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Abstract
Inherited traits are often in�uenced by several genes. Regions on the
genome known to a�ect such traits are called Quantitative Trait Loci
(QTL). In variance component QTL analysis, a mixed model is used
to detect the most likely chromosome position of a QTL. The putative
QTL is included as a random e�ect and a method is needed to estimate
the QTL variance. The standard estimation method used is an iterative
method based on the Restricted Maximum Likelihood (REML). In this
paper, we present a novel non-iterative variance component estimation
method. This method is based on Henderson's (1953) method 3, but
relaxes the condition of unbiasedness. Two similar estimators were com-
pared, which were developed from two di�erent partitions of the sum
of squares in Henderson's method 3. The approach was compared to
REML on data from a European wild boar × domestic pig intercross.
A meat quality trait was studied on chromosome 6 where a functional
gene was known to be located. Both partitions resulted in estimated
QTL variances close to the REML estimates. From the non-iterative
estimates we could also compute good approximations of the likelihood
ratio curve on the studied chromosome.

Keywords: Variance components, REML, Henderson's method 3, minimized
mean square error, QTL analysis.
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1 Introduction
Regions on the genome known to a�ect continuous traits are called Quantita-
tive Trait Loci (QTL). In animal experimental data, breeds that are expected
to di�er genetically are crossed. These data are commonly analyzed using a
simple regression model that assumes no genetic variation between individuals
of the same breed (Haley and Knott 1992, Broman 1997). Animal breeds are
known to vary genetically, and the within breed variation may be modeled
as a random e�ect (Perez-Enciso and Varona 2000, Rönnegård and Carlborg
2006). The variance component estimation can be extremely computationally
demanding because the model is �tted at every tested location (often > 1000)
on the genome.

In a variance component QTL analysis all the founders of the analyzed
families are assumed unrelated with genes randomly sampled from an outbred
population. Here the QTL e�ects are modeled as a random e�ect in a mixed
linear model (Goldgar 1990, Blangero et al. 2001). The variance components of
this model have so far been estimated using iterative maximum likelihood based
algorithms. The two most commonly used methods are maximum likelihood es-
timation with Fisher's scoring (see e.g., Pawitan 2001) and restricted maximum
likelihood estimation with average information REML (Johnson and Thomp-
son 1995) that combines Newton method and Fisher's scoring. The power to
detect QTL is considerably higher in controlled animal crosses than in e.g., hu-
man data. The computational demands are lower in human data, where many
small and independent families are analyzed, than in animal crosses, where
most animals are related in a single pedigree. Numerical methods to speed up
the variance component estimation using REML in animal crosses with a small
number of founders have recently been developed (Rönnegård et al. 2007), but
the REML estimation is still very computationally demanding and depends
on good initial values in the iterative procedure to converge within a limited
number of iterations.

Henderson (1953) developed non-iterative methods that gives unbiased
variance component estimators. In our paper, we will concentrate on Hen-
derson's method 3, which allows for �xed, random and interaction e�ects in
the model. A problem with this method is that the estimates can assume
negative values and the properties of the estimators are inferior to REML. For
a balanced linear mixed model Kelly and Mathew (1993) improved the un-
biased ANOVA estimator such that the resulting estimator had smaller MSE
and smaller probability of negativity than the ANOVA estimator. Kelly and
Mathew (1994) presented several nonnegative estimators for mixed models
with unbalanced data. The models they considered consisted of two variance
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components, where one of the components is the error variance and the other
variance component is the parameter of interest. If additional variance com-
ponents were to be included in their model then these were treated as nuisance
parameters and were deleted from the model by orthogonal projections.

Following the ideas of Kelly and Mathew (1993,1994), for mixed models
with three variance components Henderson's method 3 has been improved by
Al-Sarraj and von Rosen (2007). The variance component estimator corre-
sponding to the QTL was modi�ed such that the leading terms of the MSE
were minimized.

The aim of this study is to test the utility of modi�ed Henderson's 3 esti-
mates in a QTL study. Two modi�ed estimators based on Henderson's method
3 are compared; all the variance components are included in the �rst estima-
tor, whereas the second estimator only includes two variance components, i.e.,
the model is reduced by a suitable linear transformation (following Kelly and
Mathew 1993). The methods are tested on data from an experimental cross
between wild and domestic pigs. The estimates are also compared with REML
estimates obtained from the same data.

2 QTL variance component model
The aim of a QTL analysis is to detect regions most likely to harbor genes
a�ecting the studied trait. In the data set that we analyze the functional
halothane gene has previously been identi�ed, which means that we know the
position and can compare estimated position from our QTL analysis with the
true position.

We use a variance component model in our QTL analysis. Let Y be the
n × 1 trait vector that may also be in�uenced by �xed e�ects such as sex,
age, etc. Moreover, the correlation between trait values is often a�ected by
common family environments. Hence, this can be represented by the following
mixed linear model

Y = Xβ + Z1u1 + Z2u2 + e, (1)
where Y is multivariate normal, β is a c × 1 vector of �xed e�ects and X
is a known n × c design matrix. The �rst random e�ect of (1), u1, is m × 1
vector of independently normally distributed base generation allele e�ects, i.e.,
u1 ∼ MV N(0, 1

2σ2
1I) where I is the identity matrix and σ2

1 is the QTL geno-
typic variance. The genotypic value υi of individual i in the base generation
is the sum of the pair of QTL allele e�ects at a speci�c position υi=uk+uk+1,
where the QTL alleles are arbitrarily numbered k = 2i− 1 in the base. Hence,
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by de�ning the variance of the random QTL genotypic e�ects as σ2
1, the vari-

ance of the QTL allele e�ects is 1
2σ2

1. The QTL alleles are all assumed to be
independent in the base generation, i.e., Cov(ui, uj) = 0 where i and j are
di�erent indices for the m base alleles. The number of base generation alleles
m equals twice the number of base generation individuals. Z1 is the n×m in-
cidence matrix giving the two base generation alleles that have been inherited
by a speci�c individual. Furthermore, the second random e�ect represented in
(1) by u2 is the q× 1 vector of family e�ects, u2 ∼ MVN(0, Iσ2

2) and Z2 is the
corresponding n × q incidence matrix. e is the n × 1 vector of random error
with e ∼ MVN(0, Iσ2

e) where σ2
e is the error variance. The variance-covariance

matrix of Y is therefore:

V =
1
2
Z1Z

′
1σ

2
1 + Z2Z

′
2σ

2
2 + Iσ2

e (2)

where 0.5Z1Z
′
1 is the identity-by-descent (IBD) matrix Π. The �ow of alle-

les through the pedigree is generally not ambiguously known and has to be
calculated from genetic marker information. Instructions and algorithms for
calculating Π are found in Almasy and Blangero (1998), Fernando and Gross-
man (1989), Goldgar (1990).

In our study we used a deterministic method (Pong-Wong et al. 2001) to
calculate the IBD matrix at every 5 cM along pig chromosome 6. Z1 was then
calculated from single-value decomposition of Π.

3 Modi�ed Henderson's method 3
In Henderson's method 3, the mean squares associated with various ANOVA
tables are set equal to their expectation, and estimates are obtained by solving
the resulting linear equations. The set of equations are not uniquely de�ned
since there are more reduction sums of squares than variance components. We
will study two cases which we will refer to as Partition I and Partition II. In
Partition I, all three variance components are included, whereas only σ2

1 and σ2
e

are included in Partition II. The latter partitioning is similar to the case studied
by Kelly and Mathew (1993). The obtained variance component estimators
from the two partitions are given in Appendix A. Modi�ed estimators are
then obtained by perturbing the standard estimator, such that the obtained
estimator has a MSE that is less than the unmodi�ed one (for details see
Al-Sarraj and von Rosen 2007).
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The modi�ed estimator from Partition I is given by:

σ̂2
1 = c1(

Y ′(Px1 − Px)Y
tr(Px1 − Px)V1

− tr(Px1 − Px)V2d1Y
′(Px12 − Px1)Y

tr(Px1 − Px)V1tr(Px12 − Px1)V2

+
kd2Y

′(I − Px12)Y
tr(Px12−Px1)V2tr(I − Px12)

). (3)

where k = tr((Px1−Px)V2)tr(Px12−Px1)−tr(Px1−Px)tr((Px12−Px1)V2). For
Partition II a second set of estimation equations are used, where the modi�ed
estimator of σ2

1 is:

σ̂2
1 =

c2Y
′(Px12 − Px2)Y

tr(Px12 − Px2)V1
− c2ε1tr(Px12 − Px2)Y ′(I − Px12)Y

tr(Px12 − Px2)V1tr(I − Px12)
. (4)

The coe�cients c1, d1 and d2 and the coe�cients c2 and ε1 that are involved
in (3) and (4), respectively are chosen to minimize the MSE of σ̂2

1. For details
of the two di�erent estimation equations and the involved coe�cients, see
appendix A.

4 Data
In the analyzed F2 cross, two European wild boars were mated to eight Large
White sows. Four F1 boars were then mated to 22 F1 sows, producing 191
recorded F2 o�spring in 26 families. In our analysis, we examined a meat
quality trait (re�ectance value, EEL), which is a�ected by the halothane gene
located on chromosome 6 at position 80.4 cM. One of the founder boars was
heterozygote (HalN/Haln) for this gene whereas all other founders were ho-
mozygotes (HalN/HalN ) for the same allele. Following Knott et al. (1998),
we included sex, litter and slaughter weight as �xed e�ects in our analysis.
Family was included as random e�ect. Twenty two markers were genotyped
on chromosome 6 at: 0.0, 8.6, 36.6, 49.7, 50.5, 62.9, 79.2, 80.4, 83.7, 84.1, 84.8,
90.6, 95.4, 100.7, 101.9, 115.9, 116.7, 119.0, 120.2, 124.0, 127.0 and 170.9 cM.

5 Analysis
The standard method to analyze experimental intercrosses is a simple regres-
sion model (Haley and Knott 1992), which assumes that there is a large genetic
variation between breeds and small variation within breeds. The halothane
gene would not have been detected with this model (Andersson-Eklund et al.
1998), because there was only one copy of the Haln-allele among the founders.
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The variance component QTL model (1) was �tted at every 5 cM. Variance
components were estimated using both non-modi�ed and modi�ed Henderson's
method 3 with Partition I and II. These were compared to REML estimates.
REML gives both the variance component estimates and a likelihood pro�le
curve along the chromosome. A likelihood ratio was calculated at each position
as: LR = −2(l0− l1) where l1 is the log-likelihood for (1) at a speci�c position
and l0 is the log-likelihood under the null hypothesis of no QTL (i.e. for
model (1) with u1 deleted). Approximations of the LR-curve were calculated
by calculating the log-likelihood for : σ̂2

2 and σ̂2
e estimated under the null

hypothesis and σ̂2
1 estimated with one of the modi�ed Henderson's estimators.

The approximated LR values were put equal to 0 for negative values of σ̂2
1.

6 Results
6.1 Variance component estimates
A QTL scan was performed at every 5 cM along pig chromosome 6 for the
meat quality trait EEL. The phenotype observations from the F2 individuals
were approximately normally distributed (Figure 1). The REML and the two
modi�ed Henderson 3 estimators of σ2

1 were similar for most positions (Figure
2). The estimates at the halothane gene (80 cM) for REML, modi�ed Partition
I and modi�ed Partition II, respectively, were: 4.96, 4.32, 5.06. The modi�ed
Partition I estimators resulted in slightly lower estimates and the di�erence
was greatest at the right end of the chromosome around 150 cM.

The non-modi�ed Partition I estimates tended to be lower than the REML
estimates, whereas the non-modi�ed Partition II estimates tended to be higher
than the REML estimates (Figure 3). Hence, there was no clear results which
of the two partitions that was the superior one.

6.2 Likelihood ratio curve

The LR curve, obtained from �tting the variance component QTL model in
(1) using REML, showed a peak at 80 cM (Figure 4). This position coincides
with the location of the halothane gene. The log-likelihood under the null
hypothesis was l0 = -378.0, and the REML variance component estimates of
the family and residual e�ects were: σ̂2

2 = 0.94 and σ̂2
e= 17.6.

Approximated LR curves were calculated for both the modi�ed Partition I
and II estimates of the QTL variance, which gave good approximations of the
correct LR curve (Figure 4).
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Figure 1: Histogram of the F2 individuals' meat quality (EEL) values from the studied
Wild Boar x Domestic Pig intercross.

Figure 2: Estimates of the QTL variance σ2
1 along pig chromosome 6. Solid line-

REML estimates, dashed line-modi�ed Partition I, dashed line with open circles-
modi�ed Partition II
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Figure 3: Non-modi�ed estimators of the QTL variance σ2
1 along pig chromosome 6. Solid

line-REML estimators, dashed line-Partition I, dashed line with open circles-Partition II

Figure 4: Likelihood ratio (LR) values along pig chromosome 6. The halothane gene a�ect-
ing meat quality is located at 80 cM. LR values from REML given as solid line, approximated
LR values from modi�ed Partition I given as dashed line, and, approximated LR values from
modi�ed Partition II given as dashed line with open circles. The estimators from Partition
I and II are very similar.
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7 Discussion
We have tested a new non-iterative variance component estimation method on
a QTL chromosome scan of the meat quality trait EEL. The variance compo-
nent estimates di�ered substantially from REML estimates at several chromo-
some positions, but they were very close to the REML estimates at the QTL
position. Moreover, the likelihood ratio curve could be very well approximated
from our non-iterative VC estimators. Our method would also have given the
same estimated position of the halothane gene as REML.

The large computational requirements of iterative REML algorithms are a
major concern in QTL analysis (Rönnegård et al. 2007) and limits the anal-
ysis of large data sets. Furthermore, as the cost for genotyping decreases, the
size of the analyzed pedigrees is likely to increase in the future, making full
genome scans computationally slow or even infeasible. Our explicit solutions
for the estimation of the QTL variance opens up new possibilities to develop
fast and accurate QTL genome scan methods. The most computationally de-
manding part of the iterative REML algorithms is to calculate the inverse of V
in each iteration. In the modi�ed Partition I method, for instance, the only ma-
trix inversions required are the generalized inverses of (X, Z1, Z2)′(X, Z1, Z2),
(X, Z1)′(X, Z1) and (X ′X) in Px, Px1 and Px12 , see Appendix A. These ma-
trix inversions are relatively easy to optimize in computational speed when
there are few columns in (X, Z1, Z2). The number of �xed e�ects are usually
small in QTL problems, and the rank of the IBD matrices is either small or
can be approximated with lower rank matrices (Rönnegård and Carlborg 2007,
Rönnegård et al. 2007). We can, therefore, expect that (X, Z1, Z2) has few
columns. Hence, our method should be easy to optimize numerically for two
reasons; it is non-iterative and does not involve inverses of large matrices.

In conclusion, we have developed a novel method for QTL analysis, which
is simpler to calculate than REML and gives better estimators than those
obtained from Henderson's (1953) method.
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APPENDIX A:

Expressions for the reduction sum of squares needed for Henderson's
method 3.

To estimate the VC of the model (1) we de�ne the following matrices [X],
[X,Z1] and [X,Z1, Z2]. The corresponding projection matrices are

Px = X(X ′X)−X ′

Px1 = (X,Z1)((X, Z1)′(X,Z1))−(X, Z1)′

Px12 = (X,Z1, Z2)((X, Z1, Z2)′(X, Z1, Z2))−(X, Z1, Z2)′

where − represents the g-inverse AA−A = A. The �rst set of estimation
equation Partition I are based on





R(u1/β)
R(u2/β, u1)
SSE

where R(.) denote the reduction sum of squares and the residual sum of squares
is denoted by SSE= Y ′(I − Px12)Y , see Searle (1971). The obtained variance
component estimator from Partition I is

σ̂2
u1

=
Y ′(Px1 − Px)Y

tr((Px1 − Px)V1)
− tr((Px1 − Px)V2)Y ′(Px12 − Px1)Y

tr((Px1 − Px)V1)tr((Px12 − Px1)V2)

+
kY ′(I − Px12)Y

tr((Px1 − Px)V1)tr((Px12 − Px1)V2)tr(I − Px12)
(5)

For the second set of estimation equations we need to de�ne [X,Z2] and the
corresponding projection matrix

Px2 = (X, Z2)((X, Z2)′(X,Z2))−(X, Z2)′

The second set of estimation equations Partition II are based on
{

R(u1/β, u2)
SSE

The obtained variance component estimator from Partition II is

σ̂2
1 =

tr(I − Px12)Y
′(Px12 − Px2)Y − tr(Px12 − Px2)Y

′(I − Px12)Y
tr(Px12 − Px2)V2tr(I − Px12)

=
Y ′(Px12 − Px2)Y
tr(Px12 − Px2)V1

− tr(Px12 − Px2)Y
′(I − Px12)Y

tr(Px12 − Px2)V1tr(I − Px12)
. (6)
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For the coe�cients c1, d1 and d2 given in (3) we have the following values

c1 =
1

2
[tr(Px1−Px)V1]2

[tr(Px1 − Px)V1(Px1 − Px)V1] + 1
,

d1 =
1

2
[tr(Px12−Px1)V2]2

[tr(Px12 − Px1)V2(Px12 − Px1)V2] + 1
,

d2 =
(tr(Px1−Px)V2)
tr(Px12−Px1)V2

d1tr(Px12 − Px1)− tr(Px1 − Px)

[ k
tr(Px12−Px1)V2

][ 2
tr(I−Px12 ) + 1]

.

where V1 = Z1Z
′
1 and V2 = Z2Z

′
2. For details and calculations (see Al-Sarraj

and von Rosen 2007).
Now for the coe�cients that are involved in Partition II, i.e., c2 and ε1 given

in (4) we refer to Kelly and Mathew (1994). However, we have calculated the
values such that they would be appropriate for the second set of estimation
equations Partition II,

c2 =
1

2
[tr(Px12−Px2)V1]2

[tr(Px12 − Px2)V1tr(Px12 − Px2)V1]
,

ε1 =
1

2
tr(I−Px12 ) + 1

.
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