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Abstract

A two-way linear mixed model, consisting of three variance components,
o2, 03 and o2 is considered. The variance component estimators are
estimated using a well known non-iterative estimation procedure, Hen-
derson’s method 3. For 0'% we propose two modified estimators. The
modification is carried out by perturbing the standard estimator, such
that the obtained estimator is expected to perform better in terms of its
mean square error. Moreover, Henderson’s method 3 can be applied in
different ways when decomposing sums of squares. Two different decom-
positions are considered. The variances of the estimators corresponding
to the first random effect are compared to determine which one to choose

and to later modify.
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1 Introduction

In an analysis of variance context, the most commonly used method for esti-
mating the variance components has been through equating the observed and
expected mean squares, and solving a set of linear equations. As long as the
data are balanced the ANOVA estimators are known to have good statisti-
cal properties, i.e., the obtained estimators are unbiased and have minimum
variance among all unbiased estimators which are quadratic functions of the
observations, see Graybill and Hultquist (1961). However, since real world data
often are always unbalanced, this method is no longer appealing. For instance,
the uniformly minimum variance property is lost. Furthermore, whether data
are balanced or unbalanced, there is nothing in the ANOVA methodology that
would prevent negative estimates of the variance components to occur, (LaM-
otte, 1973).

In a seminal paper Henderson (1953) considered variance component esti-
mation with unbalanced data. He presented three methods of estimation which
later on, came to be known as Henderson’s method 1, 2 and 3. The obtained
estimators are unbiased and translation invariant.

However, since all three methods are variations of the general ANOVA
method, they suffer from the weaknesses of it. In particular, the lack of unique-
ness.

In this paper we were motivated by Kelly and Mathew’s (1994) work, where
they improved the ANOVA estimators in a one-way variance component model.
The model consists of two variance components, one is the random effect of
interest, and the second is the error component. They modified the variance
component estimator corresponding to the random effect such that the re-
sulting estimator performed better than the unmodified ANOVA estimator in
terms of the mean square error (MSE) criteria. If more components were to be
included into the model, they were excluded by orthogonal projections. Hence,
the model could always be dealt with as if it had two variance components.

Our aim is to modify the variance component estimators obtained by Hen-
derson’s method 3, in a two-way linear mixed model, i.e. a model with three
variance components of which two components corresponding to the two ran-
dom effects included in the model, and the third corresponds to the error
component. Here, we want to emphasize that we are primarily interested in
one of the variance components. We intend to modify this component and
calculate its MSE. Thereafter, we compare it with the MSE of the unmodified
one. This modified variance component estimator is expected to perform bet-
ter in terms of the MSE criteria. Another aim of this paper is to discuss how
to apply Henderson’s method 3 in practice. With three variance components



we will have two natural decompositions. How to choose between them is not
clear and will therefore be exploited.

1.1 Preparation

Matrices will be used in this work and we need some terminology and notations
concerning matrices. A matrix A with m rows and n columns is denoted by
A: m x n. The element located at the intersection of the i:th row and the
j:th column of A will be denoted a;;. A matrix partitioned by its n columns
is written as A = (a1, a9, - ,a,). Partitioning matrices by rows or other sub-
matrices of proper sizes, are written in the same fashion. The identity matrix
is denoted I. If the dimension of the identity matrix needs to be emphasized,
a lower index will be used, e.g. the n X n identity matrix is written as I,.
Some important notion used in the subsequent are summarized in the fol-
lowing:
(i) The transpose of A is the matrix A’ such that if A = (a;;) then A" = (a;;).
(i) A square matrix is symmetric if A’ = A holds.
(iii) The trace of a square matrix A, tr(A), is the sum of the diagonal elements
of A, tI‘(A) = ZCLZZ
— tr(A)= tr(4)
— tr(AB)= tr(BA)
— tr(A + B)=tr(A)+tr(B)
(iv) The rank of A, is the number of linearly independent columns of A.
(v) A square matrix A is positive (negative) definite, abbreviated p.d., (n.d)
if for all z # 0: 2’Az >0 (<0).
(vi) An orthogonal matrix A is a square matrix A whose transpose is its
inverse: A’/A = AA" =1.
(vii) A generalized inverse, shortened g-inverse, of A: m X n is any n x m
matrix A~ such that AA~A = A.
(viii) A matrix A is idempotent if A = A2 holds.

— If A is an idempotent matrix, then rank(A) = tr(A).

— If A is an idempotent matrix, then the eigenvalues of A consist of
ones and zeros.

— A~ A is an idempotent matrix.

(ix) The column space of A, denoted by C(A), is the vector space generated
by the columns of A.



(x) Let A be a real symmetric matrix. Then there exists an orthogonal
matrix T' such that IYAT' = A or A = T'AT”, where A is a diagonal
matrix.

We define the mean squared error MSE of an estimator 8, denoted by MSE(GA),
as
MSE(#) = D[] + [Bias(6))?, (1)

where, the variance is denoted by D[-]. The bias of an estimator 0, of a parame-
ter 6 is the difference between the expected value of § and 0, i.e., Bias(8)=E(0)-
6.

1.2 Quadratic forms

Estimation of variance components for balanced and unbalanced data are based
on quadratic forms Y'AY where A is a symmetric matrix, and

Y ~ N, V).
In particular the mean and the variance of Y’ AY are needed.
(i) The mean of Y'AY is equal to
E(Y'AY) = tr(AV) + 24 Ap, (2)
which is true even if Y is not normally distributed.
(ii) The variance of Y'AY is

D[Y'AY] = 2tc(AVAV) + 4(1/ AV Ap). (3)
(iii) If AV is idempotent, the distribution of Y'AY is given by
Y'AY ~ xP(ra, %M’AML

where x2(r 4, %u’ Ap) is non-central chi-square distribution, with degrees
of freedom equal to rg4, i.e., the rank of A, and the non-centrality pa-
rameter 3u/ Ap.



1.3 Important criteria for deriving estimators

Consider the following mixed linear model

Y =XG+ Zu+e, (4)

where Y is the N x 1 vector of observations, X is a known N X m matrix, 3 is
an m X 1 vector of unknown fixed effect parameters, and e is an N x 1 vector
of random error with mean 0 and dispersion matrix 02Iy. The term Zu given
in model (5) is a random term that can be partitioned conformably as

U1
) r
Zu= 2y Zy ... Z: )| | =) Zu
: i=1
Uy
Thus, model (4) can be rewritten as
Y:Xﬂ—l—ZZiui—i—e, (5)

=1

where Z; is N X n; incidence matrix of known elements, u; is n; X 1 vector
of random effects, with zero mean value and dispersion matrix o21,,, i =
1,---,r. Further it is assumed that the u; and e are uncorrelated random
variables. Then from (5), E(Y) = X and the dispersion matrix V= D[Y] =
Yt Z;Zlo? + 02In. The parameters o7 and o2 are unknown. Since Zu and e
are random effects, they can be combined into one random term. Thus (5) can
be rewritten as Y = X3+ XI_;Z;u; and the dispersion matrix V= X!_,Z,; Z!o?,
where ug = e, 0(2) = ag and Zg = Iy.

To generalize the idea of estimating a single variance component, we con-
sider estimating a linear function of the variance components, pooa + p1os +
-+ 4 pro?, where p; are known, by a quadratic function Y’'AY of the random
variable Y in (5). The matrix A should be chosen according to some suitable
criteria.

(i) Unbiasedness: If Y'AY is unbiased for Y., p;o? for all 02, then under
the restriction X’AX =0,

E(Y'AY) = tr(AV) =Y tr(AZ;Z)o} = Y _ pio;. (6)
=0 =0

i.e., an unbiased estimator is obtained if p; = tr(AZ;Z)).



(i) Translation Invariance: Y'AY is translation invariant if it’s value is not
affected by any change in the fixed effect parameter for the model. If
instead of 8 we consider v = 3 — 3y as the unknown parameter, where 3y
is fixed. Then Y'AY is translation invariant if Y/AY = (Y — X~) A(Y —
X~) for all 4. Thus AX = 0. Since AX = 0 always implies X’AX = 0,
we also have the unbiasedness condition satisfied. However, the reverse
is not true i.e., unbiasedness does not imply invariance except when A is
n.n.d..

(iii) Minimum Variance: The variance of Y/ AY under a normality assumption

equals
D[Y'AY] = 2tr[AVAV] + 45’ X' AV AX B. (7)

Under unbiasedness i.e., AX = 0, the variance reduces to
D[Y'AY] = 2tr[AV AV].
The mean squared error, defined in (1), of Y'AY equals
MSE[Y’AY] = D[Y'AY] + [Bias(Y'AY)]?. (8)
Using the condition for translation invariance AX = 0 and unbiasedness
tr[AZ; Z!] = pi, equation (8) reduces to
MSE[Y'AY| = D[Y'AY] = 2tr[AV AV].

Both (7) and (8), under unbiasedness and invariance reduce to 2tr(AVAV).

1.4 ANOVA- based methods of estimation

This method is derived by equating the sums of squares in an analysis of vari-
ance table to their expected values. Let 02 be the vector of variance compo-
nents to be estimated in some model, and let s be a vector of sums of squares.
Then taking the expected value

E(s) = Co?, 9)

where C is a non-singular matrix, the ANOVA estimator of 52 is based on (9)
and is the solution to s = C'52, which equal

o2 =C"ls. (10)

ot



The expression in (9) can be extended to include not only sums of squares
but also any set of quadratic forms. Let ¢ = (¢1,92, - ,qm) be the m x 1
vector of quadratic forms such that

E(q) = Ad®, (11)
where 02 = (0%,03,...,0%) is the vector of k x 1 variance components and
A being an m X k matrix of known coefficients. Then, if m = k and A is
non-singular, (11) will give 52 = A~!q as an unbiased estimator of 02, as in
(10). In cases when there are more quadratic forms than there are variance

components to estimate, the following formula gives an unbiased estimator:
02 = (A/A)~1A'q, (see Searle et al. 1992).

!/

2 Henderson’s three methods

Henderson (1953) presented in his paper three methods of estimation of vari-
ance components, currently known as Henderson’s method 1, 2 and 3. This
paper is considered to be the landmark work of dealing with the problem of
estimation of variance components for unbalanced data. For balanced data,
variances are usually estimated using the minimum variance estimators based
on the sums of squares, appearing in the analysis of variance table. For unbal-
anced data the situation is different; it is not always clear which mean squares
should be used (see Searle 1971). In our work, we will be concentrating on
Henderson’s method 3, but we shall briefly review the first two methods as
well. These methods are sometimes described as being three different ways
of using the general ANOVA-method (Searle 1987). They differ only in the
different quadratics (not always sums of squares), used for a vector of any lin-
early independent quadratic forms of observations. All three methods involve
calculations of mean squares, taking their expected values, equating them to
the observed ones, and then solving the resulting equations in order to obtain
the variance component estimators. Some of the merits of the methods is that
they are easy to compute, they require no strong distributional assumptions,
and by construction these methods yield unbiased estimators. However, the
estimators can fall outside the parameter space, i.e., they can become negative.
Moreover, the estimators are not unique, because when there are several ran-
dom effects, the sums of squares for them can be computed in several ways, i.e,
corrected for several combinations of other effects. When data are balanced,
all three methods reduce to the usual ANOVA-method. For a review of all
three methods, see Searle (1968).



2.1 Method 1

The method basically involves calculating uncorrected sums of squares, anal-
ogous to those used for the analysis of variance for balanced data. In some
cases, they are sums of squares, and in others they are quadratic forms of the
data that can be negative. This method is easy to compute but can be used
only if it is assumed that except for fixed effect parameter 5 in (5), all other
elements in the model are uncorrelated variables with means zero and with
variances U?. Thus, it can be used only for random models and not for mixed
ones, which is one of the shortcomings of the method.

2.2 Method 2

The purpose of the method is to correct some of the deficiencies of method 1,
and to broaden its use to include more general models such as mixed models
which involve estimation of both fixed and random effects. Method 2 involves
estimation of the fixed effects by least squares, correcting the data in accor-
dance with these estimates and then using method 1 to estimate the variance
components. The method cannot be used on models which include interactions
between fixed and random effects.

2.3 Method 3

This method can be used on mixed models with or without interactions. In-
stead of the sums of squares that method 1 and 2 use, method 3 uses reduc-
tions in sums of squares due to fitting sub-models of the full model, and then
equating the reduced sums of squares to their respective expected values. The
outcome will be a set of linear estimation equations, which have to be solved
in order to obtain the variance component estimators. The drawback with this
method is that sometimes more reduction sum of squares are available than
necessary to estimate the variance component estimators (see Searle 1987). In
other words, occasionally more than one set of estimating equations for the
variance components can be computed for one model. From each set we get
different estimators of the variance components. Which set of estimators to
prefer is not clear, i.e., the variance component estimators are not unique. We
will consider the following two-way mixed model with no interaction,

Y = X0+ Zijur + Zouz + e, (full model) (12)

where 3 is the fixed parameter vector and u1, ug are random effect parameters.
For this model there are three variance components to estimate, i.e., the vari-



ance of the two random effects denoted by 0% and o5 respectively, and the third
is the error variance component denoted by o2. We may obtain several sets
of estimation equations. The sub-models which may give estimation equations

are,

Y =X0B+e, (13)
Y = X6+ Ziuy + e, (14)
Y = X8+ Zous + e. (15)

Now we present some special notation for reduction sum of squares which was
used by Searle (1971, 1987). Let R(.) denote the reduction sum of squares. The
sum of squares used for estimation corresponding to the sub-models (13), (14)
and (15) can according to this notation be expressed as, R(3), R(5,u1) and
R(5, u2), respectively. Another notation which will be needed before we write
the possible set of equations is R(./.) which is the reduction sum of squares
due to fitting the full model (12) minus that of the sub-model. For (12) two
sets of estimation equations may be considered

R(u1/0) R(u2/0)
R(ug/B,u1) or R(u1/uz, 3)
SSE SSE

where SSE denotes the residual sum of squares. For the first set of estima-
tion equations we define the following partitioned matrices: [X] , [X, Z1] and
[X, Z1, Z5]. Each reduction R(./.) can be expressed in the form Y’ AY for some
symmetric matrix A. Define the projection matrix P,=w(w'w)~w’. Thus P,
is an idempotent matrix, for more properties see Schott (1997). Assuming
normality all the reduction sum of squares follow a non-central x? distribution
and all these reduction sum of squares are independent of each other and of
SSE, see Searle (1987). We shall be using the first set of estimation equation
in the first part of the work. In the second part, i.e., in section 4, different
reductions in sums of squares will be compared. For the first set of equations
we need to define the following projection matrices,

P, =X(X'X) X, (16)
P = (X, Z) (X, 2)) (X, Z1))" (X, Z,), (17)
Py, = (X, Z1, 22)(X, Z4, Z2) (X, Z1, 23)) (X, Z1, Z)'. (18)

The reduction sums of squares R(./.) can now be obtained as

R(u1/8) = R(u1, 8) = R(B) = Y'(Pr, — P)Y,



R(uz/B,u1) = R(B,u1,uz) — R(B,u1) = Y'(Pp, — Pr,)Y,

and
SSE = Y'(I — P,,)Y.

To apply the procedure, the expected values of the reduction sums of
squares are computed. Thereafter the expected values are to be equated to
their observed values and by solving the obtained equations the variance com-
ponents are obtained. The expression for the expected value given in (2), can
be used since the dispersion matrix, denoted by V is V=03Vi+o3Va+o2l,
where Vi=21Z{ and Va=2ZZ}. The following is obtained

E[R(u1/0)] = tr(Py, — Py)[oiVi + 02Va + 021],

ER(UQ/B’?“) = tr(lez - Pwl)[o-%‘/l + U%‘/Q + ng]v

and
E[SSE| = tr(I — Py,,)[0?V} + 05Va + o21].

The set of calculated reduction sum of squares may be arranged in a vector.
Thereafter by equating these expected values to the observed ones we get

Y'(Py, — P)Y o?
Y'(Ppyy — P))Y | =J | 02 |,
Y'(I — P.,)Y o?

where

tr(Py, — Po)Vi tr(Py, — Pp)Va tr(Pyy, — Py)I
J = tr(lez - le)vl tr(Pﬂvu - Pﬂcl)VQ tr(Pl‘u - PCCl)I
tr(I — Pyy,)Va tr(I — Pyy,)Va tr(I — Pyyy)I

Thus, the estimators of the variance components are

ff 1 Y'(P,, — P,)Y
U% =J" Y,(qu *le)Y
o2 Y'(I - Pp,)Y

However, since P, Vi = Vi, Pp,Vo = Vo and P ,Vi = Vi, the J matrix
reduces to

tr(Py, — Po)Vi tr(Py, — Pp)Va  tr(Py, — Pr)

J=10 tr( Py — Poy)Vo tr(Pryy, — Pry)
0 0 tr([ - P:Blz)



Let

A:(le_PﬂE>v B:(Pwm_Pa?l) C= (I qu)
a=tr(Py, — P)Vi, b=tr(Py, — Py)Va, c¢=tr(I — Py2),

P.)
d=tr(Py, — Py)Va, e=tr(Py,— Py), f=tr(Py —P)). (19)

We note that A, B and C' are idempotent matrices. Using these notations the
estimation equations can be written as

o2 Y'AY
o3| = J'|Y'BY |. (20)
o2 Y'CY

The variance component estimator of 0%, denoted by 52, is:

PO tr((sz — zl)Vg)tr(I — PIH)Y’(PI1 —P)Y
Tul T (P, — Po)V)tr(Payy — Poy)Va)tr(I — Pyyy)
tr((Py, — Po)Valtr(I — Py, )Y'(Pyy, — Po,)Y
(P, — PV tr((Pyy, — Py, )Va)tr(I — Py,)
EY'(I = Pr,)Y
tr((Pyy, — Po)Vi)tr((Pyyy — Poy )Vo)tr(I — Pryy)’

_l’_

(21)

where k = tr((Py, — Py)Vo)tr(Py,, — Pay) — tr(Pyy, — Po)tr((Pyyy, — Py )Va).
Equation (21) simplifies to

621 _ Y/(Pfl - P)Y _ tr((Pe, — P w)V2)Y' (P w1z — Po)Y
" tr((Poy, — Po)Vi)  tr((Poy, — Po)Vi)tr((Poy, — Pry)V2)
Y'(I — P,
+ £V w)¥ (22)
tr((Pitl - ) )tr((lez - 11)‘/2))51'([ Pl"lz)
Using the previous notations we can write 02, as
R Y'AY d(Y'BY kYy'cy
52, = LAY _AQTBY)  MYCY). (23)
a ab abc

where A, B, C, b, c and e are defined as in (19). Despite the fact that in
our study we will focus on one of the variance components we also give the
estimators of the two other components which may be calculated from (20);

52 — (I Pwlz)Y/(lez — PIl)Y _ tr(lez - )Y (I sz)Y
v tI‘((Pmu - xl)VQ)tr(I Pﬂclz) tr((Pfﬁlz - le)v ) (I lez)

10



32 tr((PUCl — Px)Vl)tr((me — PLL’1)V2>Y/(I — PLE12)Y

‘ tr((le - Pﬂf)vl)tr((Pwlz - le)VQ)tr(I - sz)
_ Y’(I — Ple)Y 94
tr(l — Pypy) (24)

2.3.1 Mean Square Error of 52,

Using (1) the mean square of 52, equals its variance since 2, is an unbiased

ul
estimator,
MSE(53,) = Dlog)]
Y'AY d(Y'BY)  k(Y'CY)
_ + ]
a ab abc

1 ‘A d? , k2
= SDY'AY]+ 5 DY'BY ] + —5

a2b?
= gt [AV]? + ﬁt [BV]? + —Qt [CV]? (25)
— " ' 222t ’

a2b?

:D[

D[Y'CY]

Moreover since all the involved quadratic forms are uncorrelated, V = o?V; +
03Vs + 021 and the MSE equals

D[o;, ] = A1 + Az + As, (26)
where

2
A = E[m«(Alevl)ajl + 2tr(AV1 AVy)otos
+ tr(AVaAVa) oy + 2tr(AVL A)o?a?
+ 2tr(AVaA)oso? + tr(A?)ol],
2d?
Ay = W[tr(Blevl)a;‘ + 2tr(BVy BV;)oio2
+ tr(BVaBVa) oy + 2tr(BVy B)o?o?
+ 2tr(BVaB)o2o? + tr(B?)ol],
2k?
As = m[tr(cvlcvl)a;‘ + 2tr(CVLICVa) o2 o2
+ tr(CVaCVa)og + 2tr(CV1C) o302

+ 2tr(CVaC) o302 + tr(C?)ol].

11



Thus, the following MSE is obtained:

MSE(7s,) = [%tr(AleVﬂ 2; tr(BViBVA) + W;tr(cvlcvl)]a%
+[%tr(Av2Av2) 2; tr(BVaBVa) + ijcztr(cvzcvg)]ag
[itf(AVlsz) ; tr(BV1BVa) + %;CQtr(CVlcvw]o%o%
—l—[%tr(AQVl) 4;ll)ztr(B2V1) j‘b]‘fcztr((ﬂvl)]a%ag
+ [itr(A2V2) iQtr(B Vo) + 2b2262tr(C’2V2)]a§0§
(A2 + 2t (B2) ()

Since tr(CV7) = 0, tr(CV3) = 0 and tr(BVy) = 0. The above can be simplified
to

MSE(5%) = [;tr(Alevl)}aer[;tr(AVQAVQ)Jrj;l;tr(ngng)}a;‘
+ 5 (AViAV)Io3od + [y (42Vloto?
+(AVA) + o (BV:B)lodo?
F[tr(A2) + 2t (B2) (O, ©7)

3 Perturbing Henderson’s equation

In this section, we modify the variance component estimators obtained by
Henderson’s method 3. This modification is carried out by perturbing the
Henderson’s estimation equation. Thus, the obtained variance component es-
timators are biased. Thereafter, by using some suitable criterion, for instance,
the MSE, we evaluate the performance of the estimator by comparing it with
the MSE of the unmodified estimator. For the estimation equation (20), we
define a new class of estimators

caY'AY o?
adiY'BY | = J'| o} (28)
c1dY'CY o2

where J is defined in section (2.3), and ¢; > 0, d; and da are constants to be
determined such that it would minimize the leading terms in the MSE of the

12



estimator. The resulting estimator will perform better in terms of MSE since
c1 = d; = dg = 1 gives the same MSE. Thus, the modified variance component
estimator of 02, denoted by %, is

_ d k
52, = 2 —(Y'AY — S Y'BY + - dyY'CY), (29)

where A, B, C, a, b, c and d are all defined in (19). The MSE of this modified

variance component is
MSE[s;] = D[o7,] + [E(07,) — o)°. (30)

Since now (20) is perturbed, the estimator is not unbiased, The variance in
(29) equals

2 2
e dlD[YBY] he dQD[YCY]

2
~ C
D[ %1] ;D[Y,AY] + a2b2¢2

since D[6}] has the same structure as (27). Hence the variance of the modified
estimator 52, can be written

92¢2 9202 2d2 2d2
Dlgh] = [Str(AViAn)lof + [%tr(sz Avy) + =1

tr(BVaBVa)|od

+ [401 tr(AVi AVa)]o202 + [4 r(A2V)]o?

d2
ngtr(BVzB)]agag

2d%c2d? 2k2c2d3
a2bl? Lir(B?) + a2b21022 tr(C?)]od. (31)

Now we will calculate the bias part of (29), and thus the expectation of 57, is
needed:

4¢?
- [a—;tr(AVzA) +

20% 9
+ g tr(A%) +

C1 k‘dg
abc

deyd
"L tr[B(o?V: + o3Va + 021)]

d
Elgt)] = %E(Y’AY)—%dlE(Y’BY)+

= DAV + 03Ve +02D)] -

kd
n cy 2,
abce

E(Y'CY)

[C( Vl +02V2 +O’2I)]

which can be simplified to

c deird crkd
Bleh] = [tr(AV) = = Str(BV) + — Ztr(CVi)lot
deyd kd
+ [SHr(AVs) — =i (BVy) + 2 tr(CVe)]o3
C1 dCldl Clde 2
“Ltr(A) - B .
—i—[atr( ) > tr(B) + e tr(C)]o; (32)

13



Thus, the squared bias can be written

d01 d1

(B[gh] = 01)? = [(SHr(AV) = D)ot + (tr(AVy) = tn(BV))o
+ (Car(a) - Oy p) + W oo (39)

If we substitute the variance and biased part back into (30), we get the follow-
ing:
201 4c? c]
MSE(G3) = [ tr(AVlAVl)]Ul + [ tr(AVlAVg)]alag

201 d2 1d 4

22 (32V )]0202

2d%c2d? o 2k2c2d3 oy 4
22 tr(B*) + 2122 tr(C*)]o;
dclbdltr(ng))ag

+ [(Sr(AV) = )od + (Str(AV:) —

C1 dCl d1 C1 k‘dQ
—tr(A) —
+1 a r(4) ab abc

tr(B) + tr(C)o?]2. (34)

We write the latter expression as below. First let

deid
01b ltT(BVQ).

C1
= —tr(AV,) —
r , r(AVa)

Rewriting it gives the following:

Cld . dCldl

)

a a

where from (19) we have tr(AVs2) = d and tr(BVa) = b. Moreover, let

d61d1 C1 kdg
B .
ab tr(B) + ab

t= %m«(A) - (35)

Hence, the following mean square error is obtained for the modified estimator

14



o~

03111
20% 21 4
MSE(Ull) = [ﬁtr(A‘/]_A‘/]_) + (C]_ - 1) ]0'1

42
+P%WM%A%)+%q—Uﬂﬁﬁ

21, cidi s
+ o tr(AV2A4V2) + TtT(BVzBVﬁ +77]o}
4¢3 5
+ [ tr(A2V) + 21 — )t]oto?
4c % 2 4d201d1 2 2 2
+ [—aQ r(A*V,) + sz tr(B*Va) + 2rt|os0?
+ [—az tr(A%) + a2b2 tr(B?)
2"320%0% 2 21 4
22 tr(C?) + t°]o.. (36)

3.1 Mean square error comparison

In this section we compare the mean square errors of the modified 57, and
the unmodified estimator &2, glven by (36) and (27), respectively. We will
1nvest1gate 1f MSE(5%,) < MSE(52,). To do so we compare all coefficients of
ot, 03 and o and all their cross combinations which appeared in (36) and (27).
We will investigate a number of inequalities. If they hold, then the coefficients

of the modified estimator %, are less than the coefficients of the unmodified
2
ul*

From the terms corresponding to of in (36) and (27) it follows that we
have to investigate if

one o

2c? 2
a—zltr(AVlAVl) + (1 —1)*< ;tr(AVlAVI). (37)

From the terms corresponding to o3 we obtain that

2d2 d%

2c?
“Ftr(AVAV;) + tr(BV2BV3) +

2

2

tr(BVaBVa), (38)

should be studied, where r = (% — dc}%'ll) and by assumption ¢; > 0. Corre-

15



sponding to o2 we will study the inequality

2¢2 o 2d%c3d? o 2k23d3
?tr(A ) + a2b2 tr(B ) + a2b20 + t
2 2d> 2k?
< —tr(A2) + ot r(B?) + s (39)

where k = dtr(B) — btr(A) and ¢ is defined in (35).
Now the cross combination coefﬁcients of (27) and (36) will be compared.
We have first the coefficients of o7073.

4¢3 4
“Lir(AVIAVL) 4+ 2(c; — 1)r < Sir(AVIAV), (40)

where d dend p
C C
. )= (L= dy)(ef - ).

(c1=Dr=(c1 = )(— " .

Corresponding to 002 we investigate
At 4.
—tr(A*Vi) +2(c1 — 1)t < ﬁtr(A W), (41)
where derd d
(e1 = Dt = (e = )(SHtr(4) = =Ltn(B) + “2),

and A, defined in (19), is an idempotent matrix. Finally we also study the
coefficients corresponding to o302,

4¢3 4d?c3d? 5 4 ) 4d? 5
?tr(AVQ) + a2b2 tT(B VQ) + 2rt S ﬁtr(A VQ) + T[#tT(B Vz), (42)
where
Cld d61d1 C1 d61d1 Clkdg
2rt = 2(— — —tr(A) — tr(B
o= 290 - S () - Ee(p) 4 L)
2c2d dd, k
= SR d)(t(4) - Sru(B) + o).

In order to find appropriate values of c1, di and do we have chosen to minimize
the leading terms in (36), i.e., the terms that involve the coefficients of o7,
o3 and o2, respectively. When minimizing the coefficient of of in (36) the
following equation is obtained,

1tr(AV1AV1) (01—1)2] = 0,

16



with a solution given by

1
= ) 43
T 2 (A A +1 (43)
Moreover, minimizing the coefficient of o3 gives
0 20% 2d%c2d2 cid  deidy
— Sk tr(AVRAV) + =L tr(BVaBVR) 4 (— — 1 =0
8d1[a2 r(AVaAV) + r(BV2BV2) + (- el :
which implies
1
dy (44)

" 2i(BVaBVa) + 1

Finally, when minimizing the coefficient of the error variance component o2
we have to solve

o c
12 (A2
adQ[a2tr( )+

2 2
Cl 2 2d61d1
g (tr(A))” = =5~

2d0%k‘d1d2

The minimum is obtained when

%dltr(B) —tr(A)

dy = k(2

(F)(E+1)

It has been verified that if ¢1, d1 and dy satisfy the minimum of the coefficients
of, 05 and o2, respectively, in equation (36). It follows that (37) and (38) hold

for the given values in (43) and (44), respectively. Concerning (39), omitting
a? and simplifying, the left hand side can be written as

d262d2 k202d2 1 d kdg 2
b; 1 b21c 2 50% (tr(A) — gdltr(B) + T) . (46)

However, since ¢; and d; given by (43) and (44) respectively, are less than 1 it
is enough to study when

A 1

2d2c3d?
a?b?

2k2c3d3
a?b2¢

2C%kd2
tr(A)tr(B) + 20 tr(A)

21.2 72 2.2 72
cik®ds  dcidf 20
252 + 22 (tr(B))*] = o.

tr(B?) +

(45)

c%tr(A) +

tr(B) +

d kd k2

2 2\2 )

A) — —ditr(B) + —)" < — 4
The following is obtained after substituting dy defined in (45) into the left hand
side of (47)

K26 (fin(B) - wlA) &
Ze (FREe1E 2

d k ddytr(B) — tr(A)
(B + ¢ : B2 +1)

C

(tr(A) — )% (48)
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which can be simplified to,
d c 2
1(—ditr(B) — tr(A))? — : 4
Cl(b 1tI'( ) tr( )) [(2+C)2 (2+C)2] ( 9)

Hence, for (39) to hold the following must be satisfied

d d
(ditr(B) - tr(A))? < (5tx(B) — tr(A))2. (50)
Therefore we have two cases to consider, either
d
tr(A) < Bdltr(B), (51)
or
d
tr(A) > gdltr(B). (52)

Which have to be treated separately. If (51) holds, then (50) is always satisfied.
If instead (52) is true we will return one step and suppose d; = 1. Then,
obviously (38) and (50) will hold. Observe that d; = 1 means that we should
not perturb (28) with respect to d;.

Moreover, (40) is always satisfied since,

d

(c1 —1)r= E(l—dl)(c%—cl) <0. (53)

Concerning (41), we study the second term in the left hand side,

d01 d1 C1 kdg )
ab ab 7

(1 — 1)t = (e1 — 1)(%757"(/1) - tr(B) +

Substituting dg, defined in (45), yields

a1 derdy c1k ddytr(B) — tr(A)
(c1 = (- tr(A) — —=tr(B) Eb GIEE) ),
giving
d T —1ir
2(&{ — ) (tr(A) - %dltr(3)+ i (filt Wy

Thus, for (41), we have from (19) that tr(AV1) = a which implies that (41)
can be written as

2¢7 1 d

20 L2 (R =) (tr(A) — %dm(B) +

a a

%dltr(B) —tr(A)
241

) <

2
a

18



Hence, if (51) is true (41) will hold if

d 2
2 2
— _ 2 <
2¢i 4 (cf — 1) (tr(A) bdltr(B))(2 m C) <2, (54)
and we obtain the additional condition

d 2 1
tr(4) > 3 ditr(B) - (“)C(*Cl) (55)

1

If (52) holds, then it’s obvious that (55) will be true. Finally, we check the
inequality (42). Since from (19) we have tr(AVz) = d and tr(BV2) = b we
rewrite (42) as

4c3d  Ad*c3d? 2¢2d ddy k
G/]é a2b12 1 T;(l — d1)(tr(A) — Ttr(B) + gd2)
e
=2 20

It is enough to investigate the third term in the left hand side:

cd
a2

dd k
(1 —dp)(tr(A) — Tltr(B) + 5 da).
As previously, after substituting dz and omitting identical terms from both
sides, (42) can be written as,

2dc3d? 2 2d

d

2

1 A) = Saitr(B)) () <2+ 22,
FA1—d)((A) — ThnB) (o) <24 . (50)
Thus, (42) is satisfied under (51). Moreover, if d; = 1 as assumed if (52) holds,
then (42) is also valid.

The above results can be summarized in the following proposition

2
201 +

Proposition 1. Let the variance component estimator corresponding to the
first random effect 52, in the model defined in (12) be modified as in (29),
where c¢1, di and dy are chosen as in (43), (44) and (45), respectively. Then
(37)- (42) are sufficient conditions for MSE(c%,)< MSE(52,).

Moreover, for the two cases that emerged from (50) we have the following
theorem

Theorem 1. Given the model defined in (12), let MSE(G2,) be the mean square
error of the unmodified estimator given in (27) and let MSE(G?Y,) be the mean
square error of the modified estimator given in (36).
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(i) If (51) and (55) hold, MSE(5%,)< MSE(52,).
(ii) If (52) and dy = 1, MSE(c%,)< MSE(52,).

Note that if Theorem 1 (ii) is applied then the unbiased estimator given in
(21) can be modified as in the following:

d k
52 = %(Y’AY —JY'BY + - dpY'CY). (57)

4 Variance comparison from two different decompo-
sitions of Henderson’s method 3

A crucial point when applying Henderson’s method 3 is the decomposition of
the reduction sums of squares. Unfortunately there is no unique way of how to
carry out this decomposition. In this section we compare two choices. In (12),
there are three variance components to be estimated. The number of variance
components in this model can be reduced, e.g., from three to two variance
components by using a suitable transformation method. If an orthogonal vector
is defined that is orthogonal to both the fixed effect vector and to, e.g., Zs, so
that two variance components o7 and o2, are estimated instead of three, the
estimation problem is simplified, see Khuri et al. (1998). The estimators can
thereafter be modified as in Kelly and Mathew (1994). In our work we want
to estimate the variance components for (12), by dealing with the model as it
is without making any transformations and thereafter apply the perturbation
technique of the previous section. It is not clear which estimator to prefer,
i.e., the estimator obtained from reducing the number of variance components
in the model, or the estimator obtained from the model consisting of all three
variance components.

One solution to the problem is to compare the sampling variances of the
two estimators. Thus, for model (12) we take two sets of estimation equations
to estimate the variance components of the model. The first set of equations
will be called Partition I, i.e., we estimate all three components 0%, 03 and o2
as we have previously done in Section (2.3). In the second set of estimation
equations we will have two variance components to estimate, o3 and o2, which
will be called Partition II. The reduction in sum of squares which will be used
to estimate the variance component for the first random effect uy, denoted by
52, will be corrected for the fixed 3 and second random effect uz. Thereafter,
we compare the variance of 52, and the variance of 73 obtained from Partition
I and Partition II, respectively.
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4.1 Variance component estimator for Partition I

For model (12), we have already estimated the variance component estima-
tors in section (2.3) with the set of estimation equations which were given by
(20). For this, we needed the following matrices: [X], [X, Z1] and [X, Z1, Z5].
Corresponding to these matrices, we had the projection matrices which were
denoted by P, P and P,,, respectively. The variance component estimator
of interest, 52;, was given in (23) and its variance, i.e., D[52,], given in (27).

4.2 Variance component estimator for Partition II

For the same model (12), also using Henderson’s method 3, we estimate
o?, but this time with a different set of estimation equations. The set of
equations which are needed, are the following SSE: The residual sum of
squares. R(u1/8,u2): The reduction sums of squares due to the first ran-
dom component, adjusted for the fixed and second random effect. To calculate
R(u1/B,u2), we need the sub-model defined in (15). The corresponding pro-
jection matrix Py is defined as,

PCCQ = (X7 Zg)((X, ZQ)/(Xv ZQ))i(Xv ZQ)/' (58)

We have
R(u1/B,u2) = R(B,u1,u2) — R(B, uz). (59)
which gives
R(ul/ﬁa UZ) = Y,PQHQY - Y,PGCQY
= Y,(Pﬂﬁlz - sz)y

i.e., the reduction in sum of squares needed are

{ R(u1/B, us2)
SSE

Consequently, we can write the set of estimation equations to estimate the
variance components o7 and o2 as,

. [ ?E?ﬁz’éﬁff)y } tr((Pars = Pes)Vi) tr(Pryy — Pay) ] [ 7} ] .

e

B [ t?“(([— Pwm)vl) tT(I - P9612)

The right hand side of the matrix can be simplified, using Py, V1 = V1,

| o [EE RN A (60)
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where J is equal to

tr(lez - P952>V1 tr(sz - P172>

61
0 (= Pry,) (61)
Thus,
&2 _ tr(I — Pmlz)Y/(PﬂCm — Px2)Y — tI‘(me — P$2)Y/([ — PLE12)Y
! tr(me - PxQ)VQtT(I PLE12)
— Y/(P$12 — P$2)Y - tr(Pmu — b )Y/(I P$12)Y (62)
tr(Pﬁ?w - PI2>V1 tr(PIm - rQ)VItr(I Pﬂﬂu)
The variance is
/ "r _
D[a\_ﬂ — D[Y (Pwlz sz) ] [tr(Pﬂﬂm Pﬂfz)y (I Pﬂ?lQ)Y]
tr(lez Pm2)vl tT(me PxQ)Vltr(I - Pﬂc12)
_ {2”( w1s — Pr2)Vi(Pryy — Px2)V1]04
(tr(Pﬁtm - Px?)vl)z !
(tT(P:mz - Px?)vl) ¢ (tT(me - Px?)vl)2
2tr(Py,, — Py2)?
T( 12 2) }0,4 (63)

(tT(sz - Px?)vl)QtT<I P9E12)

After calculating the variance component estimators, 52, and &3 for Parti-
tion I and Partition II, respectively, we compare their variances. The estimator
that has less variance can then be recommended and thereafter modified. Here
it is essential to compare the leading terms of the coefficients of of, 0% and
J%. We are going to suppose that the variance component corresponding to
the second random effect in Partition I, is considerably "small", because if
this component is large, the variance function in (27) is going to be large as
well. Under such circumstances, it could be better to take into consideration
the estimators obtained from Partition II, instead of the ones obtained from
Partition I.

The coefficient of o7 under Partition I equals

2
(tr(Ppy — Py)V1)?

tr(Pp1 — Pr)Vi(Pr1 — Pp)VA,

and under Partition II

2
(tr(qu - Px2)‘/1)2

tr(me — ng)‘/i(Px12 — PJ;Q)Vl.
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Hence, comparing the coefficients of of in the two partitions can be expressed
in the following inequality

2 I
r

(tr(Pp1 — Pp)V1)?

2

<

(tr(PIn - Pﬂc2)Vl)

Likewise, considering the coefficients of o2 in (27) and (63) we have the fol-
lowing

P:cl _Px)‘/l(P:cl _Px)vl

QtT(PIu _Px2)‘/1(PfL“12 — Py )Vl (64)

2tr(Pyy — Py) 2(tr(Py1 — Pp)Va)*tr(Pyyy — Pr1)?
(tr(Pe1 — P)VA)?  (tr(Pey — Pr)Vi)2(tr(Pryy — Pr1)V2)?

2k2
+ ,
(& (Bor = POV (e(Pryy — Pt Va2l — Prry)

[ 2t7'(P9612 - 172)2 + Q(tr(Prm - w2))2 ]
N (tI‘(wa - PIB?)Vl)Q (tr(Pfl?lz - PIQ)VI)ztr(I - P-'L'IQ) .

(65)

Thus,

Proposition 2. In model (12) let the variance component corresponding to
the first random effect be estimated according to the estimation equations given
by (20) or (60), and denoted 52, and G2, respectively. Then under the assump-
tion that o302 and o3 are "small”, (64) and (65) are sufficient conditions for
D[;,]<D[e?].

We can further simplify the expressions (64) and (65) as below: In (64),
let A= (Py1 — P;) and B = (Py,, — Py2). Equation (64) can be written
tr(AViAVY) _ t(BViBVA)

(trAVy)?2 =  (trBVp)?
Since V4 is symmetric, V; can be written V3 = I'D1T” where D; is the diagonal

matrix of the r; eigenvalues of V;. Taking every part of (66) separately, the
LHS can be written as

(trAV1)2 = (tr(Al“Dll“’))2
= (tT(A*Dl))Z

A, A, A1 0\
— t 11 12
“(Am Am)( 0 o>)
= (tr(A*11A1)2

I
= (Z axiiA1)?, (67)
i=1

(66)
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where A, = I"AT and A; = diag(A11, .., A1), 71 is the rank of V3. For the

term

tr(AVlAvl) = tr(Al“Dll“’Al“Dll“’)
= tr(A*DlA*Dl)

-l 82)(3 ) (3 )
A*21 A*Qz 0 0 A*21 A*22 0 0

T1
= (A, A1 A, A =) a2 A 2 awjacgididyg.  (68)
= i
The right hand side of (66) can be written as
(tr(BV1))? = (trBTDiI")? = (trB.D1)* = (tr(Byy, A1))?

rl
= (O buir)?, (69)
i=1
where B, = I'"BT'. Similar calculations give

B‘/lBVi Z b*“ i T 2 Z b*z] b*]’L)\l’L)\].] (70)
i#]

Thus, (66) can now be rewritten as

Zz 1 *22)‘11 +2 Zzyﬁj a*l]a*ﬂ)‘ll)‘lj < Z:1 1 biu)‘Q +2 Zz#] b*l]b*ﬂ)\llAlﬂ
(21:1 a*n/\lz) N (Z b*zz/\lz)

(71)

Moreover, each part of (65) can be considered separately . First, from

previous calculations the first term of the left hand side of (65) can be rewritten
as

tI‘(le - Px) _ Tzl — Tx
(tr(Per — Po)VA)? (D20 awiiA1i)?
For the second part V5 is involved, writing Vo = UDyU’, where U is an

orthogonal matrix, i.e., UU' = I and Dy is the diagonal matrix having the
eigenvalues of V5 on its diagonal. The rank of Va will be denoted by ro

tr((Py1 — Pe)V2) = tr(AVa) = (trAUDyU’)
= (ttU'AUDs) = tr(AeDs2)

2
Aey, As Ay 0)
= ftr 1 12 = Cleii N2
(<A.21 A.22)< 0 o) ; 2
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where Ay = U'AU and Ay = diag(Aa1, ..., Aore). We also have the following

term involved
(tr(Pryy — Pp1)Va)? = (trOV)? = (trC, Dy)? Z Criiai)?, (73)

where C = (Py,, — P;1) and C, = U'CU. The second term is equal to

((Pr1 — )V2) 1( Py, — Pr1) _ (221 a'ii/\Qi)2(Tﬂc12 —Tz1)

= —= - . (74)
(tr(Pe1 — Pe)V1)2(tr(Pyyy — Pe)V2)? (3001 asiid1i) 20002 Cuiiai)?
Finally the third part is equal to
[tr(Py1 — Py)Vatr(Pyy, — Pu1) — tr( Py — Po)tr(Pyy, — Pa1)Va)?
(tr(Pr1 — Py)V1)2(tr(Pyyy — Pia)Va)?tr(I — Pry,)

[t AVR(rey, — Te1) — (T — 72 )trCVa]?

- (trAV1)2(tI'CV2)2<TL — 7“:512)

_ (210 — T21) Zﬁl QeiiN2i — (Tgy — Tz) Z:; C*ii>\2i]2' (75)

(O awiidia)2(302 ) cxiihai)2(n — Ty

Performing the same calculations as above, for the right hand side of (65) we
get the following

tr(qu — Px?) (tr(PIm - PI?))2
(tI‘(qu - PIQ)Vl)Q (tr(PéL“w - PI?)Vl)th(I - PSL‘12)

_ (Tﬂﬁlz - TIEQ) + (Tfﬂlz - 7“362)2 ]
(i baiidii)? (0L baiidis)2(n — 7,)

We have now all the involved terms for the coefficient of o2 for the two parti-
tions, i.e., (27) and (63). Thus the (65) can be written as

(76)

|: Tzl — T + (Z:il a°ii)‘2i)2(r3?12 - Tﬂﬂl)

(i1 axiidi)? (00 awiihis)2(002 ) criihai)?

[(T2yy — T21) 221 QeiiN2i — (Toy — T2) Z:il C*z‘z‘>\2i]2]
(L) awiidi)2(002 1 caiidei)2(n — Tay,)

< |: (rﬂﬁu - TCEQ) (TI12 - Tx2)2
-l

Sl biids) (D0 buiihis)2(n — Txm)}

+

(77)
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To summarize:

Comparing the variances, D[52;] and D[5?], obtained from the two different
estimation equations denoted by Partition I and II, we have found certain con-
ditions under which any of the estimators can be preferred, i.e., the estimator
that has less variance.

To examine further (64) and (65), different examples will be considered.
We have studied a few examples and calculated the value of the inequalities
(64) and (65) corresponding to the variance functions, i.e., (27) and (63). The
considered examples have different numbers of observations n and the data
have different experimental design patterns. From Table 1, we can observe
according to the calculated values of the inequalities when data is balanced
as in Examples 1, 2 and 8, that there seems to be no difference as to which
partition to apply as was expected. In all the other examples, both (64) and
(65) were satisfied indicating that Partition IT should be recommended.

5 Conclusion

The problem of modifying the variance component estimator obtained by using
Henderson’s method 3, has been the focus of our work as well as to compare
two different decompositions of sums of squares.

For a two-way linear mixed model, consisting of three variance components,
02, 02 and o2, we have perturbed the Henderson’s estimation equations. The
main aim, was to modify the standard unbiased estimator, corresponding to
one of the random effects, by multiplying the estimator with some coefficients
that are chosen to minimize the leading terms, o, 03 and o2 in the MSE
equation. Two modified variance component estimators are proposed; each
appropriate under certain given conditions. Our proposed estimators are easy
to compute and have smaller MSE than the unmodified one. Moreover, the
conditions under which each of the proposed estimators are valid, are easy to
investigate. For instance, in practical application if the unbiasedness condition
is not of major concern, our proposed estimators should be considered.

We have studied two decompositions of Henderson’s method 3, which we
denoted by Partition I and Partition 1I. The former consisting of three variance
components, and the latter of two variance components. The variances of the
variance component estimators 52; and 7 obtained from the two partitions,
were compared under the assumption that o3 and o702 are "small".

Examples consisting of balanced and unbalanced data are considered. With

balanced data, the partitions are equal . Otherwise, when data are unbalanced
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we have two cases; for the case when Partition I is recommended our modifi-
cation approach is suitable. For cases when Partition IT can be recommended,
we refer to the paper by Kelly and Mathew (1994).
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Table 1: Different examples, coefficients of the leading terms of and o2 are compared for
Partition I and Partition II

Example The Model n  eq:(64) eq:(65)
12 0
o 14 0 0 19
1 Y =1gp+ < 0 14 > ul + 1 0 ug + e. 8 equal equal
0 19
15 0 0
0 1s O
— 1i5 0 0 0 15
2 Y = 1301 + ( 0 1ys ) ul + 15 0 0 u + e. 30 equal equal
0 1s O
0 0 15
12 0
3 Y =1gp + < 105 193 > w1 + 101 103 u2 + e. 8 equal satisfied
0 19
14 0
_ 16 0 0 12 .
4 Y =1gp + ( 0 1o > uy + 1, 0 u2 + e. 8 equal satisfied
0 1
15 0 0
0 1 0
1o 0 0 1 05 0
5 Y = 130p + 0 115 O uy + [1)0 15 0 uz + e. 30 satisfied satisfied
0 0 Is 0 12 0
0 0 13
14 0 0
17 0 0 0 8 1?0 16"’
6 Y = 1301 + 8 1(1)2 10 8 uy + 0 0 1o u2 +e. 30 satisfied satisfied
6 1z 0 0
0 0 15 0 14 0
15 0 0
1 0 O
0 13 O
15 0 0 1, 0 . .
7 Y =1o1p+ 0 19 O uy + 0 0 1s uz + e 21  satisfied satisfied
0 0 17 14 0 0
0 13 O
15 O
1o 0 0 10 105
8 Y = 130p + 0 110 0 uy + 05 15 u2 +e 30 equal equal
0 0 110 15 0
0 15




