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Abstract
A two-way linear mixed model, consisting of three variance components,
σ2

1, σ2
2 and σ2

e is considered. The variance component estimators are
estimated using a well known non-iterative estimation procedure, Hen-
derson's method 3. For σ2

1 we propose two modi�ed estimators. The
modi�cation is carried out by perturbing the standard estimator, such
that the obtained estimator is expected to perform better in terms of its
mean square error. Moreover, Henderson's method 3 can be applied in
di�erent ways when decomposing sums of squares. Two di�erent decom-
positions are considered. The variances of the estimators corresponding
to the �rst random e�ect are compared to determine which one to choose
and to later modify.

Keywords: Variance components, Henderson's method 3, perturbed estima-
tors, mean square error, QTL-analysis.

1E-mail address to the correspondence author: Razaw.Al-Sarraj@bt.slu.se



1 Introduction
In an analysis of variance context, the most commonly used method for esti-
mating the variance components has been through equating the observed and
expected mean squares, and solving a set of linear equations. As long as the
data are balanced the ANOVA estimators are known to have good statisti-
cal properties, i.e., the obtained estimators are unbiased and have minimum
variance among all unbiased estimators which are quadratic functions of the
observations, see Graybill and Hultquist (1961). However, since real world data
often are always unbalanced, this method is no longer appealing. For instance,
the uniformly minimum variance property is lost. Furthermore, whether data
are balanced or unbalanced, there is nothing in the ANOVA methodology that
would prevent negative estimates of the variance components to occur, (LaM-
otte, 1973).

In a seminal paper Henderson (1953) considered variance component esti-
mation with unbalanced data. He presented three methods of estimation which
later on, came to be known as Henderson's method 1, 2 and 3. The obtained
estimators are unbiased and translation invariant.

However, since all three methods are variations of the general ANOVA
method, they su�er from the weaknesses of it. In particular, the lack of unique-
ness.

In this paper we were motivated by Kelly and Mathew's (1994) work, where
they improved the ANOVA estimators in a one-way variance component model.
The model consists of two variance components, one is the random e�ect of
interest, and the second is the error component. They modi�ed the variance
component estimator corresponding to the random e�ect such that the re-
sulting estimator performed better than the unmodi�ed ANOVA estimator in
terms of the mean square error (MSE) criteria. If more components were to be
included into the model, they were excluded by orthogonal projections. Hence,
the model could always be dealt with as if it had two variance components.

Our aim is to modify the variance component estimators obtained by Hen-
derson's method 3, in a two-way linear mixed model, i.e. a model with three
variance components of which two components corresponding to the two ran-
dom e�ects included in the model, and the third corresponds to the error
component. Here, we want to emphasize that we are primarily interested in
one of the variance components. We intend to modify this component and
calculate its MSE. Thereafter, we compare it with the MSE of the unmodi�ed
one. This modi�ed variance component estimator is expected to perform bet-
ter in terms of the MSE criteria. Another aim of this paper is to discuss how
to apply Henderson's method 3 in practice. With three variance components
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we will have two natural decompositions. How to choose between them is not
clear and will therefore be exploited.

1.1 Preparation
Matrices will be used in this work and we need some terminology and notations
concerning matrices. A matrix A with m rows and n columns is denoted by
A: m × n. The element located at the intersection of the i:th row and the
j:th column of A will be denoted aij . A matrix partitioned by its n columns
is written as A = (a1, a2, · · · , an). Partitioning matrices by rows or other sub-
matrices of proper sizes, are written in the same fashion. The identity matrix
is denoted I. If the dimension of the identity matrix needs to be emphasized,
a lower index will be used, e.g. the n× n identity matrix is written as In.

Some important notion used in the subsequent are summarized in the fol-
lowing:
(i) The transpose of A is the matrix A′ such that if A = (aij) then A′ = (aji).
(ii) A square matrix is symmetric if A′ = A holds.
(iii) The trace of a square matrix A, tr(A), is the sum of the diagonal elements

of A, tr(A) =
∑

aii.
� tr(A)= tr(A′)
� tr(AB)= tr(BA)

� tr(A + B)=tr(A)+tr(B)

(iv) The rank of A, is the number of linearly independent columns of A.
(v) A square matrix A is positive (negative) de�nite, abbreviated p.d., (n.d)

if for all x 6= 0: x′Ax > 0 (< 0).
(vi) An orthogonal matrix A is a square matrix A whose transpose is its

inverse: A′A = AA′ = I.
(vii) A generalized inverse, shortened g-inverse, of A: m × n is any n × m

matrix A− such that AA−A = A.
(viii) A matrix A is idempotent if A = A2 holds.

� If A is an idempotent matrix, then rank(A) = tr(A).
� If A is an idempotent matrix, then the eigenvalues of A consist of

ones and zeros.
� A−A is an idempotent matrix.

(ix) The column space of A, denoted by C(A), is the vector space generated
by the columns of A.
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(x) Let A be a real symmetric matrix. Then there exists an orthogonal
matrix Γ such that Γ′AΓ = Λ or A = ΓΛΓ′, where Λ is a diagonal
matrix.

We de�ne the mean squared error MSE of an estimator θ̂, denoted by MSE(θ̂),
as

MSE(θ̂) = D[θ̂] + [Bias(θ̂)]2, (1)
where, the variance is denoted by D[·]. The bias of an estimator θ̂, of a parame-
ter θ is the di�erence between the expected value of θ̂ and θ, i.e., Bias(θ̂)=E(θ̂)-
θ.

1.2 Quadratic forms
Estimation of variance components for balanced and unbalanced data are based
on quadratic forms Y ′AY where A is a symmetric matrix, and

Y ∼ N(µ, V ).

In particular the mean and the variance of Y ′AY are needed.

(i) The mean of Y ′AY is equal to

E(Y ′AY ) = tr(AV ) + 2µ′Aµ, (2)

which is true even if Y is not normally distributed.

(ii) The variance of Y ′AY is

D[Y ′AY ] = 2tr(AV AV ) + 4(µ′AV Aµ). (3)

(iii) If AV is idempotent, the distribution of Y ′AY is given by

Y ′AY ∼ χ2(rA,
1
2
µ′Aµ),

where χ2(rA, 1
2µ′Aµ) is non-central chi-square distribution, with degrees

of freedom equal to rA, i.e., the rank of A, and the non-centrality pa-
rameter 1

2µ′Aµ.

3



1.3 Important criteria for deriving estimators
Consider the following mixed linear model

Y = Xβ + Zu + e, (4)
where Y is the N × 1 vector of observations, X is a known N ×m matrix, β is
an m× 1 vector of unknown �xed e�ect parameters, and e is an N × 1 vector
of random error with mean 0 and dispersion matrix σ2

eIN . The term Zu given
in model (5) is a random term that can be partitioned conformably as

Zu =
[

Z1 Z2 . . . Zr

]



u1

u2
...

ur


 =

r∑

i=1

Ziui.

Thus, model (4) can be rewritten as

Y = Xβ +
r∑

i=1

Ziui + e, (5)

where Zi is N × ni incidence matrix of known elements, ui is ni × 1 vector
of random e�ects, with zero mean value and dispersion matrix σ2

i Ini , i =
1, · · · , r. Further it is assumed that the ui and e are uncorrelated random
variables. Then from (5), E(Y ) = Xβ and the dispersion matrix V = D[Y ] =
Σr

i=1ZiZ
′
iσ

2
i + σ2

eIN . The parameters σ2
i and σ2

e are unknown. Since Zu and e
are random e�ects, they can be combined into one random term. Thus (5) can
be rewritten as Y = Xβ+Σr

i=0Ziui and the dispersion matrix V= Σr
i=0ZiZ

′
iσ

2
i ,

where u0 = e, σ2
0 = σ2

e and Z0 = IN .
To generalize the idea of estimating a single variance component, we con-

sider estimating a linear function of the variance components, p0σ
2
0 + p1σ

2
2 +

· · ·+ prσ
2
r , where pi are known, by a quadratic function Y ′AY of the random

variable Y in (5). The matrix A should be chosen according to some suitable
criteria.

(i) Unbiasedness: If Y ′AY is unbiased for
∑r

i=0 piσ
2
i for all σ2

i , then under
the restriction X ′AX = 0,

E(Y ′AY ) = tr(AV ) =
r∑

i=0

tr(AZiZ
′
i)σ

2
i =

r∑

i=0

piσ
2
i . (6)

i.e., an unbiased estimator is obtained if pi = tr(AZiZ
′
i).
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(ii) Translation Invariance: Y ′AY is translation invariant if it's value is not
a�ected by any change in the �xed e�ect parameter for the model. If
instead of β we consider γ = β−β0 as the unknown parameter, where β0

is �xed. Then Y ′AY is translation invariant if Y ′AY = (Y −Xγ)′A(Y −
Xγ) for all γ. Thus AX = 0. Since AX = 0 always implies X ′AX = 0,
we also have the unbiasedness condition satis�ed. However, the reverse
is not true i.e., unbiasedness does not imply invariance except when A is
n.n.d..

(iii) Minimum Variance: The variance of Y ′AY under a normality assumption
equals

D[Y ′AY ] = 2tr[AV AV ] + 4β′X ′AV AXβ. (7)
Under unbiasedness i.e., AX = 0, the variance reduces to

D[Y ′AY ] = 2tr[AV AV ].

The mean squared error, de�ned in (1), of Y ′AY equals

MSE[Y ′AY ] = D[Y ′AY ] + [Bias(Y ′AY )]2. (8)

Using the condition for translation invariance AX = 0 and unbiasedness
tr[AZiZ

′
i] = pi, equation (8) reduces to

MSE[Y ′AY ] = D[Y ′AY ] = 2tr[AV AV ].

Both (7) and (8), under unbiasedness and invariance reduce to 2tr(AV AV ).

1.4 ANOVA- based methods of estimation
This method is derived by equating the sums of squares in an analysis of vari-
ance table to their expected values. Let σ2 be the vector of variance compo-
nents to be estimated in some model, and let s be a vector of sums of squares.
Then taking the expected value

E(s) = Cσ2, (9)

where C is a non-singular matrix, the ANOVA estimator of σ̂2 is based on (9)
and is the solution to s = Cσ̂2, which equal

σ̂2 = C−1s. (10)
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The expression in (9) can be extended to include not only sums of squares
but also any set of quadratic forms. Let q = (q1, q2, · · · , qm)′ be the m × 1
vector of quadratic forms such that

E(q) = Aσ2, (11)

where σ2 = (σ2
1, σ

2
2, . . . , σ

2
k)
′ is the vector of k × 1 variance components and

A being an m × k matrix of known coe�cients. Then, if m = k and A is
non-singular, (11) will give σ̂2 = A−1q as an unbiased estimator of σ2, as in
(10). In cases when there are more quadratic forms than there are variance
components to estimate, the following formula gives an unbiased estimator:
σ̂2 = (A′A)−1A′q, (see Searle et al. 1992).

2 Henderson's three methods
Henderson (1953) presented in his paper three methods of estimation of vari-
ance components, currently known as Henderson's method 1, 2 and 3. This
paper is considered to be the landmark work of dealing with the problem of
estimation of variance components for unbalanced data. For balanced data,
variances are usually estimated using the minimum variance estimators based
on the sums of squares, appearing in the analysis of variance table. For unbal-
anced data the situation is di�erent; it is not always clear which mean squares
should be used (see Searle 1971). In our work, we will be concentrating on
Henderson's method 3, but we shall brie�y review the �rst two methods as
well. These methods are sometimes described as being three di�erent ways
of using the general ANOVA-method (Searle 1987). They di�er only in the
di�erent quadratics (not always sums of squares), used for a vector of any lin-
early independent quadratic forms of observations. All three methods involve
calculations of mean squares, taking their expected values, equating them to
the observed ones, and then solving the resulting equations in order to obtain
the variance component estimators. Some of the merits of the methods is that
they are easy to compute, they require no strong distributional assumptions,
and by construction these methods yield unbiased estimators. However, the
estimators can fall outside the parameter space, i.e., they can become negative.
Moreover, the estimators are not unique, because when there are several ran-
dom e�ects, the sums of squares for them can be computed in several ways, i.e,
corrected for several combinations of other e�ects. When data are balanced,
all three methods reduce to the usual ANOVA-method. For a review of all
three methods, see Searle (1968).
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2.1 Method 1
The method basically involves calculating uncorrected sums of squares, anal-
ogous to those used for the analysis of variance for balanced data. In some
cases, they are sums of squares, and in others they are quadratic forms of the
data that can be negative. This method is easy to compute but can be used
only if it is assumed that except for �xed e�ect parameter β in (5), all other
elements in the model are uncorrelated variables with means zero and with
variances σ2

i . Thus, it can be used only for random models and not for mixed
ones, which is one of the shortcomings of the method.

2.2 Method 2
The purpose of the method is to correct some of the de�ciencies of method 1,
and to broaden its use to include more general models such as mixed models
which involve estimation of both �xed and random e�ects. Method 2 involves
estimation of the �xed e�ects by least squares, correcting the data in accor-
dance with these estimates and then using method 1 to estimate the variance
components. The method cannot be used on models which include interactions
between �xed and random e�ects.

2.3 Method 3
This method can be used on mixed models with or without interactions. In-
stead of the sums of squares that method 1 and 2 use, method 3 uses reduc-
tions in sums of squares due to �tting sub-models of the full model, and then
equating the reduced sums of squares to their respective expected values. The
outcome will be a set of linear estimation equations, which have to be solved
in order to obtain the variance component estimators. The drawback with this
method is that sometimes more reduction sum of squares are available than
necessary to estimate the variance component estimators (see Searle 1987). In
other words, occasionally more than one set of estimating equations for the
variance components can be computed for one model. From each set we get
di�erent estimators of the variance components. Which set of estimators to
prefer is not clear, i.e., the variance component estimators are not unique. We
will consider the following two-way mixed model with no interaction,

Y = Xβ + Z1u1 + Z2u2 + e, (full model) (12)
where β is the �xed parameter vector and u1, u2 are random e�ect parameters.
For this model there are three variance components to estimate, i.e., the vari-
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ance of the two random e�ects denoted by σ2
1 and σ2

2 respectively, and the third
is the error variance component denoted by σ2

e . We may obtain several sets
of estimation equations. The sub-models which may give estimation equations
are,

Y = Xβ + e, (13)
Y = Xβ + Z1u1 + e, (14)
Y = Xβ + Z2u2 + e. (15)

Now we present some special notation for reduction sum of squares which was
used by Searle (1971, 1987). Let R(.) denote the reduction sum of squares. The
sum of squares used for estimation corresponding to the sub-models (13), (14)
and (15) can according to this notation be expressed as, R(β), R(β, u1) and
R(β, u2), respectively. Another notation which will be needed before we write
the possible set of equations is R(./.) which is the reduction sum of squares
due to �tting the full model (12) minus that of the sub-model. For (12) two
sets of estimation equations may be considered





R(u1/β)
R(u2/β, u1)
SSE

or





R(u2/β)
R(u1/u2, β)
SSE

where SSE denotes the residual sum of squares. For the �rst set of estima-
tion equations we de�ne the following partitioned matrices: [X] , [X,Z1] and
[X,Z1, Z2]. Each reduction R(./.) can be expressed in the form Y ′AY for some
symmetric matrix A. De�ne the projection matrix Pw=w(w′w)−w′. Thus Pw

is an idempotent matrix, for more properties see Schott (1997). Assuming
normality all the reduction sum of squares follow a non-central χ2 distribution
and all these reduction sum of squares are independent of each other and of
SSE, see Searle (1987). We shall be using the �rst set of estimation equation
in the �rst part of the work. In the second part, i.e., in section 4, di�erent
reductions in sums of squares will be compared. For the �rst set of equations
we need to de�ne the following projection matrices,

Px = X(X ′X)−X ′, (16)

Px1 = (X,Z1)((X,Z1)′(X, Z1))−(X,Z1)′, (17)
Px12 = (X, Z1, Z2)((X, Z1, Z2)′(X,Z1, Z2))−(X,Z1, Z2)′. (18)

The reduction sums of squares R(./.) can now be obtained as

R(u1/β) = R(u1, β)− R(β) = Y ′(Px1 − Px)Y,
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R(u2/β, u1) = R(β, u1, u2)− R(β, u1) = Y ′(Px12 − Px1)Y,

and
SSE = Y ′(I − Px12)Y.

To apply the procedure, the expected values of the reduction sums of
squares are computed. Thereafter the expected values are to be equated to
their observed values and by solving the obtained equations the variance com-
ponents are obtained. The expression for the expected value given in (2), can
be used since the dispersion matrix, denoted by V is V =σ2

1V1+σ2
2V2+σ2

eI,
where V1=Z1Z

′
1 and V2=Z2Z

′
2. The following is obtained

E[R(u1/β)] = tr(Px1 − Px)[σ2
1V1 + σ2

2V2 + σ2
eI],

ER(u2/β, u1) = tr(Px12 − Px1)[σ
2
1V1 + σ2

2V2 + σ2
eI],

and
E[SSE] = tr(I − Px12)[σ

2
1V1 + σ2

2V2 + σ2
eI].

The set of calculated reduction sum of squares may be arranged in a vector.
Thereafter by equating these expected values to the observed ones we get




Y ′(Px1 − Px)Y
Y ′(Px12 − Px1)Y
Y ′(I − Px12)Y


 = J




σ2
1

σ2
2

σ2
e


 ,

where

J =




tr(Px1 − Px)V1 tr(Px1 − Px)V2 tr(Px1 − Px)I
tr(Px12 − Px1)V1 tr(Px12 − Px1)V2 tr(Px12 − Px1)I
tr(I − Px12)V1 tr(I − Px12)V2 tr(I − Px12)I


 .

Thus, the estimators of the variance components are



σ̂2
1

σ̂2
2

σ̂2
e


 = J−1




Y ′(Px1 − Px)Y
Y ′(Px12 − Px1)Y
Y ′(I − Px12)Y


 .

However, since Px1V1 = V1, Px12V2 = V2 and Px12V1 = V1, the J matrix
reduces to

J =




tr(Px1 − Px)V1 tr(Px1 − Px)V2 tr(Px1 − Px)
0 tr(Px12 − Px1)V2 tr(Px12 − Px1)
0 0 tr(I − Px12)


 .
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Let

A = (Px1 − Px), B = (Px12 − Px1), C = (I − Px12),
a = tr(Px1 − Px)V1, b = tr(Px12 − Px1)V2, c = tr(I − Px12),
d = tr(Px1 − Px)V2, e = tr(Px12 − Px1), f = tr(Px1 − Px)). (19)

We note that A, B and C are idempotent matrices. Using these notations the
estimation equations can be written as




σ̂2
1

σ̂2
2

σ̂2
e


 = J−1




Y ′AY
Y ′BY
Y ′CY


 . (20)

The variance component estimator of σ2
1, denoted by σ̂2

u1 is:

σ̂2
u1 =

tr((Px12 − Px1)V2)tr(I − Px12)Y
′(Px1 − Px)Y

tr((Px1 − Px)V1)tr((Px12 − Px1)V2)tr(I − Px12)

− tr((Px1 − Px)V2)tr(I − Px12)Y
′(Px12 − Px1)Y

tr((Px1 − Px)V1)tr((Px12 − Px1)V2)tr(I − Px12)

+
kY ′(I − Px12)Y

tr((Px1 − Px)V1)tr((Px12 − Px1)V2)tr(I − Px12)
, (21)

where k = tr((Px1 − Px)V2)tr(Px12 − Px1) − tr(Px1 − Px)tr((Px12 − Px1)V2).
Equation (21) simpli�es to

σ̂2
u1 =

Y ′(Px1 − Px)Y
tr((Px1 − Px)V1)

− tr((Px1 − Px)V2)Y ′(Px12 − Px1)Y
tr((Px1 − Px)V1)tr((Px12 − Px1)V2)

+
kY ′(I − Px12)Y

tr((Px1 − Px)V1)tr((Px12 − Px1)V2)tr(I − Px12)
. (22)

Using the previous notations we can write σ̂2
u1 as

σ̂2
u1 =

Y ′AY

a
− d(Y ′BY )

ab
+

k(Y ′CY )
abc

, (23)

where A, B, C, b, c and e are de�ned as in (19). Despite the fact that in
our study we will focus on one of the variance components we also give the
estimators of the two other components which may be calculated from (20);

σ̂2
u2

=
tr(I − Px12)Y

′(Px12 − Px1)Y
tr((Px12 − Px1)V2)tr(I − Px12)

− tr(Px12 − Px1)Y
′(I − Px12)Y

tr((Px12 − Px1)V2)tr(I − Px12)
,
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σ̂2
e =

tr((Px1 − Px)V1)tr((Px12 − Px1)V2)Y ′(I − Px12)Y
tr((Px1 − Px)V1)tr((Px12 − Px1)V2)tr(I − Px2)

=
Y ′(I − Px12)Y
tr(I − Px12)

. (24)

2.3.1 Mean Square Error of σ̂2
u1

Using (1) the mean square of σ̂2
u1 equals its variance since σ̂2

u1 is an unbiased
estimator,

MSE(σ̂2
u1) = D[σ̂2

u1]

= D[
Y ′AY

a
− d(Y ′BY )

ab
+

k(Y ′CY )
abc

]

=
1
a2

D[Y ′AY ] +
d2

a2b2
D[Y ′BY ] +

k2

a2b2c2
D[Y ′CY ]

=
2
a
tr[AV ]2 +

2d2

a2b2
tr[BV ]2 +

2k2

a2b2c2
tr[CV ]2, (25)

Moreover since all the involved quadratic forms are uncorrelated, V = σ2
1V1 +

σ2
2V2 + σ2

eI and the MSE equals

D[σ̂2
u1

] = A1 + A2 + A3, (26)

where

A1 =
2
a2

[tr(AV1AV1)σ4
1 + 2tr(AV1AV2)σ2

1σ
2
2

+ tr(AV2AV2)σ4
2 + 2tr(AV1A)σ2

1σ
2
e

+ 2tr(AV2A)σ2
2σ

2
e + tr(A2)σ4

e ],

A2 =
2d2

a2b2
[tr(BV1BV1)σ4

1 + 2tr(BV1BV2)σ2
1σ

2
2

+ tr(BV2BV2)σ4
2 + 2tr(BV1B)σ2

1σ
2
e

+ 2tr(BV2B)σ2
2σ

2
e + tr(B2)σ4

e ],

A3 =
2k2

a2b2c2
[tr(CV1CV1)σ4

1 + 2tr(CV1CV2)σ2
1σ

2
2

+ tr(CV2CV2)σ4
2 + 2tr(CV1C)σ2

1σ
2
e

+ 2tr(CV2C)σ2
2σ

2
e + tr(C2)σ4

e ].
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Thus, the following MSE is obtained:

MSE(σ̂2
u1) = [

2
a2

tr(AV1AV1) +
2d2

a2b2
tr(BV1BV1) +

2k2

a2b2c2
tr(CV1CV1)]σ4

1

+ [
2
a2

tr(AV2AV2) +
2d2

a2b2
tr(BV2BV2) +

2k2

a2b2c2
tr(CV2CV2)]σ4

2

+ [
4
a2

tr(AV1AV2) +
4d2

a2b2
tr(BV1BV2) +

4k2

a2b2c2
tr(CV1CV2)]σ2

1σ
2
2

+ [
4
a2

tr(A2V1) +
4d2

a2b2
tr(B2V1) +

4k2

a2b2c2
tr(C2V1)]σ2

1σ
2
e

+ [
4
a2

tr(A2V2) +
4d2

a2b2
tr(B2V2) +

4k2

a2b2c2
tr(C2V2)]σ2

2σ
2
e

+ [
2
a2

tr(A2) +
2d2

a2b2
tr(B2) +

2k2

a2b2c2
tr(C2)]σ4

e .

Since tr(CV1) = 0, tr(CV2) = 0 and tr(BV1) = 0 . The above can be simpli�ed
to

MSE(σ̂2
u1) = [

2
a2

tr(AV1AV1)]σ4
1 + [

2
a2

tr(AV2AV2) +
2d2

a2b2
tr(BV2BV2)]σ4

2

+ [
4
a2

tr(AV1AV2)]σ2
1σ

2
2 + [

4
a2

tr(A2V1)]σ2
1σ

2
e

+ [
4
a2

tr(AV2A) +
4d2

a2b2
tr(BV2B)]σ2

2σ
2
e

+ [
2
a2

tr(A2) +
2d2

a2b2
tr(B2) +

2k2

a2b2c2
tr(C2)]σ4

e . (27)

3 Perturbing Henderson's equation
In this section, we modify the variance component estimators obtained by
Henderson's method 3. This modi�cation is carried out by perturbing the
Henderson's estimation equation. Thus, the obtained variance component es-
timators are biased. Thereafter, by using some suitable criterion, for instance,
the MSE, we evaluate the performance of the estimator by comparing it with
the MSE of the unmodi�ed estimator. For the estimation equation (20), we
de�ne a new class of estimators


c1Y

′AY
c1d1Y

′BY
c1d2Y

′CY


 = J−1




σ2
1

σ2
2

σ2
e


 (28)

where J is de�ned in section (2.3), and c1 ≥ 0, d1 and d2 are constants to be
determined such that it would minimize the leading terms in the MSE of the
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estimator. The resulting estimator will perform better in terms of MSE since
c1 = d1 = d2 = 1 gives the same MSE. Thus, the modi�ed variance component
estimator of σ2

1, denoted by σ̂2
11 is

σ̂2
11 =

c1

a
(Y ′AY − d

b
d1Y

′BY +
k

bc
d2Y

′CY ), (29)

where A, B, C, a, b, c and d are all de�ned in (19). The MSE of this modi�ed
variance component is

MSE[σ̂2
11] = D[σ̂2

11] + [E(σ̂2
11)− σ2

1]
2. (30)

Since now (20) is perturbed, the estimator is not unbiased, The variance in
(29) equals

D[σ̂2
11] =

c2
1

a2
D[Y ′AY ] +

d2c2
1d

2
1

a2b2
D[Y ′BY ] +

k2c2
1d

2
2

a2b2c2
D[Y ′CY ],

since D[σ̂2
11] has the same structure as (27). Hence the variance of the modi�ed

estimator σ̂2
11 can be written

D[σ̂2
11] = [

2c2
1

a2
tr(AV1AV1)]σ4

1 + [
2c2

1

a2
tr(AV2AV2) +

2d2c2
1d

2
1

a2b2
tr(BV2BV2)]σ4

2

+ [
4c2

1

a2
tr(AV1AV2)]σ2

1σ
2
2 + [

4c2
1

a2
tr(A2V1)]σ2

1σ
2
e

+ [
4c2

1

a2
tr(AV2A) +

4d2c2
1d

2
1

a2b2
tr(BV2B)]σ2

2σ
2
e

+ [
2c2

1

a2
tr(A2) +

2d2c2
1d

2
1

a2b2
tr(B2) +

2k2c2
1d

2
2

a2b2c2
tr(C2)]σ4

e . (31)

Now we will calculate the bias part of (29), and thus the expectation of σ̂2
11 is

needed:

E[σ̂2
11] =

c1

a
E(Y ′AY )− dc1

ab
d1E(Y ′BY ) +

c1kd2

abc
E(Y ′CY )

=
c1

a
tr[A(σ2

1V1 + σ2
2V2 + σ2

eI)]− dc1d1

ab
tr[B(σ2

1V1 + σ2
2V2 + σ2

eI)]

+
c1kd2

abc
tr[C(σ2

1V1 + σ2
2V2 + σ2

eI)],

which can be simpli�ed to

E[σ̂2
11] = [

c1

a
tr(AV1)− dc1d1

ab
tr(BV1) +

c1kd2

abc
tr(CV1)]σ2

1

+ [
c1

a
tr(AV2)− dc1d1

ab
tr(BV2) +

c1kd2

abc
tr(CV2)]σ2

2

+ [
c1

a
tr(A)− dc1d1

ab
tr(B) +

c1kd2

abc
tr(C)]σ2

e . (32)

13



Thus, the squared bias can be written

(E[σ̂2
11]− σ2

1)
2 = [(

c1

a
tr(AV1)− 1)σ2

1 + (
c1

a
tr(AV2)− dc1d1

ab
tr(BV2))σ2

2

+ (
c1

a
tr(A)− dc1d1

ab
tr(B) +

c1kd2

abc
tr(C))σ2

e ]
2. (33)

If we substitute the variance and biased part back into (30), we get the follow-
ing:

MSE(σ̂2
11) = [

2c2
1

a2
tr(AV1AV1)]σ4

1 + [
4c2

1

a2
tr(AV1AV2)]σ2

1σ
2
2

+ [
2c2

1

a2
tr(AV2AV2) +

2d2c2
1d

2
1

a2b2
tr(BV2BV2)]σ4

2

+ [
4c2

1

a2
tr(A2V1)]σ2

1σ
2
e

+ [
4c2

1

a2
tr(A2V2) +

4d2c2
1d

2
1

a2b2
tr(B2V2)]σ2

2σ
2
e

+ [
2c2

1

a2
tr(A2) +

2d2c2
1d

2
1

a2b2
tr(B2) +

2k2c2
1d

2
2

a2b2c2
tr(C2)]σ4

e

+ [(
c1

a
tr(AV1)− 1)σ2

u1 + (
c1

a
tr(AV2)− dc1d1

ab
tr(BV2))σ2

2

+ [
c1

a
tr(A)− dc1d1

ab
tr(B) +

c1kd2

abc
tr(C)σ2

e ]
2. (34)

We write the latter expression as below. First let

r =
c1

a
tr(AV2)− dc1d1

ab
tr(BV2).

Rewriting it gives the following:

r =
c1d

a
− dc1d1

a
,

where from (19) we have tr(AV2) = d and tr(BV2) = b. Moreover, let

t =
c1

a
tr(A)− dc1d1

ab
tr(B) +

c1kd2

ab
. (35)

Hence, the following mean square error is obtained for the modi�ed estimator

14



σ̂2
u11:

MSE(σ̂2
11) = [

2c2
1

a2
tr(AV1AV1) + (c1 − 1)2]σ4

1

+ [
4c2

1

a2
tr(AV1AV2) + 2(c1 − 1)r]σ2

1σ
2
2

+ [
2c2

1

a2
tr(AV2AV2) +

2d2c2
1d

2
1

a2b2
tr(BV2BV2) + r2]σ4

2

+ [
4c2

1

a2
tr(A2V1) + 2(c1 − 1)t]σ2

1σ
2
e

+ [
4c2

1

a2
tr(A2V2) +

4d2c2
1d

2
1

a2b2
tr(B2V2) + 2rt]σ2

2σ
2
e

+ [
2c2

1

a2
tr(A2) +

2d2c2
1d

2
1

a2b2
tr(B2)

+
2k2c2

1d
2
2

a2b2c2
tr(C2) + t2]σ4

e . (36)

3.1 Mean square error comparison
In this section we compare the mean square errors of the modi�ed σ̂2

11 and
the unmodi�ed estimator σ̂2

u1, given by (36) and (27), respectively. We will
investigate if MSE(σ̂2

11) ≤ MSE(σ̂2
u1). To do so we compare all coe�cients of

σ4
1, σ4

2 and σ4
e and all their cross combinations which appeared in (36) and (27).

We will investigate a number of inequalities. If they hold, then the coe�cients
of the modi�ed estimator σ̂2

11 are less than the coe�cients of the unmodi�ed
one σ̂2

u1.
From the terms corresponding to σ4

1 in (36) and (27) it follows that we
have to investigate if

2c2
1

a2
tr(AV1AV1) + (c1 − 1)2 ≤ 2

a2
tr(AV1AV1). (37)

From the terms corresponding to σ4
2 we obtain that

2c2
1

a2
tr(AV2AV2) +

2d2c2
1d

2
1

a2b2
tr(BV2BV2) + r2

≤ 2
a2

tr(AV2AV2) +
2d2

a2b2
tr(BV2BV2), (38)

should be studied, where r = ( c1d
a − dc1d1

a ) and by assumption c1 > 0. Corre-

15



sponding to σ4
e we will study the inequality

2c2
1

a2
tr(A2) +

2d2c2
1d

2
1

a2b2
tr(B2) +

2k2c2
1d

2
2

a2b2c
+ t2

≤ 2
a2

tr(A2) +
2d2

a2b2
tr(B2) +

2k2

a2b2c
(39)

where k = dtr(B)− btr(A) and t is de�ned in (35).
Now the cross combination coe�cients of (27) and (36) will be compared.

We have �rst the coe�cients of σ2
1σ

2
2.

4c2
1

a2
tr(AV1AV2) + 2(c1 − 1)r ≤ 4

a2
tr(AV1AV2), (40)

where
(c1 − 1)r = (c1 − 1)(

c1d

a
− dc1d1

a
) =

d

a
(1− d1)(c2

1 − c1).

Corresponding to σ2
1σ

2
e we investigate

4c2
1

a2
tr(A2V1) + 2(c1 − 1)t ≤ 4

a2
tr(A2V1), (41)

where
(c1 − 1)t = (c1 − 1)(

c1

a
tr(A)− dc1d1

ab
tr(B) +

c1kd2

ab
),

and A, de�ned in (19), is an idempotent matrix. Finally we also study the
coe�cients corresponding to σ2

2σ
2
e ,

4c2
1

a2
tr(AV2) +

4d2c2
1d

2
1

a2b2
tr(B2V2) + 2rt ≤ 4

a2
tr(A2V2) +

4d2

a2b2
tr(B2V2), (42)

where

2rt = 2(
c1d

a
− dc1d1

a
)(

c1

a
tr(A)− dc1d1

ab
tr(B) +

c1kd2

ab
)

=
2c2

1d

a2
(1− d1)(tr(A)− dd1

b
tr(B) +

k

b
d2).

In order to �nd appropriate values of c1, d1 and d2 we have chosen to minimize
the leading terms in (36), i.e., the terms that involve the coe�cients of σ4

1,
σ4

2 and σ4
e , respectively. When minimizing the coe�cient of σ4

1 in (36) the
following equation is obtained,

∂

∂c1
[
2c2

1

a2
tr(AV1AV1) + (c1 − 1)2] = 0,
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with a solution given by

c1 =
1

2
a2 tr(AV1AV1) + 1

. (43)

Moreover, minimizing the coe�cient of σ4
2 gives

∂

∂d1
[
2c2

1

a2
tr(AV2AV2) +

2d2c2
1d

2
1

a2b2
tr(BV2BV2) + (

c1d

a
− dc1d1

a
)2] = 0,

which implies
d1 =

1
2
b2

tr(BV2BV2) + 1
. (44)

Finally, when minimizing the coe�cient of the error variance component σ4
e

we have to solve
∂

∂d2
[
c2
1

a2
tr(A2) +

2d2c2
1d

2
1

a2b2
tr(B2) +

2k2c2
1d

2
2

a2b2c

+
c2
1

a2
(tr(A))2 − 2dc2

1d1

a2b
tr(A)tr(B) +

2c2
1kd2

a2b
tr(A)

−2dc2
1kd1d2

a2b2
tr(B) +

c2
1k

2d2
2

a2b2
+

d2c2
1d

2
1

a2b2
(tr(B))2] = 0.

The minimum is obtained when

d2 =
d
bd1tr(B)− tr(A)

(k
b )(2

c + 1)
. (45)

It has been veri�ed that if c1, d1 and d2 satisfy the minimum of the coe�cients
σ4

1, σ4
2 and σ4

e , respectively, in equation (36). It follows that (37) and (38) hold
for the given values in (43) and (44), respectively. Concerning (39), omitting
a2 and simplifying, the left hand side can be written as

c2
1tr(A) +

d2c2
1d

2
1

b2
tr(B) +

k2c2
1d

2
2

b2c
+

1
2
c2
1

(
tr(A)− d

b
d1tr(B) +

kd2

b

)2
. (46)

However, since c1 and d1 given by (43) and (44) respectively, are less than 1 it
is enough to study when

k2c2
1d

2
2

b2c
+

1
2
c2
1

(
tr(A)− d

b
d1tr(B) +

kd2

b

)2 ≤ k2

b2c
(47)

The following is obtained after substituting d2 de�ned in (45) into the left hand
side of (47)

k2c2
1

b2c

(d
bd1tr(B)− tr(A))2

(k
b )2(2

c + 1)2
+

c2
1

2
(
tr(A)− d

b
d1tr(B) +

k

b

d
bd1tr(B)− tr(A)

(k
b )(2

c + 1)

)2(48)
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which can be simpli�ed to,

c2
1(

d

b
d1tr(B)− tr(A))2[

c

(2 + c)2
− 2

(2 + c)2
]. (49)

Hence, for (39) to hold the following must be satis�ed

(
d

b
d1tr(B)− tr(A))2 ≤ (

d

b
tr(B)− tr(A))2. (50)

Therefore we have two cases to consider, either

tr(A) ≤ d

b
d1tr(B), (51)

or

tr(A) >
d

b
d1tr(B). (52)

Which have to be treated separately. If (51) holds, then (50) is always satis�ed.
If instead (52) is true we will return one step and suppose d1 = 1. Then,
obviously (38) and (50) will hold. Observe that d1 = 1 means that we should
not perturb (28) with respect to d1.

Moreover, (40) is always satis�ed since,

(c1 − 1)r =
d

a
(1− d1)(c2

1 − c1) ≤ 0. (53)

Concerning (41), we study the second term in the left hand side,

(c1 − 1)t = (c1 − 1)(
c1

a
tr(A)− dc1d1

ab
tr(B) +

c1kd2

ab
).

Substituting d2, de�ned in (45), yields

(c1 − 1)(
c1

a
tr(A)− dc1d1

ab
tr(B) +

c1k

ab

d
bd1tr(B)− tr(A)

(k
b )(2

c + 1)
),

giving

1
a
(c2

1 − c1)
(
tr(A)− dc1

b
d1tr(B) +

d
bd1tr(B)− tr(A)

2
c + 1

)
.

Thus, for (41), we have from (19) that tr(AV1) = a which implies that (41)
can be written as

2c2
1

a
+

1
a
(c2

1 − c1)
(
tr(A)− dc1

b
d1tr(B) +

d
bd1tr(B)− tr(A)

2
c + 1

) ≤ 2
a
.
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Hence, if (51) is true (41) will hold if

2c2
1 + (c2

1 − c1)(tr(A)− d

b
d1tr(B))(

2
2 + c

) ≤ 2, (54)

and we obtain the additional condition

tr(A) ≥ d

b
d1tr(B)− (2 + c)(1 + c1)

c1
. (55)

If (52) holds, then it's obvious that (55) will be true. Finally, we check the
inequality (42). Since from (19) we have tr(AV2) = d and tr(BV2) = b we
rewrite (42) as

4c2
1d

a2
+

4d2c2
1d

2
1

a2b2
+

2c2
1d

a2
(1− d1)(tr(A)− dd1

b
tr(B) +

k

b
d2)

≤ 4d

a2
+

4d2

a2b
.

It is enough to investigate the third term in the left hand side:

c2
1d

a2
(1− d1)(tr(A)− dd1

b
tr(B) +

k

b
d2).

As previously, after substituting d2 and omitting identical terms from both
sides, (42) can be written as,

2c2
1 +

2dc2
1d

2
1

b
+ c2

1(1− d1)(tr(A)− d

b
d1tr(B))(

2
2 + c

) ≤ 2 +
2d

b
. (56)

Thus, (42) is satis�ed under (51). Moreover, if d1 = 1 as assumed if (52) holds,
then (42) is also valid.

The above results can be summarized in the following proposition

Proposition 1. Let the variance component estimator corresponding to the
�rst random e�ect σ̂2

u1 in the model de�ned in (12) be modi�ed as in (29),
where c1, d1 and d2 are chosen as in (43), (44) and (45), respectively. Then
(37)� (42) are su�cient conditions for MSE(σ̂2

11)≤ MSE(σ̂2
u1).

Moreover, for the two cases that emerged from (50) we have the following
theorem

Theorem 1. Given the model de�ned in (12), let MSE(σ̂2
u1) be the mean square

error of the unmodi�ed estimator given in (27) and let MSE(σ̂2
11) be the mean

square error of the modi�ed estimator given in (36).
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(i) If (51) and (55) hold, MSE(σ̂2
11)≤ MSE(σ̂2

u1).

(ii) If (52) and d1 = 1, MSE(σ̂2
11)≤ MSE(σ̂2

u1).

Note that if Theorem 1 (ii) is applied then the unbiased estimator given in
(21) can be modi�ed as in the following:

σ̂2
11 =

c1

a
(Y ′AY − d

b
Y ′BY +

k

bc
d2Y

′CY ). (57)

4 Variance comparison from two di�erent decompo-
sitions of Henderson's method 3

A crucial point when applying Henderson's method 3 is the decomposition of
the reduction sums of squares. Unfortunately there is no unique way of how to
carry out this decomposition. In this section we compare two choices. In (12),
there are three variance components to be estimated. The number of variance
components in this model can be reduced, e.g., from three to two variance
components by using a suitable transformation method. If an orthogonal vector
is de�ned that is orthogonal to both the �xed e�ect vector and to, e.g., Z2, so
that two variance components σ2

1 and σ2
e , are estimated instead of three, the

estimation problem is simpli�ed, see Khuri et al. (1998). The estimators can
thereafter be modi�ed as in Kelly and Mathew (1994). In our work we want
to estimate the variance components for (12), by dealing with the model as it
is without making any transformations and thereafter apply the perturbation
technique of the previous section. It is not clear which estimator to prefer,
i.e., the estimator obtained from reducing the number of variance components
in the model, or the estimator obtained from the model consisting of all three
variance components.

One solution to the problem is to compare the sampling variances of the
two estimators. Thus, for model (12) we take two sets of estimation equations
to estimate the variance components of the model. The �rst set of equations
will be called Partition I, i.e., we estimate all three components σ2

1, σ2
2 and σ2

e

as we have previously done in Section (2.3). In the second set of estimation
equations we will have two variance components to estimate, σ2

1 and σ2
e , which

will be called Partition II. The reduction in sum of squares which will be used
to estimate the variance component for the �rst random e�ect u1, denoted by
σ̂2

1, will be corrected for the �xed β and second random e�ect u2. Thereafter,
we compare the variance of σ̂2

u1 and the variance of σ̂2
1 obtained from Partition

I and Partition II, respectively.
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4.1 Variance component estimator for Partition I
For model (12), we have already estimated the variance component estima-
tors in section (2.3) with the set of estimation equations which were given by
(20). For this, we needed the following matrices: [X], [X, Z1] and [X, Z1, Z2].
Corresponding to these matrices, we had the projection matrices which were
denoted by Px, Px1 and Px12 , respectively. The variance component estimator
of interest, σ̂2

u1, was given in (23) and its variance, i.e., D[σ̂2
u1], given in (27).

4.2 Variance component estimator for Partition II
For the same model (12), also using Henderson's method 3, we estimate
σ2

1, but this time with a di�erent set of estimation equations. The set of
equations which are needed, are the following SSE: The residual sum of
squares. R(u1/β, u2): The reduction sums of squares due to the �rst ran-
dom component, adjusted for the �xed and second random e�ect. To calculate
R(u1/β, u2), we need the sub-model de�ned in (15). The corresponding pro-
jection matrix Px2 is de�ned as,

Px2 = (X, Z2)((X,Z2)′(X, Z2))−(X,Z2)′. (58)

We have
R(u1/β, u2) = R(β, u1, u2)− R(β, u2). (59)

which gives

R(u1/β, u2) = Y ′Px12Y − Y ′Px2Y

= Y ′(Px12 − Px2)Y.

i.e., the reduction in sum of squares needed are
{

R(u1/β, u2)
SSE

Consequently, we can write the set of estimation equations to estimate the
variance components σ2

1 and σ2
e as,

E
[

Y ′(Px12 − Px2)Y
Y ′(I − Px12)Y

]
=

[
tr((Px12 − Px2)V1) tr(Px12 − Px2)
tr((I − Px12)V1) tr(I − Px12)

] [
σ2

1

σ2
e

]
.

The right hand side of the matrix can be simpli�ed, using Px12V1 = V1,
[

σ̂2
1

σ̂2
e

]
= J−1

[
Y ′(Px12 − Px2)Y
Y ′(I − Px12)Y

]
, (60)
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where J is equal to
[

tr(Px12 − Px2)V1 tr(Px12 − Px2)
0 tr(I − Px12)

]
. (61)

Thus,

σ̂2
1 =

tr(I − Px12)Y
′(Px12 − Px2)Y − tr(Px12 − Px2)Y

′(I − Px12)Y
tr(Px12 − Px2)V2tr(I − Px12)

=
Y ′(Px12 − Px2)Y
tr(Px12 − Px2)V1

− tr(Px12 − Px2)Y
′(I − Px12)Y

tr(Px12 − Px2)V1tr(I − Px12)
. (62)

The variance is

D[σ̂2
1] = D[

Y ′(Px12 − Px2)Y
tr(Px12 − Px2)V1

] + D[
tr(Px12 − Px2)Y

′(I − Px12)Y
tr(Px12 − Px2)V1tr(I − Px12)

]

= [
2tr(Px12 − Px2)V1(Px12 − Px2)V1

(tr(Px12 − Px2)V1)2
]σ4

1 +

[
4tr(Px12 − Px2)2V1

(tr(Px12 − Px2)V1)2
]σ2

eσ
2
1 + [

2tr(Px12 − Px2)2

(tr(Px12 − Px2)V1)2
+

2tr(Px12 − Px2)2

(tr(Px12 − Px2)V1)2tr(I − Px12)
]σ4

e . (63)

After calculating the variance component estimators, σ̂2
u1 and σ̂2

1 for Parti-
tion I and Partition II, respectively, we compare their variances. The estimator
that has less variance can then be recommended and thereafter modi�ed. Here
it is essential to compare the leading terms of the coe�cients of σ4

1, σ4
e and

σ4
2. We are going to suppose that the variance component corresponding to

the second random e�ect in Partition I, is considerably "small", because if
this component is large, the variance function in (27) is going to be large as
well. Under such circumstances, it could be better to take into consideration
the estimators obtained from Partition II, instead of the ones obtained from
Partition I.

The coe�cient of σ4
1 under Partition I equals

2
(tr(Px1 − Px)V1)2

tr(Px1 − Px)V1(Px1 − Px)V1,

and under Partition II
2

(tr(Px12 − Px2)V1)2
tr(Px12 − Px2)V1(Px12 − Px2)V1.
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Hence, comparing the coe�cients of σ4
1 in the two partitions can be expressed

in the following inequality
2

(tr(Px1 − Px)V1)2
tr(Px1 − Px)V1(Px1 − Px)V1

≤ 2
(tr(Px12 − Px2)V1)2

tr(Px12 − Px2)V1(Px12 − Px2)V1. (64)

Likewise, considering the coe�cients of σ4
e in (27) and (63) we have the fol-

lowing

[
2tr(Px1 − Px)

(tr(Px1 − Px)V1)2
+

2(tr(Px1 − Px)V2)2tr(Px12 − Px1)2

(tr(Px1 − Px)V1)2(tr(Px12 − Px1)V2)2

+
2k2

(tr(Px1 − Px)V1)2(tr(Px12 − Px1)V2)2tr(I − Px12)
],

≤ [
2tr(Px12 − Px2)2

(tr(Px12 − Px2)V1)2
+

2(tr(Px12 − Px2))2

(tr(Px12 − Px2)V1)2tr(I − Px12)
]. (65)

Thus,
Proposition 2. In model (12) let the variance component corresponding to
the �rst random e�ect be estimated according to the estimation equations given
by (20) or (60), and denoted σ̂2

u1 and σ̂2
1, respectively. Then under the assump-

tion that σ2
1σ

2
e and σ2

2 are "small", (64) and (65) are su�cient conditions for
D[σ̂2

u1]≤D[σ̂2
1].

We can further simplify the expressions (64) and (65) as below: In (64),
let A = (Px1 − Px) and B = (Px12 − Px2). Equation (64) can be written

tr(AV1AV1)
(trAV1)2

≤ tr(BV1BV1)
(trBV1)2

. (66)

Since V1 is symmetric, V1 can be written V1 = ΓD1Γ′ where D1 is the diagonal
matrix of the r1 eigenvalues of V1. Taking every part of (66) separately, the
LHS can be written as

(trAV1)2 = (tr(AΓD1Γ′))2

= (tr(A?D1))2

= (tr
(

A?11 A?12

A?21 A?22

)(
∆1 0
0 0

)
)2

= (tr(A?11∆1)2

= (
r1∑

i=1

a?iiλ1i)2, (67)
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where A? = Γ′AΓ and ∆1 = diag(λ11, . . . , λ1r1), r1 is the rank of V1. For the
term

tr(AV1AV1) = tr(AΓD1Γ′AΓD1Γ′)
= tr(A?D1A?D1)

= tr(
(

A?11 A?12

A?21 A?22

)(
∆1 0
0 0

) (
A?11 A?12

A?21 A?22

)(
∆1 0
0 0

)
)

= tr(A?11∆1A?11∆1) =
r1∑

i=1

a2
?iiλ

2
1i + 2

∑

i6=j

a?ija?jiλ1iλ1j . (68)

The right hand side of (66) can be written as

(tr(BV1))2 = (trBΓD1Γ′)2 = (trB?D1)2 = (tr(B?11∆1))2

= (
r1∑

i=1

b?iiλ1i)2, (69)

where B? = Γ′BΓ. Similar calculations give

tr(BV1BV1) =
r1∑

i=1

b2
?iiλ

2
1i + 2

∑

i6=j

b?ijb?jiλ1iλ1j . (70)

Thus, (66) can now be rewritten as
∑r1

i=1 a2
?iiλ

2
1i + 2

∑
i6=j a?ija?jiλ1iλ1j

(
∑r1

i=1 a?iiλ1i)2
≤

∑r1
i=1 b2

?iiλ
2
1i + 2

∑
i 6=j b?ijb?jiλ1iλ1j

(
∑r1

i=1 b?iiλ1i)2
.

(71)
Moreover, each part of (65) can be considered separately . First, from

previous calculations the �rst term of the left hand side of (65) can be rewritten
as

tr(Px1 − Px)
(tr(Px1 − Px)V1)2

=
rx1 − rx

(
∑r1

i=1 a?iiλ1i)2
. (72)

For the second part V2 is involved, writing V2 = UD2U
′, where U is an

orthogonal matrix, i.e., UU ′ = I and D2 is the diagonal matrix having the
eigenvalues of V2 on its diagonal. The rank of V2 will be denoted by r2

tr((Px1 − Px)V2) = tr(AV2) = (trAUD2U
′)

= (trU ′AUD2) = tr(A•D2)

= tr(
(

A•11 A•12
A•21 A•22

)(
∆2 0
0 0

)
) =

r2∑

i=1

a•iiλ2i.
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where A• = U ′AU and ∆2 = diag(λ21, . . . , λ2r2). We also have the following
term involved

(tr(Px12 − Px1)V2)2 = (trCV2)2 = (trC?D2)2 = (
r2∑

i=1

c?iiλ2i)2, (73)

where C = (Px12 − Px1) and C? = U ′CU . The second term is equal to

((Px1 − Px)V2)2tr(Px12 − Px1)
(tr(Px1 − Px)V1)2(tr(Px12 − Px1)V2)2

=
(
∑r2

i=1 a•iiλ2i)2(rx12 − rx1)
(
∑r1

i=1 a?iiλ1i)2(
∑r2

i=1 c?iiλ2i)2
. (74)

Finally the third part is equal to

[tr(Px1 − Px)V2tr(Px12 − Px1)− tr(Px1 − Px)tr(Px12 − Px1)V2]2

(tr(Px1 − Px)V1)2(tr(Px12 − Px1)V2)2tr(I − Px12)

=
[trAV2(rx12 − rx1)− (rx1 − rx)trCV2]2

(trAV1)2(trCV2)2(n− rx12)

=
[(rx12 − rx1)

∑r2
i=1 a•iiλ2i − (rx1 − rx)

∑r2
i=1 c?iiλ2i]2

(
∑r1

i=1 a?iiλ1i)2(
∑r2

i=1 c?iiλ2i)2(n− rx12)
. (75)

Performing the same calculations as above, for the right hand side of (65) we
get the following

tr(Px12 − Px2)
(tr(Px12 − Px2)V1)2

+
(tr(Px12 − Px2))2

(tr(Px12 − Px2)V1)2tr(I − Px12)

=
(rx12 − rx2)

(
∑r1

i=1 b?iiλ1i)2
+

(rx12 − rx2)2

(
∑r1

i=1 b?iiλ1i)2(n− rx12)
. (76)

We have now all the involved terms for the coe�cient of σ4
e for the two parti-

tions, i.e., (27) and (63). Thus the (65) can be written as
[

rx1 − rx

(
∑r1

i=1 a?iiλ1i)2
+

(
∑r2

i=1 a•iiλ2i)2(rx12 − rx1)
(
∑r1

i=1 a?iiλ1i)2(
∑r2

i=1 c?iiλ2i)2

+
[(rx12 − rx1)

∑r2
i=1 a•iiλ2i − (rx1 − rx)

∑r2
i=1 c?iiλ2i]2

(
∑r1

i=1 a?iiλ1i)2(
∑r2

i=1 c?iiλ2i)2(n− rx12)

]

≤
[

(rx12 − rx2)
(
∑r1

i=1 b?iiλ1i)
+

(rx12 − rx2)2

(
∑r1

i=1 b?iiλ1i)2(n− rx12)

]
(77)
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To summarize:
Comparing the variances, D[σ̂2

u1] and D[σ̂2
1], obtained from the two di�erent

estimation equations denoted by Partition I and II, we have found certain con-
ditions under which any of the estimators can be preferred, i.e., the estimator
that has less variance.

To examine further (64) and (65), di�erent examples will be considered.
We have studied a few examples and calculated the value of the inequalities
(64) and (65) corresponding to the variance functions, i.e., (27) and (63). The
considered examples have di�erent numbers of observations n and the data
have di�erent experimental design patterns. From Table 1, we can observe
according to the calculated values of the inequalities when data is balanced
as in Examples 1, 2 and 8, that there seems to be no di�erence as to which
partition to apply as was expected. In all the other examples, both (64) and
(65) were satis�ed indicating that Partition II should be recommended.

5 Conclusion
The problem of modifying the variance component estimator obtained by using
Henderson's method 3, has been the focus of our work as well as to compare
two di�erent decompositions of sums of squares.

For a two-way linear mixed model, consisting of three variance components,
σ2

1, σ2
2 and σ2

e , we have perturbed the Henderson's estimation equations. The
main aim, was to modify the standard unbiased estimator, corresponding to
one of the random e�ects, by multiplying the estimator with some coe�cients
that are chosen to minimize the leading terms, σ4

1, σ4
2 and σ4

e in the MSE
equation. Two modi�ed variance component estimators are proposed; each
appropriate under certain given conditions. Our proposed estimators are easy
to compute and have smaller MSE than the unmodi�ed one. Moreover, the
conditions under which each of the proposed estimators are valid, are easy to
investigate. For instance, in practical application if the unbiasedness condition
is not of major concern, our proposed estimators should be considered.

We have studied two decompositions of Henderson's method 3, which we
denoted by Partition I and Partition II. The former consisting of three variance
components, and the latter of two variance components. The variances of the
variance component estimators σ̂2

u1 and σ̂2
1 obtained from the two partitions,

were compared under the assumption that σ2
2 and σ2

1σ
2
e are "small".

Examples consisting of balanced and unbalanced data are considered. With
balanced data, the partitions are equal . Otherwise, when data are unbalanced
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we have two cases; for the case when Partition I is recommended our modi�-
cation approach is suitable. For cases when Partition II can be recommended,
we refer to the paper by Kelly and Mathew (1994).
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Table 1: Di�erent examples, coe�cients of the leading terms σ4
1 and σ4

e are compared for
Partition I and Partition II

Example The Model n eq:(64) eq:(65)

1 Y = 18µ +

(
14 0
0 14

)
u1 +




12 0
0 12

12 0
0 12


 u2 + e. 8 equal equal

2 Y = 130µ +

(
115 0
0 115

)
u1 +




15 0 0
0 15 0
0 0 15

15 0 0
0 15 0
0 0 15




u2 + e. 30 equal equal

3 Y = 18µ +

(
15 0
0 13

)
u1 +




12 0
0 13

11 0
0 12


 u2 + e. 8 equal satis�ed

4 Y = 18µ +

(
16 0
0 12

)
u1 +




14 0
0 12

11 0
0 11


 u2 + e. 8 equal satis�ed

5 Y = 130µ +




110 0 0
0 115 0
0 0 15


 u1 +




15 0 0
0 15 0

110 0 0
0 15 0
0 12 0
0 0 13




u2 + e. 30 satis�ed satis�ed

6 Y = 130µ +




17 0 0 0
0 112 0 0
0 0 16 0
0 0 0 15


 u1 +




14 0 0
0 0 13

0 110 0
0 0 12

12 0 0
0 14 0
15 0 0




u2 + e. 30 satis�ed satis�ed

7 Y = 121µ +




15 0 0
0 19 0
0 0 17


 u1 +




12 0 0
0 13 0
0 11 0
0 0 18

14 0 0
0 13 0




u2 + e 21 satis�ed satis�ed

8 Y = 130µ +




110 0 0
0 110 0
0 0 110


 u1 +




15 0
0 15

15 0
0 15

15 0
0 15




u2 + e 30 equal equal


