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Abstract
In immunoassay, calibration curves are used for transformation of sam-
ple responses into concentrations. The calibration curve is a linear or
nonlinear regression curve �tted to a set of calibrators (standards) with
known concentrations. In this report we discuss consequences of random
errors in the dispensed volumes of the calibrators. Provided that these
errors are the main source of intra-assay variation, a constant coe�cient
of variation in concentration could be expected. It is suggested that the
curve parameters in this case be estimated by inverse regression (i.e. re-
gression of X on Y ), weighted by squared calibrator concentrations. An
approximate formula is derived for the standard deviation in response,
given that the response follows a four-parameter logistic function.
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1 Introduction
The immunoassay is an analytical technique for measuring sample components,
using antibodies or antibody-related reagents (Hage, 1999). The response of
the immunoassay, usually radiation or luminescence, is assumed to be func-
tionally related to the concentration of the sample component. The function
could be a straight line or some other linear or monotonic nonlinear func-
tion. It is necessary to establish the relationship between concentration and
response. This is done by measuring samples with known concentrations, called
calibrators or standards. A calibration curve is �tted to the responses of the
calibrators. The �tted curve is used for inverse prediction when responses of
unknowns (i.e. samples with unknown concentrations) are transformed into
estimates of concentration through the calibration curve.

There are many possible sources of errors in immunoassays (Jones et al.,
1995). For example, di�erences between days and laboratories in temperatures
or reagents give rise to inter-assay variation. Other sources, such as di�erences
in timing, washing and signal detection, cause intra-assay variation. Many
components of intra-assay variation are minimized in automated measuring
instruments. Di�erences in volumes of the sample (e.g. blood serum), dis-
pensed by a pipette, remain one of the most important reasons for intra-assay
variation. In highly automated systems, the small random variation in the vol-
umes of the samples could be the main source of random variation in predicted
concentrations. We shall consider the consequences of this presumption.

In Section 2, we show that if the calibrators are dispensed with nor-
mally distributed volumes, concentrations could be regarded as normally dis-
tributed with constant coe�cient of variation. In Section 3 we consider con-
sequences for �tting calibration curves. It is shown that the assumption of
normally distributed volumes suggests inverse regression, as originally pro-
posed by Krutchko� (1967) for linear calibration. According to this approach,
concentrations are regressed on responses, rather than responses on concentra-
tions as in classical regression. In our application the calibration curve can be
nonlinear.

The research on inverse regression for calibration was reviewed by Os-
borne (1991). The inverse estimator of sample concentrations is biased and
inconsistent, but may, within the calibration range, give smaller mean square
error than the classical estimator. This was con�rmed by Tellinghuisen (2000),
who especially investigated small calibration data sets. The properties of in-
verse regression is usually studied under the assumptions of random calibrator
responses and known concentrations. In this report we arrive at inverse re-
gression based on assumptions of random numbers of molecules and known
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responses. Tellinghuisen (2000) pointed out that modern spectrophotometers
can give responses with precision that �exceeds that of the `known' concen-
trations of calibration samples in much routine work, making regression of
concentration upon absorbance fully legitimate.� This is the starting-point of
our investigation.

We propose inverse regression with weights inversely proportional to
squared calibrator concentrations. We call this method weighted inverse re-
gression, as distinct from weighted classical regression. Weights are needed in
calibration of immunoassays in order to improve predictions at low concentra-
tions (Carroll, 2003). In weighted classical regression, the variance in response
is often assumed to be an increasing function of the response level. Speci�cally
the variance in response is often modeled as a power function of the expected
response, that is

var(Y ) = φE(Y )θ. (1)
A parameterized variance function such as (1) is needed, because when the
number of replicates is small, as is usually the case in immunoassays, it is inef-
�cient to use sample variances as weights (Carroll and Cline, 1988). Methods
for estimation of variance parameters have been proposed by Rodbard et al.
(1976), Raab (1981), Davidian and Carroll (1987), Davidian (1990), Goos et
al. (2001) and Sadler (2002). The weighted inverse regression that we propose
does not require variance parameters.

In Section 4 we investigate consequences on the variance in response when
the relationship between response and concentration is described by the four-
parameter logistic function. This function is often used for calibration in ana-
lytical procedures (O'Connell et al. 1993). An example is given in Section 5.

2 Constant CV
Let ξi and yi, i = 1, 2, . . . , n, denote the true concentrations and the observed
responses of the calibrators, respectively. Let Vi denote the dispensed volume of
the i:th calibrator. We shall assume that the volume is a normally distributed
random variable with the same expected value and variance for all calibrators,
i.e. Vi is N(µ, σ2), i = 1, 2, . . . , n. We shall also assume that the expected
volume µ is known.

The response yi is functionally related to the number of molecules Ni of
the particular substance, that is yi = g(Ni), i = 1, 2, . . . , n. In many appli-
cations it could be assumed that the response is proportional to the number
of molecules, but often a linear or nonlinear function, for example describing
a logistic growth, is more realistic. The calibration curve is usually written
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as a function f from concentration to response. Given the basic functional
relationship g, the calibration curve function f is easily obtained by de�ning
Xi as Ni/µ, because then f(Xi) = g(Xiµ).

Because Ni = ξiVi it is clear that Ni is N(ξiµ, ξ2
i σ2). Thus yi = g(ξiµ+Ei),

where Ei is N(0, ξ2
i σ2). Then yi = f(ξi + Ei/µ), and ξi = f−1(yi) + ei,

where ei = −Ei/µ. Let γ denote the coe�cient of variation in the dispensed
volume, that is γ = σ/µ. Then ei is N(0, ξ2

i γ2). This suggests weighted inverse
regression, as we shall see in Section 3.

However, even if the volumes are always dispensed without error the num-
ber of molecules vary between samples. The number of molecules could be
Poisson distributed, conditioned on the volume. To study this argument, as-
sume that Ni, given Vi, is Poisson(Viξi), where Vi is N(µ, σ2), i = 1, 2, . . . , n.
Because the number of molecules is very large, usually larger than 1 million,
the conditional distribution of Ni is approximately N(Viξi, Viξi). Then

E(Ni) = E(E(Ni | Vi)) = E(Viξi) = ξiµ, (2)

var(Ni) = E(var(Ni | Vi)) + var(E(Ni | Vi)) = ξiµ + ξ2
i σ2. (3)

The coe�cient of variation in Xi, de�ned as Xi = Ni/µ, equals the coe�cient
of variation in Ni, which by (2) and (3) can be written

√
γ2 +

1
E(Ni)

. (4)

For a Poisson distributed random variable U , the squared coe�cient of varia-
tion is 1/E(U). Thus, the total coe�cient of variation (4) in Xi is the square
root of a sum of two variation components: the squared coe�cient of variation
in the sample volume, and the squared coe�cient of variation in the Poisson
distribution. When Ni is large, (4) approximately equals γ.

3 Curve �tting
Based on the results of Section 2, we now consider �tting of calibration curves
under the assumption that the response yi is a function f of the concentration
Xi where Xi is N(ξi, ξ

2
i γ2), i = 1, 2, . . . , n. The function f is linear or nonlinear

in k parameters β1, β2, . . . , βk that should be estimated.
The probability density function for Xi, given the response yi, can be writ-

ten
1√

2πγ2ξ2
i

exp
(

(f−1(yi)− ξi)2

2γ2ξ2
i

)
, i = 1, 2, . . . , n,
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and the logarithm of the likelihood equals
n∑

i=1

(
1
2

log(2πγ2ξ2
i )− (f−1(yi)− ξi)2

2γ2ξ2
i

)
. (5)

Let β = (β1, β2, . . . , βk)′, ξ = (ξ1, ξ2, . . . , ξn)′, y = (y1, y2, . . . , yn)′ and
f−1(y) = (f−1(y1), f−1(y2), . . . , f−1(yn))′. Then (5) is maximized over β
by minimizing

(f−1(y)− ξ)′D−1(f−1(y)− ξ), (6)
where D = γ2diag{ξ2

1 , ξ
2
2 , . . . , ξ

2
n}. The maximum likelihood estimator of β

is the generalized least squares estimator, that is the estimator that mini-
mizes (6). Under regularity conditions (Seber and Wild, 1989), the generalized
least squares estimator is asymptotically N(β,V), where

V =
(

df−1

dβ′

)′
D−1 df−1

dβ′
.

4 Variance in the four-parameter logistic function
Let y denote the immunoassay response, which is a monotone increasing func-
tion of the concentration x. Let β1 denote the response at zero concentration,
and let β2 denote the limit response at an in�nitely high concentration. De�ne
the proportion p as

p =
y − β1

β2 − β1
. (7)

This proportion p is in immunoassay often assumed to follow the logistic growth
model

dp

dt
= β4 p (1− p), (8)

where t = log(x) and β4 is a constant that de�nes the growth rate. The
solution to the di�erential equation (8) can be written

p =
1

1 + exp−(α+β4t)
=

1
1 + (β3/x)β4

, (9)

where α = −β4 log(β3) is an arbitrary constant. By (7) and (9), the response
y, as a function of the concentration x, is

y(x) = β2 +
β1 − β2

1 + (x/β3)β4
, (10)
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which is the four-parameter logistic function. In (10), β3 denotes the concen-
tration that gives the response (β1 + β2)/2. Now, assume that x is a random
variable. Then y is a random variable according to the model (10). If we let

z =
x− E(x)
E(x)

, (11)

we can write (10) as

y(x) = β2 +
β1 − β2

1 + (E(x)/β3)β4(z + 1)β4
. (12)

When the coe�cient of variation is small, large values of z are unlikely. In
order to approximate the variance of (10), we expand (12) about z = 0, which
yields

y(x) = β2 +
β1 − β2

1 + (E(x)/β3)β4
− (β1 − β2)β4(E(x))β4z

(1 + (E(x)/β3)β4)2ββ4
3

+ O(z2), (13)

with z as in (11). Provided that the variance due to the last term is negligible,
by (10), (11) and (13),

var(y(x)) ≈
(

dy

dx

∣∣∣∣
x=E(x)

)2

var(x).

Consequently, the standard deviation σy in response approximately equals the
standard deviation σx in concentration multiplied by the slope of the curve at
E(x):

σy ≈ dy

dx
σx =

dy

dp

dp

dt

dt

dx
σx =

β4(µy − β1)(β2 − µy)γx

(β2 − β1)
, (14)

where γx is the coe�cient of variation, i.e. γx = σx/E(x). Equation (14) is an
approximate formula for the standard deviation, as a function of the response
level µy, and it could be compared to other variance functions, such as (1).
According to (14), the standard deviation is approximately a second-order
polynomial in the response level, provided a constant coe�cient of variation
in concentration.

5 Example: ImmunoCAP Speci�c IgG
ImmunoCAP Speci�c IgG (Phadia AB, Uppsala, Sweden) measures antigen-
speci�c IgG antibodies in human serum and plasma. In this example we
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consider a data set of responses yijk, i = 1, 2, . . . , N , j = 1, 2, . . . , J ,
k = 1, 2, . . . , nij of duplicate measurements (i.e. nij = 2) of J = 6 cali-
brators assayed in N = 12 runs. Let xijk denote the concentrations of the
calibrators and note that xij1 = xij2. The four-parameter logistic function was
�tted, for each assay run, by minimizing (6) with the procedure nlin in SAS
9.1 (SAS Institute Inc., Cary, NC, USA). The �t of the �rst assay run is shown
in Figure 1.
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Figure 1: A four-parameter logistic curve �tted by weighted inverse regression
to the calibration data of the �rst assay run.

Let β̂1i, β̂2i, β̂3i and β̂4i denote the estimates of β1 β2, β3 and β4, respec-
tively, in assay run i, i = 1, 2, . . . , N . The calibrator concentrations xijk were
estimated by the inverse of the four-parameter logistic function, that is by

xijk = β̂3i

(
y − β̂1i

β̂2i − yijk

)1/β̂4i

.
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Table 1: Estimated coe�cients of variation (CV)

Calibrator (mg/l) CV (%)
0.02 2.53
0.04 1.83
0.10 1.62
0.30 2.07
1.00 1.99
2.00 2.01

Let cij denote the sample coe�cient of variation in assay run i, for calibrator
j. The common coe�cients of variation in the duplicate measurements were,
per calibrator, estimated by

(
1− 1

4
∑N

i=1(nij − 1)

)−1

√√√√
∑N

i=1(nij − 1) c2
ij∑N

i=1(nij − 1)
, j = 1, 2, . . . , 5,

as suggested by Forkman (2008). The estimates are reported in Table 1.
The approximate F-test for equality of coe�cients of variation, suggested

by Forkman (2008), can be applied under assumption of independence. Let

uij =
c2
ij

1 + c2
ij(nij − 1)/nij

, j = 1, 3; i = 1, 2, . . . , N.

The F-statistic for the largest coe�cient of variation (2.53%), compared to the
smallest (1.62%), is

Fmax =
∑N

i=1(ni1 − 1)ui1/
∑N

i=1(ni1 − 1)∑N
i=1(ni3 − 1)ui3/

∑N
i=1(ni3 − 1)

= 2.43. (15)

The 95:th percentile of the F-max distribution for 6 mean squares, all having
12 degrees of freedom is 5.72 (Nelson, 1987). The coe�cients of variation,
estimated as in Table 1, are not signi�cantly di�erent on level 5%.

The variance in response is often assumed to be a power function of the
mean. The variance parameters φ and θ in (1) could be estimated by linear
regression: log s2

ij = log φ + θ log ȳij , as proposed by Rodbard et al. (1976).
Based on a regression of 12 · 6 = 72 log variances on average responses, φ and
θ were estimated to φ̂ = 0.0026 and θ̂ = 1.47, respectively.

In Figure 2, weighted inverse regression is compared to weighted classical
regression (i.e. weighted least squares using the estimates φ̂ and θ̂). In Figure 3,
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Figure 2: Weighted inverse regression (WIR) compared to weighted classi-
cal regression (WCR). Di�erences, on the y-axis, measured by log ratios of
concentrations predicted by WIR to concentrations predicted by WCR. Con-
centrations, on the x-axis, predicted by WCR.

8



Concentration (mg/l)

D
iff

er
en

ce
 (

%
)

0.02 0.04 0.10 0.30 1.00 2.00

−
15

−
10

−
5

0
5

10
15

Figure 3: Weighted inverse regression (WIR) compared to classical regression
without weights (CR). Di�erences measured by log ratios of concentrations
predicted by WIR to concentrations predicted by CR. Concentrations, on the
x-axis, predicted by CR.
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Figure 4: Comparison of variance functions in the �rst assay run. Circles:
Standard deviations by means, per calibrator. Solid line: Standard deviation
according to the power function (1), with φ = 0.0026 and θ = 1.47, by response
level E(y). Dashed line: Standard deviation according (14) by response level
µy, with curve parameters estimated by weighted inverse regression.
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weighted inverse regression is compared to classical regression without weights
(i.e. ordinary least squares). Response values distributed uniformly on the
response axis were transformed into concentration by three methods. The
di�erences between the methods were measured by the logarithm of the ratio
between the predicted concentrations and displayed on the y-axes of the �gures
as percentages.

Weighted inverse regression and weighted classical regression never di�ered
more than 1% in predicted concentration (Figure 2). There could be systematic
di�erences between the two methods, but these systematic di�erences do not
appear to be large. The di�erences between weighted inverse regression and
classical regression without weights were much larger, especially in the lower
part of the measuring range. Four assay runs showed di�erences in predicted
concentrations larger than 10% (Figure 3).

In Figure 4, the approximate formula for the variance in response (14) is
compared to the power-of-the-mean function (1). The �gure shows the stan-
dard deviations, on the y-axis, and the average responses, on the x-axis, for the
calibrators in the �rst assay run. The solid line is the power function, with vari-
ance parameters estimated by the method proposed by Rodbard et al. (1976),
based on the whole data set. In the �rst assay run, the standard deviations
are larger than predicted by the solid line. The dashed line is the approxi-
mate formula (14), introduced in this report, with curve parameter estimates
obtained by weighted inverse regression. The maximum response variance is
obtained at response level 15,022 RU, which is the response corresponding to
concentration β3 in (10). This concentration is usually denoted ED50.

6 Discussion
In this report, we have studied calibration of immunoassays, under the as-
sumption that the errors in the responses are small, and negligible, compared
with the errors in the concentrations. This may be the case in automated
testing systems with high precision. It is well known that inverse regression is
appropriate in this situation (Lavagnini and Magno, 2007). When large errors
are present in both response and concentration, methods for errors-in-variables
modeling could be applied, with concentration considered as a controlled vari-
able (Cheng and Van Ness, 1999).

We have assumed that the coe�cient of variation is constant in concentra-
tion, which implies that the variation in response approaches zero as the con-
centration approaches zero. However, samples with zero concentration usually
vary in response. This was recognized by Rocke and Lorenzato (1995), who
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advocated estimation of two variance components: one giving approximately
constant coe�cient of variation in response for high levels of concentration,
and one giving approximately constant standard deviation in response for very
low levels of concentrations. We agree with this view. The assumption of a
constant coe�cient of variation is not realistic for samples and calibrators with
very low concentrations. However, it could be reasonable within the measuring
range, that is above the quantitation limit, where samples are �quantitatively
determined with stated acceptable precision and trueness� (Clinical and Lab-
oratory Standards Institute, 2004).

In analytical procedures, the coe�cient of variation is the standard measure
of dispersion. Methods are calibrated in order to reduce the variation in con-
centration. The coe�cients of variation in concentration should be as small as
possible, over the measuring range. Calibration by minimizing squared relative
errors in concentration is in line of this reasoning.

The variance in concentration is often increasing with the level of concen-
tration. In Section 2, a possible explanation of this phenomenon was given.
As a consequence, the variance in response should increase with the level of
response, until it gets constrained by the upper limit of the system. If the
response could not exceed an upper limit β2, as in the four-parameter logis-
tic function (10), the variance in response should decrease as the response y
approaches β2. This mechanism is included in the approximate formula (14)
for the standard deviation in response. According to (14), the standard devi-
ation obtains its maximum value at y = (β2 − β1)/2, i.e. at the concentration
x = β3, which is commonly denoted ED50. In applications, it is often as-
sumed that the variance is an increasing function of the response level, and
speci�cally that the variance is a power function (1) of the expected response.
For increasing calibration curves, this could be a good approximation below
concentration ED50, where the upper response limit of the system does not
a�ect the measurements.

Systems need to be calibrated when the relationship between response and
concentration changes. However, not only the parameters of the calibration
curve may change, but also the parameters of the variance function. Findlay
et al. (2000) recommend that the variance parameters be estimated by pooling
information from multiple runs, and that re-evaluation be made periodically
during routine assay use. Di�erent methods could give di�erent estimates of
the variance parameters. By weighted inverse regression, these problems need
not be considered, because variance parameters are not included in the method.
As illustrated by the example, concentrations predicted by weighted regression,
inverse or classical, may di�er noticeably from concentrations predicted by
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regression without using weights. The method for weighting is usually less
important. Weighted inverse regression could for these reasons be a convenient
alternative to classical regression.

We have focused on calibration and prediction, rather than construction
of con�dence intervals. Methods for interval estimation based on single as-
say runs are likely to produce too small con�dence sets, because they do not
include inter-assay imprecision. The total variation of the analytical method
should be taken into account when assessing predicted concentrations. This
total variation can be estimated in a precision study including several assay
runs performed under varying conditions, preferably at di�erent laboratories.
If possible, precision studies should include several measuring instruments and
batches of reagents. The methods suggested by Johnson and Krishnamoor-
thy (1995) and Bhaumik and Gibbons (2005) could be used for constructing
con�dence intervals for unknown sample concentrations that have been mea-
sured at several laboratories. However, in applications samples with unknown
concentrations are usually measured only once. Information from precision
studies is required to assess the quality of the measurements.

Regardless the method for calibration we recommend that rules for outlier
detection be de�ned, and control limits be set up, based on experience with the
analytical procedure, so that erroneous responses are removed automatically
before curve �tting.
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