEs. It is
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interesting to note that in all simulations the estimators were close to the
true value. We present results when the sample sizes equal either 100 or 250,
which are relatively small numbers when taking into account the number of
parameters. The number of observations equals 250 when either p = 15 or
g = 15. We have also performed a number of simulations (not presented here)
with N = 1000 and the results agree with those presented in this paper.

In Tables 1-6, the results based on 300 replications are presented, for six
different settings of p, ¢, and N in the likelihood (3.1). Estimators are found
according to the proposed algorithm in Section 3. Only the estimators of the
unknown diagonal elements of ¥ and ¥ are presented together with the true
value, the standard deviation (std) as well as the minimum and maximum
values of the replications.

Table 1. p =5, ¢ =5 and N = 100.

parameter true value MLE std min max

o11 6.02 5.90 0.52 4.65 7.59
022 542 536 047 4.14 7.05
033 3.11  3.06 0.27 240 3.83
o4 3.63 3.59 0.31 2.73 4.73
o55 2.05 201 0.18 1.60 2.60
Y11 0.43 0.45 0.04 0.34 0.60
(Y 0.54 0.55 0.05 0.40 0.69
P33 0.28 0.29 0.03 0.21 0.37
thaa 0.46 0.46 0.04 0.34 0.61

Table 2. p=7, ¢ =5 and N = 100.

parameter true value MLE std min max

011 6.99 6.86 0.52 5.54 837
022 741 727 055 575 8.86
033 3.80 375 030 292 491
o 542 534 043 439 6.52
55 6.44 6.33 047 510 8.10
066 549 540 040 4.36 6.71
o7 11.37 11.12 0.87 898 13.91
11 0.11  0.11 0.01 0.09 0.14
a2 0.21 0.22 0.02 0.17 027
33 0.26 0.26 0.02 021 0.32
o 0.37 0.37 0.03 0.30 0.44
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Table 3. p =15, ¢ =5 and N = 250.

parameter true value MLE  std min  max
o11 14.56 14.53 0.66 12.70 16.33
099 10.06 10.20 0.45 8.62 11.36
033 12.83 12.80 0.60 10.98 14.70
044 12.84 12.77  0.60 11.35 14.82
055 10.81 10.77  0.47  9.52 12.40
066 7.35 731 035 6.29 845
o77 13.32 13.32 0.59 11.81 14.87
088 17.45 17.44  0.80 15.59 19.70
099 10.89 10.83  0.49 9.29 11.94
01010 13.17 13.15  0.58 11.71 14.99
01111 25.35 25.28 1.15 2249 29.34
01212 17.37 17.27  0.79 14.95 19.38
01313 18.72 18.62 0.83 16.31 21.12
01414 7.84 7.82 037 6.87 8387
01515 12.09 12.03 0.51 10.58 13.36
P11 0.73 0.73 0.02 0.66 0.79
199 0.14 0.14 0.004 0.13 0.15
Y33 0.87 0.87 0.03 0.80 0.94
(m 0.23 0.23 0.01 0.21 0.25
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Table 4. p =15, ¢ =7 and N = 250.

parameter true value MLE  std min  max
o11 10.95 10.87 0.41 9.45 12.06
092 13.00 12.97 0.57 11.56 14.67
033 13.14 13.08 0.52 11.60 14.64
044 13.90 13.83 0.51 12.53 14.95
055 17.50 1752  0.70 15.56 19.39
066 11.34 11.31  0.45 10.06 12.49
o7 13.83 13.71  0.57 12.28 15.57
088 13.25 13.19 0.54 11.60 14.62
099 13.43 13.38 0.51 11.83 14.66
01010 7.15 714 031 646 7.84
01212 29.49 29.43 1.15 26.35 32.64
01313 17.17 17.07  0.69 15.38 18.68
01414 19.49 19.37  0.75 17.30 21.13
01515 15.35 15.33 0.57 13.71 16.78
P11 0.68 0.68 0.02 0.62 0.73
a2 0.76 0.76 003 0.70 0.82
Y33 0.93 094 0.03 0.86 1.01
(m 0.56 0.56 0.02 0.51 0.61
P55 0.55 0.55 0.02 0.50 0.60
V66 0.92 093 003 086 1.01
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Table 5. p =5, ¢ =7 and N = 100.

parameter true value MLE  std min  max
o1 6.02 5.86 048 4.40 7.18
022 5.42 533 044 435  6.79
033 3.11 3.03 026 216 3.97
o4 3.64 3.56 030 279 445
o5 2.05 1.99  0.17 145 248
11 0.60 0.61 006 048 0.80
oo 0.65 0.66 0.06 0.54 0.89
33 0.49 0.50 0.04 040 0.63
thaa 1.03 1.05 0.10 0.83 1.43
Vs 0.24 024 002 020 0.32
Ve 0.42 043 004 034 0.56
Table 6. p =5, ¢ = 15 and N = 250.
parameter true value MLE  std min  max
o1l 2.45 239 012 207 283
029 1.46 1.43  0.07 125 1.63
033 5.66 550 026 4.81 645
O44 3.01 294 015 256  3.39
o5 2.94 2.87 014 246 3.33
P11 1.06 1.08  0.06 0.92 1.34
oo 0.77 0.72 005 0.59 0.87
33 0.73 0.75 0.05 0.63 0.88
o 0.83 0.84 004 0.72 0.99
Vs5 0.56 0.58 0.04 048 0.68
Ve 0.60 0.62 003 054 0.69
Y77 1.16 1.19  0.07 097 1.42
g8 0.37 0.38 0.02 032 045
thgg 0.52 0.54 0.03 045 0.64
Y1010 0.73 0.75 004 0.64 0.89
Y11 0.71 0.72 0.04 062 0.84
Y1212 0.84 0.86 0.05 0.72 1.02
1313 1.08 1.11  0.06 0.88 1.30
Y1414 0.94 0.96 0.05 082 1.14
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8 Proofs of Theorem 3.1 and Theorem 5.1

Here proofs of the theorems for uniqueness of the MLEs are presented. Firstly
it is shown that the flip-flop algorithm given by (3.12) and (3.13) only has one
solution, i.e. we obtain unique estimators. The relations in (3.12) and (3.13)
may be rewritten as

Ng¥ = i(eé @ NX V71X (e; ® 1), (8.1)
=1
Np¥ = X.(Iex )X, (8.2)
where
Xe=(X{c: Xoeio X))y (PN xq),

and e; is a unit base vector of size IV, i.e. the ith column of I;. These equations
imply that

N
1 _ —
NaZ =3 (6 ® B) Xel 3 XUy © 57 X)X (e 0 1y)
=1

is to be considered which in turn is equivalent to

N
q 1 . _ _
) I= ;(eg ® Ip)XC(N—pX{:(IN @Y HX)TIX (e; © [,)D 71 (8.3)
N 1
= D o(eh © 1) Xl XilIy @ 2 7)X0) " XilIy @ 57 (e @ 1)
i=1
= (ved Iy @ L) (In ® XX (In @ 27N X)X (Iy @ 271))
X (vecly & Ip). (8.4)
Put

Py = X (X! (In® Y H X)X (Iy ®271)

which is a projector (idempotent matrix). Suppose now that there are ¥; and
Y5 both satisfying (8.4). Then, by subtraction we obtain

0= (vedIy @ I,)(In ® (Ps, — Px,))(vecly ® I,). (8.5)
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Our task is to show that the only solution of (8.5) is given by 31 = ¥5. It may
be noted that X1 = c¥9, ¢ # 1 is not a possibility since 144 = 1 and equation
(3.13) has to be satisfied by all the solutions. Let

Qs = Iy — Pr = (Iy © D) XX (In © £)X) 7' X7,

where X7 is defined to be any matrix which under the standard inner product
generates the orthogonal complement to the column space generated by X..
Then,

Ps, — Ps, = Py, (In— Ps,) = Px,Qx,
= Xo(Xi(Iy @ 27 Xe) T X((Iy @ 51 1)
x(In ® S9)X2(XZ (In ® 2)X2) 7' XY
Suppose for a while that (8.5) holds if and only if Py, — Ps,=0, i.e. Py,Qx,=0,
which is equivalent to
X(In @ B7189) X2 = 0. (8.6)

There are two possibilities for (8.6) to hold. Either ¥; = ¢X2 or the column
space, denoted C(e), generated by X¢ is invariant with respect to Iy ® 21_122,
i.e. the space is generated by the eigenvectors of Iy ® ZI122. However, since
the matrix of eigenvectors is of the form Iy @ I" for some I' it shows, since the
column space of X? is a function of the observations, that Iy ® I' does not
generate the space, unless N = 1. Thus, in order for (8.6) to hold 31 = ¢Xs
and we have already noted that in this case ¢ =1, i.e. X1 = Y.

It remains to show that (8.5) is true only if Py, — Py, = Py, Qx, =0, i.e.

0= (U@C/IN & Ip)(IN & Pgl)(IN ® QZQ)(U(ZCIN & Ip). (87)

Since, in (8.6) we have the two projections (Iy ® Px,) and (In ® Qx,) we will
study the effect of them via column spaces. Using Theorem 1.2.16 in Kollo &
von Rosen (2005) gives

C((In® Py, (veely @ 1)) = C(In @ Py, )N{C(Iy ® P,)"+ C(Iy @ 1))}
=C(Iy @ (In @ S7H X )N{C(Ixy ® X2) + C(vecly @ 1,)}, (8.8)

C((In® Qs,) (veely @ 1)) = C(In © Qs,) {C(Iy ® Q%)+ C(Iy ® I,)}
=C(In® Iy ®32)X2)N{C(In ® X.) + C(vecly ® Ip)}. (8.9)

If (8.7) should hold the spaces presented in (8.8) and (8.9), respectively, must
be orthogonal. Thus,

C(Iy @ (In® 27 Xe) N{C(Ixy @ X2) + C(vecly ® I,)}
COInN® (In® %)Xt + C(Iy @ X))t NC(veely @ I,):. (8.10)
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However, the following trivial facts hold:

C(In ® (In @ 27 X,) N{C(Ixy @ X2) + Clvecly @ I,)}
CCUN®(IN® EI_I)XC)

C(Iy ® (In ® 22)X0)*
CCInN® (In ® %) X)L + C(Iy ® X))t N C(vecly @ I,)*.

Hence, if
C(In ® (In @71 X,) C C(In @ (Iy ® 32)X2) 4 (8.11)

does not hold (8.10) as well as (8.8) can not be valid and therefore (8.11)
must always be true which is the same as stating that Px, Qx, = 0. Thus, the
flip-flop algorithm provides us with unique solutions.

Turning to Theorem 5.1 we will show that estimators satisfying

1
Y =—U(Iy®D/HU' 8.12
Ng ( N @D ) ’ ( )
where
q
D, = 1jeie} + Zﬁele’l (8.13)
k=2
with
1 _
n o= N—ptr{E WW(Iy ®ee))U'}, (8.14)
Ty = Ltr{E_lU(IN ® zq: exer)U'} (8.15)
Np(q—1) g

k=2

are unique. The above given equations imply that

5= g(tr{E_lU(IN ® ere))(In ® e1,) UV (Iy @ er€,)(In ® ere}) U’

1 g
ol )(Z tr{S U (Iy © exel)(In @ eel) U}
k=2
q
XY U(Iy @ exel)(In @ exel)U. (8.16)

k=2
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Postmultiplying (8.16) by ¥~! and putting

q
A=U(Iy®eie)), B=)Y Ully®exe})
k=2

we obtain

I=Pr{z1aa)) s + M(tr{zflgg/})*lBB’zfl. (8.17)
q q

Note that AB’ = 0 implies that C(A) N C(B) = {0}. Now suppose that there
exist X1 and Y9, X1 # Xy, for any positive constant ¢ # 1, satisfying (8.17).
The case ¥1 = cXa, ¢ # 1 is of no interest since op, = 1 is supposed to hold.
Thus, it follows that

0= g((tr{EflAA’})_lAA’Efl — (tr{Sy AN T AASY)
PO s BB BB — (r{S5 BB BB'S;Y). (318
q AT 1 r{%; }) 5 ). (8.18)
Since C(AA'S;) = C(A), C(BB'S;) = C(B), i=1,2, and C(A) N C(B)={0},
the two terms in (8.18) may be considered separately, i.e.
(tr{Z]tAA ) TTAAYS T = (r{Z;tAA) T AAs
(tr{Z'BB')'BB'S! = (tr{X;'BB'})'BB'S;L. (8.19)

Because of symmetry it is enough to exploit (8.19) which, since AA’ with
probability 1 is of full rank p, is identical to

_ tr{Z71AA}

= ———=3. 8.20
tr{xytAAy (8.20)

2

This implies that ¥; = ¢Xs which according to the assumptions should not
hold except when ¢ = 1. Hence, there exist only one solution to (8.18).
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