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Abstract

In this article models based on pq-dimensional normally distributed ran-
dom vectors x are studied with a mean vec(ABC), where A and C
are known matrices, and a separable covariance matrix Ψ ⊗ Σ, where
both Ψ and Σ are positive definite and except the estimability condi-
tion ψqq = 1, unknown The model may among others be applied when
spatial-temporal relationships exist. On the basis of n independent ob-
servations on the random vector x, we wish to estimate the parameters
of the model. In the paper estimation equations for obtaining maximum
likelihood estimators are presented. It is shown that there exist only
one solution to these equations. Likelihood equations are also consid-
ered when FBG = 0, with F and G known. Moreover, the likelihood
ratio test for testing FBG = 0 against FBG 6= 0 is considered.

Keywords: Growth Curve model, estimation equations, Kronecker product
structure, maximum likelihood estimators, separable covariance.
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1 Introduction

Nowadays the complexity in data is increasing. Classical multivariate statis-
tical analysis is usually based on a vector with correlated components, for

1Correspondence author: Dietrich.von.Rosen@bt.slu.se
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example, x ∼ Np(µ,Σ), which means that the p-dimensional vector x is mul-
tivariate normally distributed with mean vector equal to µ and dispersion
matrix (variance-covariance matrix) equal to Σ.

The correlation may be due to time dependence, spatial dependence or
some underlying latent process which is not observable. However, in many
data sets we may have two processes which generate dependency. For exam-
ple, in environmental sciences when studying catchment areas we have both
spatial and temporal correlations, in neurosciences when evaluating fMRI-
voxels, where repeated measurements on each voxels are both temporally and
spatially correlated, in array technology, where many genes (antigens) are rep-
resented on chips (slides) with repeated observations over time, i.e. we have
correlations between genes (antigens) and correlation over time.

The main goal of this paper is to extend the classical model, x ∼ Np(µ,Σ),
to x ∼ Npq(µ,Ψ⊗Σ), where x : pq× 1, µ : pq× 1, Ψ : n× n, Σ : p× p, and
⊗ denotes the Kronecker product.

Both Ψ and Σ are unknown but it will be supposed that they are positive
definite. Due to the Kronecker product structure, we may convert x : pq ×
1 into a matrix X : p × q which is matrix normally distributed, i.e. X ∼
Np,q(µ,Σ,Ψ), where now µ is a p × q matrix. Throughout this paper we
will have n independent observations, Xi ∼ Np,q(µ,Σ,Ψ), whereas in the
classical case one has usually only one observation matrix X ∼ Np,q(µ,Σ, I).
The paper exploits how the independent ”matrix-observations” can be used
for estimating µ,Σ,Ψ with certain bilinear structures on µ.

For some related works we refer to Galecki, A.T. (1994), Shitan & Brock-
well (1995), Naik & Rao (2001), Roy & Khattree (2005), Lu & Zimmer-
man (2005) and Srivastava et al. (2007) who all consider the model X ∼
Np,q(µ,Σ,Ψ). In comparison to the mentioned works this paper treats more
general mean structures, i.e. the mean structure given in Potthoff & Roy (1964)
and some of its extensions. Moreover, in this paper we also pay attention to
the problem of showing that the MLEs are unique. More general mean struc-
tures like those considered in von Rosen (1989), Srivastava (2002) could also
have been treated but it is fairly easy to implement these models in the present
framework and therefore they will not be considered.

It is interesting to observe that in the classical case of multivariate analysis,
i.e. X ∼ Np,q(µ,Σ, I), explicit estimators and tests based on MLEs are avail-
able for a large class of structures on µ (e.g. see Andersson & Perlman, 1993,
Kollo & von Rosen, 2005, Chapter 4). When generalizing we have iid. ob-
servations Xi ∼ Np,q(µ,Σ,Ψ) where Ψ is unknown. In this case no explicit
MLEs are available. However, it will be shown in this paper that the likelihood
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equations provide us with only one solution.
The dispersion matrix of a matrix Xi is defined by a vectorized form,

i.e. D[Xi] = D[vec(Xi)], where vec is the usual vec-operator. In our models

D[Xi] = Ψ⊗Σ.

For the interpretation it is noted that Ψ : q × q describes the covariance
structure between the columns of Xi. The covariance between the columns
will up to proportionality be the same for each row of Xi. The other covariance
matrix Σ : p × p describes the covariance between the rows in Xi which up
to proportionality will be the same for each column. The product Ψ ⊗ Σ
takes into consideration both Ψ and Σ. Indeed, Ψ ⊗ Σ tells us that the
overall covariance consists of the products of the covariances in Ψ and Σ,
respectively, and we have

Cov[xkl, xrs] = σkrψls, (1.1)

where Xi = (xkl),Σ = (σkr) and Ψ = (ψls). Moreover, if we return to our
examples in the beginning Σ may consist of the time-dependent covariances
and Ψ takes care of the spatial correlation, or for the array data Ψ models the
dependency between genes (antigens) and Σ represents the correlation over
time. Note that (1.1) implies that the correlation of xkl and xrs equals the
product

corr[xkl, xrs] =
σkr√
σkkσrr

ψls√
ψllψss

,

As noted above this paper considers more general mean structures than others.
It will be assumed that the mean µ of Xi follows a bilinear model, i.e.

E[Xi] = ABC, (1.2)

where A : p× r and C : s× q are known design matrices. This type of mean
structure was introduced by Potthoff & Roy (1964). Under the assumption
that Ψ = I (or Ψ known), i.e. we have independent columns in Xi this
will give us the well known Growth Curve model. For details and references
connected to the model it is referred to Srivastava & Khatri (1979), Srivastava
& von Rosen (1999) or Kollo & von Rosen (2005).

Observe that if the matrix Xi : p× q is Np,q(ABC,Σ,Ψ) distributed we
may form a new matrix

X = (X1 : X2 : . . . : Xn),
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which is

Np,qn(AB(1′n ⊗C),Σ, In ⊗Ψ), (1.3)

where 1n is a vector of 1s and of size n, and In is the identity matrix of size
n× n.

The aim of the paper is to present estimating equations for estimating B,Σ
and Ψ as well as to show how to estimate the parameters when FBG = 0
holds for known matrices F and G. Moreover, concerning the MLEs we will
show that the proposed equations have a unique solution. This is a property
these estimators share with estimators of canonical parameters in the expo-
nential family, although the present model belongs to the curved exponential
family. Moreover, since parameters can be estimated when FBG = 0 some
results for testing the hypothesis H0 : FBG = 0 against H1 : FBG 6= 0
will be presented.

2 MLEs of Σ and B when Ψ is known

In this section we briefly consider n iid observation matrices Xi ∼
Np,q(ABC,Σ,Ψ), i = 1, . . . , n, A: p × r and C: s × q are known matrices,
B: r×s and Σ: p×p are unknown parameters and Ψ: q×q is supposed to be
known. In many practical problems we may wish to test that Ψ = Ψ0, where
Ψ0 is a specified matrix, so that the usual results available for the growth curve
model can easily be modified and used, since now we have n iid observation
matrices instead of one. For one observation, the MLEs were given by Khatri
(1966) and their uniqueness was proved in Srivastava & Khatri (1979, p. 24).
Here, the uniqueness of the MLEs of B and Σ is considered in the sense that
AB̂C and Σ̂ maximizes the likelihood function, where B̂ and Σ̂ are the MLEs
of B and Σ, respectively. However, when A and C are not of full rank, one
may find several B̂ giving the same value of AB̂C, see Kollo & von Rosen
(2005). From practical view point we need only to calculate AB̂C which is
unique for any version of B̂.

The main reason for presenting results for known Ψ is that they will be
used later. Since Ψ is positive definite, the data may be transformed, i.e. Y i =
XiΨ−1/2, where Ψ1/2 is a symmetric positive definite square root of Ψ. Let
Y = (Y 1 : Y 2 : . . . : Y n) : p× qn, and then

Y ∼ Np,qn(AB(1′n ⊗CΨ−1/2),Σ, I),

where A, B and C are as given above. From results in Srivastava & Khatri
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(1979) or Kollo & von Rosen (2005) it follows directly that

nB̂ = (A′S−1A)−A′S−1Y (1n ⊗Ψ−1/2C ′(CΨ−1C ′)−)
+(A′)◦Z1 + A′Z2C

◦′ , (2.1)
S = Y (I − n−11n1′n ⊗Ψ−1/2C ′(CΨ−1C ′)−CΨ−1/2)Y ′, (2.2)

where A′◦ and C◦ are any matrices which generate C(A′)⊥ and C(C)⊥, i.e. the
orthogonal complements of C(A′) and C(C), respectively, and C(·) denotes the
column vector space. In (2.1) and (2.2) − denotes an arbitrary g-inverse, and
Z1 and Z2 are arbitrary matrices of proper sizes. Furthermore,

nqΣ̂ = (Y −AB̂(1′n ⊗CΨ−1/2))(Y −AB̂(1′n ⊗CΨ−1/2))′

= S + n−1SA◦(A◦′SA◦)−A◦′

×Y (1n1′n ⊗Ψ−1/2C(C ′Ψ−1C)−C ′Ψ−1/2)Y ′

×A◦(A◦′SA◦)−A◦′S
= S + n−1(I −A(A′S−1A)−A′S−1)
×Y (1n1′n ⊗Ψ−1/2C(C ′Ψ−1C)−C ′Ψ−1/2)Y ′

×(I − S−1A(A′S−1A)−A′),
(2.3)

where S is given in (2.2). If in (1.2) rank(A) = r and rank(C) = s then B̂ is
uniquely estimated, i.e.

nB̂ = (A′S−1A)−1A′S−1Y (1n ⊗Ψ−1/2C ′(CΨ−1C ′)−1).

Note that Σ̂ is always uniquely estimated.
Turning to the restrictions FBG = 0 it is observed that these restrictions

are equivalent to the relation

B = (F ′)◦θ1 + F ′θ2G
◦′ ,

where θ1 and θ2 may be regarded as new unknown parameters. From Theorem
4.1.15 in Kollo & von Rosen (2005) it follows that

B̂ = (F ′)◦θ̂1 + F ′θ̂2G
◦′ ,

where

θ̂2 = (FA′T ′
1S

−1
2 T 1AF ′)−FA′T ′

1S
−1
2 T 1Y (1n

⊗Ψ−1/2C ′G◦(G◦′CΨ−1C ′G◦)−) + (FA′T ′
1)
◦Z11 + FA′T ′

1Z12(G◦′C)◦
′

(2.4)
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with

T 1 = I −A(F ′)◦((F ′)◦
′
A′S−1

1 A(F ′)◦)−(F ′)◦
′
A′S−1

1 ,

S1 = Y (I − n−11n1′n ⊗Ψ−1/2C ′(CΨ−1C ′)−CΨ−1/2)Y ′,
S2 = S1 + T 1Y (n−11n1′n ⊗Ψ−1/2C ′(CΨ−1C ′)−CΨ−1/2)

× (I − n−11n1′n ⊗Ψ−1/2C ′G◦(G◦′CΨ−1C ′G◦)−G◦′CΨ−1/2)
× (n−11n1′n ⊗Ψ−1/2C ′(CΨ−1C ′)−CΨ−1/2)Y ′T ′

1,

θ̂1 = ((F ′)◦
′
A′S−1

1 A(F ′)◦)−(F ′)◦
′
A′S−1

1

× (Y −AF ′θ̂2G
◦′(1′n ⊗CΨ−1/2))(I ⊗Ψ−1/2C ′(CΨ−1C ′)−)

+ ((F )′◦
′
A)◦

′
Z21 + (F ′)◦

′
A′Z22(1′n ⊗C)◦

′
, (2.5)

where S1 is assumed to be positive definite and Zij are arbitrary matrices.
Furthermore,

nqΣ̂ = (Y −AB̂(1′n ⊗CΨ−1/2))(Y −AB̂(1′n ⊗CΨ−1/2))′

= S1 + S2 + n−1T 2T 1Y
(
1n1′n

⊗Ψ−1/2C ′Go(Go′CΨ−1C ′Go)−Go′CΨ−1/2
)
Y ′T ′

1T
′
2, (2.6)

where

T 2 = I − T 1AD′(DA′T ′
1(S1 + S2)−1T 1AD′)−DA′T ′

1(S1 + S2)−1.

3 Explicit estimators when diag(Ψ) is known

In this section we present some easily obtained explicit estimators under the
condition that diag(Ψ) is known. Among others they can be used as starting
values when solving the likelihood equations presented in the next section.

If Xi ∼ Np,q(ABC,Σ,Ψ) it follows that

D[Xi] = Ψ⊗Σ.

Since cΨ⊗c−1Σ = Ψ⊗Σ, we are in a situation when the parameterization can
not be uniquely interpreted, i.e. the model is overparameterized. Therefore, if
Ψ is unknown we will always suppose that ψqq = 1. However, if we assume
all diagonal elements in Ψ to equal 1, it is easy to produce some heuristic
estimators. The main idea is to produce estimators of B and Σ by neglecting
the dependency among columns. Thereafter the off-diagonal elements in Ψ
are estimated.
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Theorem 3.1. Let X ∼ Np,qn(AB(1′n ⊗C),Σ, In ⊗Ψ), where diag(Ψ)=I.
Unbiased estimators of ABC and Σ are given by

AB̂C = n−1A(A′S−1A)−A′S−1X(1n ⊗C ′(CC ′)−C),
Σ̂ = (q(n− 1))−1S = (q(n− 1))−1X(1◦n(1◦

′
n 1◦n)−1◦

′
n ⊗ I)X ′.

Proof. Since 1′n1◦n = 0, X(1n ⊗C ′) and X(1◦n ⊗ I) are independent. Thus,

E[AB̂C] = n−1E[A(A′S−1A)−A′S−1]E[X(1n ⊗C ′(CC ′)−C)]
= n−1E[A(A′S−1A)−A′S−1]AB(1′n ⊗C)(1n ⊗C ′(CC ′)−C)
= ABC.

Moreover, by using that if Y ∼ Np,q(µ,Σ,Ψ), then for any A of proper size,

E[Y AY ′] = tr(AΨ)Σ + µAµ′,

and since AB(1′n ⊗C)(1◦n ⊗ I) = 0,

E[S] = tr((1◦n(1◦
′

n 1◦n)−1◦
′

n ⊗ I)(I ⊗Ψ))Σ,

= tr(1◦n(1◦
′

n 1◦n)−1◦
′

n )tr(Ψ)Σ = (n− 1)qΣ, (3.1)

where we have used that for any square matrices M and N , tr(M ⊗N) =
tr(M)tr(N), 1◦n is of size n× n− 1 and by assumption tr(Ψ) = q. Thus the
theorem is established. ¤

In order to find estimators of the unknown parameters in Ψ we observe
that from the Law of Large Numbers it follows that if n → ∞ a consistent
estimator of Ψ⊗Σ is given by

Ψ̂⊗Σ =
1
n

n∑

i=1

vec(Xi − ÂBC)vec(Xi − ÂBC)′,

where as ÂBC we apply Theorem 3.1 and use

ÂBC = n−1A(A′S−1A)−A′S−1X(1n ⊗C ′(CC ′)−C).

We may observe that ÂBC → ABC in probability, if n →∞, since X(1n ⊗
C ′(CC ′)−C) − ABC → 0 in probability and (qn)−1S → Σ in probability.
The last relation holds because of (3.1) and since D[S] → 0 as n →∞. Let ek
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denote the unit base vector of size q with 1 in the kth position and 0 elsewhere.
Then, since (e′k ⊗ I)(Ψ⊗Σ)(el ⊗ I) = e′kΨel ⊗Σ = ψklΣ,

ψ̂klΣ =
1
n

n∑

i=1

(e′k ⊗ I)vec(Xi − ÂBC)vec(Xi − ÂBC)′(el ⊗ I),

=
1
n

n∑

i=1

(xik − ÂBck)(xil − ÂBcl)′,

where xik and ck denote the kth columns in Xi and C, respectively.

Theorem 3.2. Let X ∼ Np,qn(AB(1′n ⊗C),Σ, In ⊗Ψ), where diag(Ψ)=I.
A consistent estimator of the unknown elements in Ψ = (ψkl) is given by

ψ̂kl = (pn)−1tr(Σ̂
−1

(X(I ⊗ ek)−AB̂(1′n ⊗ ck))
× (X(I ⊗ el)−AB̂(1′n ⊗ cl))′, k 6= l,

where

AB̂ck = n−1A(A′S−1A)−A′S−1X(1n ⊗C ′(CC ′)−ck),
Σ̂ = (qn)−1S

and S is given in Theorem 3.1.

Proof. The proof follows from the fact that Σ̂ is a consistent estimator of Σ
and

1
n

n∑

i=1

tr(Σ̂
−1

(xik − ÂBck)(xil − ÂBcl)

= n−1tr(Σ̂
−1

(X(I ⊗ ek)−AB(1′n ⊗ ck))(X(I ⊗ el)−AB(1′n ⊗ cl))′).

¤
Now we turn to the case where restrictions FBG = 0 hold on the mean

parameters.

Theorem 3.3. Let X ∼ Np,qn(AB(1′n⊗C),Σ, InΨ), where diag(Ψ)=I and
FBG = 0. Unbiased estimators of ABC and Σ are given by

ÂBC = A(F ′)◦θ̂1C + AF ′θ̂2G
◦′C,

q(n− 1)Σ̂ = S = X(1◦n(1◦
′

n 1◦n)−1◦
′

n ⊗ I)X ′,
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where

nθ̂2 = (FA′T ′
1S

−1T 1AF ′)−FA′T ′
1S

−1T 1X(1n ⊗C ′G◦(G◦′CC ′G◦)−)
+ (FA′T ′

1)
◦Z11 + FA′T ′

1Z12(G◦′C)◦
′
, (3.2)

T 1 = I −A(F ′)◦((F ′)◦
′
A′S−1A(F ′)◦)−(F ′)◦

′
A′S−1,

nθ̂1 = ((F ′)◦
′
A′S−1A(F ′)◦)−F ′◦′A′S−1(X −AF ′θ̂2G

◦′C)
×Ψ−1C ′(CΨ−1C ′)− + ((F ′)◦

′
A)◦

′
Z21 + (F ′)◦

′
A′Z22C

◦′ ,

where Zij are arbitrary matrices.

Proof. Observe that X(1n⊗C ′G◦) as well as X(1n⊗C ′) are independent of
S. From the proof of Theorem 3.1. it follows that (q(n−1))−1S is an unbiased
estimator of Σ. Hence, it remains to show that ÂBC is unbiased.
It follows that

ÂBC = n−1(I − T 1)X(1n ⊗C ′(CC ′)−C)− (I − T 1)AF ′θ̂2G
◦′C

+AF ′θ̂2G
◦′C

= n−1X(1n ⊗C ′(CC ′)−C)− n−1T 1X(1n ⊗C ′(CC ′)−C)
+T 1AF ′θ̂2G

◦′C.

Now

n−1E[X(1n ⊗C ′(CC ′)−C)] = A(F ′)◦θ1C + AF ′θ2G
◦′C,

n−1E[T 1X(1n ⊗C ′(CC ′)−C)] = E[T 1]AF ′θ2G
◦′C,

E[T 1AF ′θ̂2G
◦′C] = E[T 1]AF ′θ2G

◦′C.

Thus

E[ÂBC] = A(F ′)◦θ1C + AF ′θ2G
◦′C

and the theorem is verified. ¤

4 MLEs of B, Σ and Ψ

In this section the problem of finding maximum likelihood estimators of the
parameters in the model

Np,qn(AB(1′n ⊗C),Σ, In ⊗Ψ)
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will be studied. The estimability condition ψqq = 1 will be supposed to hold
throughout the section. The other diagonal elements of Ψ will be positive
but unknown which is a somewhat different assumption than in the previous
section where diag(Ψ) = I.

The likelihood equals

L = c|Σ|−1/2qn|Ψ|−1/2npe−
1
2
tr{Σ−1(X−AB(1′n⊗C))(I⊗Ψ)−1(X−AB(1′n⊗C))′},

(4.1)

where c is the proportionality constant which does not depend on the param-
eters. If differentiating (4.1) with respect to the parameter matrix B and the
upper triangle of Σ−1 it follows from Section 2 that

nB̂ = (A′S−1A)−A′S−1X(1n ⊗ Ψ̂
−1

C ′(CΨ̂
−1

C ′)−)
+ (A′)◦Z1 + A′Z2C

◦′ , (4.2)

S = X(I ⊗ Ψ̂
−1 − n−11n1′n ⊗ Ψ̂

−1
C ′(CΨ̂

−1
C ′)−CΨ̂

−1
)X ′, (4.3)

nqΣ̂ = (X −AB̂(1′n ⊗C))(I ⊗ Ψ̂
−1

)(X −AB̂(1′n ⊗C))′

= S + n−1SAo(Ao′SAo)−Ao′X(1n1′n ⊗ Ψ̂
−1

C ′(CΨ̂
−1

C ′)−CΨ̂
−1

)
×X ′Ao(Ao′SAo)−Ao′S. (4.4)

It remains to find estimation equations for Ψ. Put

Xic = Xi −AB̂C

and we will use the partition

Xic = (Xic1 : Xicq).

Due to the constraint ψqq = 1 we can not differentiate the likelihood with
respect to Ψ. Instead we will first perform a suitable decomposition of Ψ and
thereafter maximize the likelihood. Let

Ψ =

(
Ψ11 ψ

1q

ψ′
1q

ψqq

)
, Ψ11 : (q − 1)× (q − 1). (4.5)

From Srivastava and Khatri (1979, Corollary 1.4.2 (i), p. 8), it follows since
ψqq = 1, that

Ψ−1 =
(

0 0
0 1

)
+

(
Iq−1

−ψ′
1q

)
Ψ−1

1•q
(

Iq−1 : −ψ
1q

)
,
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where

Ψ1•q = Ψ11 −ψ
1q

ψ′
1q

: (q − 1)× (q − 1). (4.6)

Moreover,

|Ψ| = |Ψ1•q| = |Ψ11 −ψ
1q

ψ′
1q
|.

Thus, in order to find the MLE for Ψ the likelihood (4.1) may be rewritten as

L = c|Σ|−1
2 qn|Ψ1•q|−

1
2pnetr(−1

2

n∑

i=1

Σ−1(XicqX
′
icq

+Xic

(
Iq−1

−ψ′
1q

)
Ψ−1

1•q
(

Iq−1 : −ψ
1q

)
X ′

ic)).

By differentiation with respect to the upper triangle of Ψ−1
1•q as well as differ-

entiation with respect to ψ
1q

we obtain after some manipulations

npΨ̂1•q =
n∑

i=1

(
Iq−1 : −ψ̂

1q

)
X ′

icΣ̂
−1

Xic

(
Iq−1

−ψ̂
′
1q

)
(4.7)

and

ψ̂
1q

=
n∑

i=1

X ′
ic1Σ̂

−1
Xicq(

n∑

i=1

X ′
icqΣ̂

−1
Xicq)−1. (4.8)

It is interesting to observe that (4.8) can be simplified. Post-multiplying (4.4)
by Σ̂

−1
and then taking the trace implies

nqp =
n∑

i=1

X ′
icqΣ̂

−1
Xicq

+tr(
n∑

i=1

Ψ̂
−1

1•q
(

Iq−1 : −ψ̂
1q

)
X ′

icΣ̂
−1

Xic

(
Iq−1

−ψ̂
′
1q

)
)

=
n∑

i=1

X ′
icqΣ̂

−1
Xicq + nptr(Iq−1), (4.9)

where (4.7) has been used. Thus,

n∑

i=1

X ′
icqΣ̂

−1
Xicq = np. (4.10)
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and (4.8) equals

ψ̂
1q

=
1
np

n∑

i=1

X ′
ic1Σ̂

−1
Xicq. (4.11)

Next, we simplify (4.7). Using (4.11) we get after some calculations

npΨ̂1•q =
n∑

i=1

X ′
ic1Σ̂

−1
Xic1 − npψ̂

1q
ψ̂
′
1q

. (4.12)

Thus,

npΨ̂11 =
n∑

i=1

X ′
ic1Σ̂

−1
Xic1. (4.13)

Hence, using (4.8) and (4.13) as well as (4.10), we get

Ψ̂ =

(
Ψ̂11 ψ̂

1q

ψ̂
′
1q

1

)
(4.14)

=
1
np

( ∑n
i=1 X ′

ic1Σ̂
−1

Xic1
∑n

i=1 X ′
ic1Σ̂

−1
Xicq∑n

i=1 X ′
icqΣ̂

−1
Xic1

∑n
i=1 X ′

icqΣ̂
−1

Xicq

)

=
1
np

n∑

i=1

X ′
icΣ̂

−1
Xic. (4.15)

It is also noted that (4.4) can be written as

Σ̂ =
1
nq

n∑

i=1

XicΨ̂
−1

X ′
ic. (4.16)

In the next theorem the above given calculations are summarized and it
presents a ”flip-flop” relation which will be utilized in Theorem 4.2.

Theorem 4.1. Let X ∼ Np,qn(AB(1′n ⊗ C),Σ, In ⊗ Ψ), where ψqq = 1.
Maximum likelihood estimation equations for the parameters B, Σ and Ψ are
given by

nÂBC = A(A′S−1A)−A′S−1X(1n ⊗ Ψ̂
−1

C ′(CΨ̂
−1

C ′)−C),
nqΣ̂ = (X −AB̂(1′n ⊗C))(I ⊗Ψ−1)(X −AB̂(1′n ⊗C))′,

Ψ̂ =
1
np

n∑

i=1

(Xi − ÂBC)′Σ̂
−1

(Xi − ÂBC),

12



where S is given by (4.3).

Although the estimators in Theorem 4.1 are rather involved there is still so
much structure that they can be considered theoretically. The next theorem
comprises the main theoretical result of the paper.

Theorem 4.2. Let X ∼ Np,qn(AB(1′n ⊗C),Σ, In ⊗Ψ), where ψqq = 1. If
n > max(p, q) the maximum likelihood estimation equations given in Theorem
4.1 will always converge to the unique maximum provided the starting value
ψ̃qq equals ψ̃qq = 1.

Proof. Suppose that there exist two different solutions to the equations given
in Theorem 4.1, (B̂1, Ψ̂1, Σ̂1) and (B̂2, Ψ̂2, Σ̂2). Put

Xc1 = X −AB̂1(1′n ⊗C),

Xc2 = X −AB̂2(1′n ⊗C).

Thus, from Theorem 4.1 we obtain

nqΣ̂1 = Xc1(In ⊗ Ψ̂
−1

1 )X ′
c1, (4.17)

Ψ̂1 =
1
np

(vec′(In)⊗ Iq)(In ⊗X ′
c1Σ̂

−1

1 Xc1)(vec(In)⊗ Iq). (4.18)

From (4.17) and (4.18) the next crucial relation is obtained:

p

q
Iq = (vec′(In)⊗ Iq)(In ⊗ P 1)(vec(In)⊗ Iq), (4.19)

where the projection P 1 is given by

P 1 = X ′
c1(Xc1(In ⊗ Ψ̂

−1

1 )X ′
c1)

−1Xc1(In ⊗ Ψ̂
−1

1 ). (4.20)

Similarly for the second set of solutions we have

p

q
Iq = (vec′(In)⊗ Iq)(In ⊗ P 2)(vec(In)⊗ Iq), (4.21)

where

P 2 = X ′
c2(Xc2(In ⊗ Ψ̂

−1

2 )X ′
c2)

−1Xc2(In ⊗ Ψ̂
−1

2 ). (4.22)

By subtracting (4.21) from (4.19) the relation

0 = (vec′(In)⊗ Iq)(In ⊗ (P 1 − P 2))(vec(In)⊗ Iq) (4.23)
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is obtained, which is equivalent to

0 = (P ⊗ Iq)(In ⊗ (P 1 − P 2))(P ⊗ Iq), (4.24)

where

P = n−1vec(In)vec′(In) (4.25)

which is a symmetric projection operator on C(vec(In)). The next lemma is
fundamental.

Lemma 4.3. Let P 1, P 2 and P given by (4.20), (4.22) and (4.25), respec-
tively. Then, the only solution to (4.24) is when P 1 = P 2.

Proof. It follows that (4.24) is equivalent to

C((P ⊗ Iq)(In ⊗ (P 1 − P 2))(P ⊗ Iq)) = {0} (4.26)

and from a relation concerning projections (see Kollo and von Rosen, 2005;
Theorem 1.2.16) (4.26) is identical to

C(P ⊗ Iq) ∩ {C((P ⊗ Iq))⊥ + C((In ⊗ (P 1 − P 2))(P ⊗ Iq))} = {0}.

Taking the orthogonal complement to this expression gives

C(P ⊗ Iq)⊥ + C(P ⊗ Iq) ∩ C((In ⊗ (P 1 − P 2))(P ⊗ Iq))⊥ = V,

where V denotes the whole space. Thus, in order for this relation to hold, we
have to show that

C((P ⊗ Iq)) ⊆ C((In ⊗ (P 1 − P 2))(P ⊗ Iq))⊥ (4.27)

which implies that it is reasonable to study

C(P ⊗ Iq) ⊆ C(In ⊗ (P 1 − P 2))⊥ ⊆ C((In ⊗ (P 1 − P 2))(P ⊗ Iq))⊥.

However, we show now that C((P ⊗ Iq)) ⊆ C(In ⊗ (P X −P X))⊥ if and only
if

P 1 − P 2 = 0,

and then (4.27) is also true if and only if P 1 = P 2. Observe that C(P ⊗Iq) =
C(∑n

i=1(ei⊗ei)⊗Iq) and C((In⊗(P 1−P 2))⊥ = C(In⊗H) for some H which
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generates C(P 1 − P 2)⊥. If C(P ⊗ Iq) ⊆ C(In ⊗H) then C(ei ⊗ Iq) ⊆ C(H)
which implies that

C((e1 : e2 : · · · : en)⊗ Iq) ⊆ C(H)

and this in turn gives that C(In ⊗ Iq) ⊆ C(H). Thus, C(H) generates the
whole space and therefore C(P 1−P 2) = {0} which is equivalent to the matrix
relation (P 1 − P 2) = 0. ¤

Hence, we have two projectors P 1 and P 2 which are equal and in the next
we shortly show the implication of this fact which also proves the theorem.
First it is noted that the projectors have to project on the same spaces and
thus (let Q2 = I − P 2)

0 = (P 1 − P 2) = P 1(I − P 2) = P 1Q2.

This is equivalent to

X ′
c1(In ⊗ Ψ̂

−1

1 Ψ̂2)Xo
c1 = 0. (4.28)

There are two possibilities for (4.28) to hold. Either Ψ̂1 = Ψ̂2 or the column
space generated by Xo

c1 is invariant with respect to In⊗Ψ̂
−1

1 Ψ̂2, i.e. the space
is generated by the eigenvectors of In ⊗ Ψ̂

−1

1 Ψ̂2. However, since the matrix
of eigenvectors is of the form In ⊗ Γ for some Γ it shows, since the column
space of Xo

c1 is a function of the observations, that In ⊗ Γ does not generate
the space, unless n = 1. Thus, in order for (4.28) to hold Ψ̂1 = Ψ̂2. This in
turn implies that Σ̂1 = Σ̂2 and then also B̂1 = B̂2 and hereby the theorem is
proved. ¤

In comparison to Lu & Zimmerman (2005) we have mathematically shown,
under a much more general mean structure, that the MLEs satisfy the ”flip-
flop” algorithm and that they are unique.

Finally we consider the MLEs when there exist restrictions FBG = 0 on
the parameter B. For example when testing hypothesis. It follows from (4.1)
and Section 2 that the MLEs for B and Σ under the restrictions FBG = 0
satisfy

AB̂C = A(F ′)◦θ̂1C + AF ′θ̂2G
◦′C, (4.29)

where

θ̂2 = (FA′T ′
1S

−1
2 T 1AF ′)−FA′T ′

1S
−1
2 T 1X(1n

⊗ Ψ̂
−1

C ′G◦(G◦′CΨ̂
−1

C ′G◦)−) + (FA′T ′
1)
◦Z11 + FA′T ′

1Z12(G◦′C)◦
′

15



with

T 1 = I −A(F ′)◦((F ′)◦
′
A′S−1

1 A(F ′)◦)−(F ′)◦
′
A′S−1

1 ,

S1 = X(I ⊗ Ψ̂
−1 − n−11n1′n ⊗ Ψ̂

−1
C ′(CΨ̂

−1
C ′)−CΨ̂

−1
X ′,

S2 = S1 + T 1X(n−11n1′n ⊗ Ψ̂
−1

C ′(CΨ̂
−1

C ′)−CΨ̂
−1

)

×(I ⊗ Ψ̂
−1 − n−11n1′n ⊗ Ψ̂

−1
C ′G◦(G◦′CΨ̂

−1
C ′G◦)−G◦′CΨ̂

−1
)

×(n−11n1′n ⊗ Ψ̂
−1

C ′(CΨ̂
−1

C ′)−CΨ̂
−1

)X ′T ′
1,

θ̂1 = (F ′◦′A′S−1
1 A(F ′)◦)−F ′◦′A′S−1

1 (X −AF ′θ̂2G
◦′(1′n ⊗C))

×(I ⊗ Ψ̂
−1

C ′(CΨ̂
−1

C ′)−) + (F ′◦′A)◦
′
Z21 + F ′◦′A′Z22(1′n ⊗C)◦

′
,

where S1 is assumed to be positive definite and Zij are arbitrary matrices.
Furthermore,

nqΣ̂ = (X −AB̂(1′n ⊗C))(I ⊗ Ψ̂
−1

)(X −AB̂(1′n ⊗C))′. (4.30)

By copying the arguments when there were no restrictions on B we may state
that Ψ̂ satisfies

Ψ̂ =

(
Ψ̂11 ψ̂

1q

ψ̂
′
1q

1

)
=

1
np

n∑

i=1

X ′
icΣ̂

−1
Xic.

Since

Σ̂ =
1
nq

n∑

i=1

XicΨ̂
−1

X ′
ic, (4.31)

where

Xic = Xi −A(F ′)◦θ̂1C −AF ′θ̂2G
◦′C

we see that we can apply a ”flip-flop” algorithm. Moreover, once again, by
discussing projectors it can be shown that there exist only one Ψ̂ and one
Σ̂. The uniqueness of these estimators implies that also ÂBC is uniquely
estimated, i.e., under some full rank conditions, B̂ is also unique.

5 Likelihood ratio test

In Theorem 4.1 MLEs of B̂, Σ̂ and Ψ̂ were presented and in (4.29) – (4.31) esti-
mators of the same parameters were estimated under the condition FBG = 0.
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Thus, the likelihood ratio, L, for testing H0: FBG = 0 versus H1: FBG 6= 0
can be obtained. From standard asymptotic theory it follows that −2 ln L ∼
χ2(f), where f = dim(C(A′) ∩ C(F ′))dim(C(C) ∩ C(G)). We are going to
manipulate the likelihood so that one can see the correspondence with the
usual likelihood ratio test when Ψ = I. First observe that the likelihood ratio
statistic is equivalent to

λ−1 =
|Σ̃|q|Ψ̃|p
|Σ̂|q|Ψ̂|p

, (5.1)

where Σ̂ and Ψ̂ are MLEs under the alternative, and Σ̃ and Ψ̃ are the MLEs
under H0.

We begin by noting that

|nqΣ̂| = |Ŝ1 + V̂ V̂
′|,

where

Ŷ = X(I ⊗ Ψ̂
−1/2

),

Ĉ = CΨ̂
−1/2

,

Ŝ1 = Ŷ (I − Ĉ
′
(ĈĈ

′
)−Ĉ)Ŷ

′

V̂ = n−1/2(I −A(A′Ŝ
−1

1 A)−A′Ŝ
−1

1 )Ŷ (1n ⊗ Ĉ
′
(ĈĈ

′
)−Ĉ)

and

|nqΣ̃|
= |S̃1 + S2 + n−1T 2T 1Ỹ (1n1′n ⊗ C̃

′
Go(Go′C̃C̃

′
Go)−Go′C̃)Ỹ

′
T ′

1T
′
2|,

where

Ỹ = X(I ⊗ Ψ̃
−1/2

),

C̃ = CΨ̃
−1/2

,

S̃1 = Ỹ (I − C̃
′
(C̃C̃

′
)−C̃)Ỹ

′
,

T 1 = I −A(F ′)◦((F ′)◦
′
A′S̃

−1

1 A(F ′)◦)−(F ′)◦
′
A′S̃

−1

1 ,

S̃2 = S̃1 + T 1Ỹ (n−11n1′n ⊗ C̃
′
(C̃C̃

′
)−C̃

×(I − n−11n1′n ⊗ C̃
′
G◦(G◦′C̃C̃

′
G◦)−G◦′C̃)

×(n−11n1′n ⊗ C̃
′
(C̃C̃

′
)−C̃)Ỹ

′
T ′

1.
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From now on we start to manipulate |nqΣ̃|:

|nqΣ̃| = |S̃1 + S2||I +
(
(T 1AF ′)o′(S̃1 + S2)(T 1AF ′)o

)−(T 1AF ′)o′T 1

×Ỹ C̃
′
Go(Go′C̃C̃

′
Go)−Go′C̃Ỹ

′
T ′

1(T 1AF ′)o|. (5.2)

This expression does not depend on the choice of (T 1AF ′)o. Let M and N
be matrices satisfying

C(M) = C(F ′) ∩ C(A′), C(N) = C(G) ∩ C(C).

Then we may use

(T 1AF ′)o

= I − S̃
−1

1 A(A′S̃
−1

1 A)−M(M ′(A′S̃
−1

1 A)−M)−M ′(A′S̃
−1

1 A)−A′,

which implies

T ′
1(T 1AF ′)o = I − S̃

−1

1 A(A′S̃
−1

1 A)−A,

T ′
1(I − S̃

−1

1 A(A′S̃
−1

1 A)−A′) = I − S̃
−1

1 A(A′S̃
−1

1 A)−A′,

(T 1AF ′)o′S̃2(T 1AF ′)o = (I −A(A′S̃
−1

1 A)−A′S̃
−1

1 )Ỹ C̃
′
(C̃C̃

′
)−

×N(N ′(C̃C̃
′
)−N)−N ′(C̃C̃

′
)−C̃Ỹ

′
(I − S̃

−1

1 A(A′S̃
−1

1 A)−A′),
(T 1AF ′)o′S̃1(T 1AF ′)o = S̃1

−A(A′S̃
−1

1 A)−M(M ′(A′S̃
−1

1 A)−M)−M ′(A′S̃
−1

1 A)−A′.

Let

K = I −A(A′S̃
−1

1 A)−M(M ′(A′S̃
−1

1 A)−M)−M ′(A′S̃
−1

1 A)−A′S̃
−1

1 ,

U = I −A(A′S̃
−1

1 A)−A′S̃
−1

1

Ṽ = n−1/2UỸ (1n ⊗ C̃
′
(C̃C̃

′
)−C̃).

Some calculations show that (5.2) equals

|nqΣ̃| = |S̃1 + S2||I + (T 1AF ′)o′S̃2(T 1AF ′)o′ |−1|S̃1 + Ṽ Ṽ
′||I

+(S̃1 + Ṽ Ṽ
′
)−1U(K− − I)U ′Ỹ C̃

′
Go(Go′C̃C̃

′
Go′)−Go′C̃Ỹ

′|. (5.3)

However, since UK = U and KU = U , it is established that

U(K− − I)U = 0.
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Thus, (5.3) equals

|nqΣ̃| = |S̃1 + S2||I + (T 1AF ′)o′S̃2(T 1AF ′)o′ |−1|S̃1 + Ṽ Ṽ
′|

and the likelihood ratio is of the form

λ−1

=
|S̃1 + S2|q(|I + (T 1AF ′)o′S̃2(T 1AF ′)o′ |−1)q|S̃1 + Ṽ Ṽ

′|q|Ψ̃|p
|Ŝ1 + V̂ V̂

′|q|Ψ̂|p

=
|S̃1 + Ṽ Ṽ

′|q|Ψ̃|p
|Ŝ1 + V̂ V̂

′|q|Ψ̂|p
×|I + S̃

−1

1 UỸ C̃
′
(C̃C̃

′
)−N(N ′(C̃C̃

′
)−N)−N ′(C̃C̃

′
)−C̃Ỹ

′
U ′|q

×(|I + S̃
−1

1 UỸ C̃
′
(C̃C̃

′
)−N(N ′(C̃C̃

′
)−N)−)−N ′(C̃C̃

′
)−CỸ

′
U ‘′|−1)q.

(5.4)

Hitherto, no full rank conditions have been assumed but in order to simplify
(5.4) and compare the statistic with some well known one it is assumed that
A, C F and G are of full rank. Therefore, in (5.4) we may replace N by G′

and later also M by F ′. After some more calculations it follows that (5.4)
can be written

λ−1 =
|S̃1 + Ṽ Ṽ

′|q|Ψ̃|p
|Ŝ1 + V̂ V̂

′|q|Ψ̂|p
|SE + SH |q
|SE |q , (5.5)

where

SE = F (A′S̃
−1

1 A)−1F ′

SH = F (A′S̃
−1

1 A)−1A′S̃
−1

1 Ỹ C̃
′
(C̃C̃

′
)−1G(G′RG)−1

×G′(C̃C̃
′
)−1C̃

′
Ỹ
′
S̃
−1

1 A(A′S̃
−1

1 A)−1F ′,

R = (C̃C̃
′
)−1 + (C̃C̃

′
)−1C̃Ỹ

′
S̃
−1

1 UỸ C̃
′
(C̃C̃

′
)−1.

Concerning (5.5) we can make several observations. If Ψ would be known then
there would be explicit MLEs and in this case (5.5) equals

λ−1 =
|SE + SH |q
|SE |q , (5.6)

which is equivalent to the likelihood obtained by Khatri (1966). In this case
also distribution expansions of the likelihood ratio are available. Moreover,
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for large n, (5.5) will approach Khatri’s. Indeed, even for an unknown Ψ, the
essential part of the likelihood ratio of testing the hypothesis FBG = 0 is
given by (5.6) since it reflects the differences between H0 and H1 concerning
the parameter of interest, i.e., B.
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64, 379–408.

20



[11] Srivastava, M.S, Nahtman, T. and von Rosen, D. (2007). Models with a
Kronecker Product Covariance Structure: Estimation and Testing. Sub-
mitted.

[12] Srivastava, M.S. and Khatri, C.G. (1979). An Introduction to Multivariate
Statistics, North Holland, New York.

[13] Srivastava, M.S. and von Rosen, D. (1999). Growth curve models. Multi-
variate Analysis, Design of Experiments, and Survey Sampling, 547–578.
Textbooks Monogr. 159 Dekker, New York.

21


