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Abstract

The classical condition on the existence of uniformly exponentially con-
sistent tests for testing the true density against the complement of its
arbitrary neighborhood has been widely adopted in study of asymptotics
of Bayesian nonparametric procedures. Because we follow a Bayesian
approach, it seems to be more natural to explore alternative and appro-
priate conditions which incorporate the prior distribution. In this paper
we supply a new prior-dependent integration condition to establish gen-
eral posterior convergence rate theorems for observations which may not
be independent and identically distributed. The posterior convergence
rates for such observations have recently studied by Ghosal and van der
Vaart [5]. We moreover adopt the Hausdorff α-entropy given by Xing
and Ranneby [18][16], which is also prior-dependent and smaller than
the widely used metric entropies. These lead to extensions of several ex-
isting theorems. In particular, we establish a posterior convergence rate
theorem for general Markov processes and as its application we improve
on the currently known posterior rate of convergence for a nonlinear
autoregressive model.
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1 Introduction

The aim of this article is to study the asymptotic behavior of posterior distri-
butions based on observations which are not assumed to be independent and
identically distributed. Suppose that

(
X(n),A(n), P

(n)
θ : θ ∈ Θ

)
, n = 1, 2, . . . ,

are statistical experiments with observations X(n), where the parameter set
Θ does not depend on the index n, and suppose that the distributions P

(n)
θ

for all θ ∈ Θ admit densities p
(n)
θ relative to a σ-finite measure µ(n) on X(n).

Denote by θ0 the true parameter generating the observations X(n). Assume
that P∞

θ is the infinite product measure P
(1)
θ P

(2)
θ · · ·P (n)

θ · · · on the product
space

⊗∞
n=1 X(n). In the sense that each B ⊂ X(n) is identified with the sub-

set (X(1), X(2), . . . ,X(n−1), B,X(n+1), . . . ) of the product space, we have that
P∞

θ = P
(n)
θ holds on X(n) for all n. In other words, P∞

θ is the distribu-
tion of the sequence (X1, X2, . . . ) which makes the observations Xn indepen-
dent from P

(n)
θ . Let dn be a semimetric on Θ. Note that any semimetric

dn(P (n)
θ1

, P
(n)
θ2

) on the space of densities defined on X(n) induces naturally a

semimetric dn(θ1, θ2) = dn(P (n)
θ1

, P
(n)
θ2

) on Θ when the mapping θ 7→ P
(n)
θ is

one-to-one which is assumed in the paper. Given a prior Πn on Θ, the posterior
distribution Πn

(· ∣∣X(n)
)

is a random probability measure given by

Πn

(
B

∣∣ X(n)
)

=

∫
B p

(n)
θ (X(n))Πn(dθ)

∫
Θ p

(n)
θ (X(n)) Πn(dθ)

=

∫
B R

(n)
θ (X(n))Πn(dθ)

∫
Θ R

(n)
θ (X(n))Πn(dθ)

for each measurable subset B in Θ, where R
(n)
θ (X(n)) = p

(n)
θ (X(n))

/
p
(n)
θ0

(X(n))
stands for the likelihood ratio. Recall that the posterior distribution
Πn( · |X(n)) is said to be convergent almost surely at a rate at least εn if
there exists r > 0 such that Πn

(
θ ∈ Θ : dn(θ, θ0) ≥ rεn

∣∣X(n)
) −→ 0 al-

most surely as n → ∞. Similarly, Πn( · |X(n)) is said to be convergent in
probability at a rate at least εn if for any sequence rn tending to infinity,
Πn

(
θ ∈ Θ : dn(θ, θ0) ≥ rnεn

∣∣X(n)
) −→ 0 in probability as n →∞. Through-

out this paper, almost sure convergence and convergence in probability are
understood as to be defined with respect to P∞

θ0
.

Asymptotics of Bayesian nonparametric procedures has been the focus of a
considerable amount of research during past three decades. Much works were
concerned with the asymptotic behavior of posterior distributions for i.i.d.
observations, see, for instance, Barron, Schervish and Wasserman [1], Ghosal,
Ghosh and van der Vaart [4], Shen and Wasserman [9] and Walker, Lijoi and
Prunster [14]. Recently, Ghosal and van der Vaart [5] proved several types of
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posterior convergence rate theorems for non-i.i.d. observations. Their results
reply upon the existence of uniformly exponentially consistent tests, combined
with the metric entropy condition and the prior concentration rate. Both the
existence of uniformly exponentially consistent tests and the metric entropy
condition depend on models, but not on priors. Since the posterior depends on
the complexity of the model only through the prior, it is therefore of interest
to explore alternative conditions which incorporate priors.

In this paper we use an integration condition together with the Hausdorff
α-entropy to study convergence rates of posteriors. The integration condition
and the Hausdorff α-entropy both are prior-dependent. We show that the
integration condition is weaker than the existence of uniformly exponentially
consistent tests and holds automatically for an interesting class of metrics
used to describe rates of convergence. The latter fact leads to an extension
of the results for i.i.d. observations in Walker [12][11] and Xing [16], in which
construction of such tests is not necessarily required in order to obtain poste-
rior consistency. The integration condition is moreover useful in construction
of priors, as shown when we prove that the convergence rates of the pseu-
doposteriors given by Walker and Hjort [13] do not depend on the metric
entropy condition. The Hausdorff α-entropy condition was introduced in Xing
and Ranneby [18][16] and it is weaker than the metric entropy condition. By
means of the integration condition and the Hausdorff α-entropy, we estab-
lish general posterior convergence rate theorems both in the almost sure sense
and in the in-probability sense. Particularly, we obtain convergence rate the-
orems of pseudoposteriors and posteriors for independent observations. We
also prove a posterior convergence rate theorem for general Markov chains,
which is an extension of a result for stationary α-mixing Markov chains given
by Ghosal and van der Vaart ([5], Theorem 5). As applications we improve
on the posterior rate of convergence for the nonlinear autoregressive model,
see Section 7.4 of Ghosal and van der Vaart [5]. Many authors have stud-
ied Bayesian convergence rates for the Gaussian white noise model with a
conjugate Gaussian prior (or, equivalently, one has independent normally dis-
tributed observations as N(θi, 1/n), i = 1, 2, . . . and puts a Gaussian prior
independently on θi, i = 1, 2, . . . n), see for instance Ghosal and van der Vaart
[5], Scricciolo [8], Shen and Wasserman [9] and Zhao [20]. Now by our general
posterior convergence rate theorem, we extend their results to multi-normally
distributed observations which may not be independent.

The paper is organized as follows. In Section 2 we introduce a prior-
dependent integration assumption and present several different types of general
posterior convergence rate theorems. Section 3 contains applications of our
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general results to independent observations and Markov chains. Section 4 con-
tains concrete applications including nonlinear autoregression model, infinite-
dimensional normal model and priors based on uniform distributions. The
technical proofs are collected in Appendix.

Throughout this paper the notation a . b means a ≤ Cb for some positive
constant C which is universal or fixed in the proof. Write a ≈ b if a . b
and b . a. Denote Pfα =

∫
X fαdP which is the integral of the nonnegative

function f with power α relative to the measure P on X.

2 General convergence rate theorems

In this section we introduce a new prior-dependent integration condition to
study consistency of posterior distributions. The integration condition is
shown to be automatically fulfilled by a large number of metrics. Together
with the Hausdorff α-entropy, this integration condition plays a central roll in
our versions of general Bayesian convergence rate theorems.

Let us begin with the following assumption given by Ghosal and van der
Vaart [5], in which they instead equivalently used a constant multiple of the
semimetric en.

Assumption 1. Let K be a positive constant. Assume that {dn} and {en}
are two sequences of semimetrics on Θ such that for every n, ε > 0 and θ1 ∈ Θ
with dn(θ1, θ0) > ε, there exists a test φn satisfying

P
(n)
θ0

φn ≤ e−Knε2
and inf

θ∈Θ: en(θ,θ1)<ε
P

(n)
θ φn ≥ 1− e−Knε2

.

Based on Assumption 1, Ghosal and van der Vaart [5] established a series
of general Bayesian convergence rate theorems. Assumption 1 does not depend
on the prior distribution. Note that the posterior depends on the complexity
of the model only through the prior. As far as the Bayesian approach is
concerned, it would be interesting to find some conditions incorporating the
prior in study of asymptotic properties. In the following we give such a prior-
dependent condition.

Recall that the Hausdorff α-entropy J(δ,Θ1, α, en) for Θ1 ⊂ Θ is the log-
arithm of the minimal sum of α-th power of prior masses of balls of en-radius
≤ δ needed to cover Θ1, see Xing [17] and Xing and Ranneby [18] for the
details of the Hausdorff α-entropy. For simplicity of notations, we define the
Hausdorff α-constant C(δ,Θ1, α, en) := eJ(δ,Θ1,α,en) of any subset Θ1 of Θ.
Observe that C(δ,Θ1, α, en) depends on the prior Πn. It was proved in Xing
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and Ranneby [18] that the inequality

Πn(Θ1)α ≤ C(δ,Θ1, α, en) ≤ Πn(Θ1)α N(δ,Θ1, en)1−α

holds for any 0 ≤ α ≤ 1, where N(δ,Θ1, en) denotes the minimal number of
balls of en-radius≤ δ needed to cover Θ1 ⊂ Θ. Our prior-dependent integration
condition is

Assumption 2. Let {dn} and {en} be two sequences of semimetrics on Θ.
For some α ∈ (0, 1) there exist constants K1 > 0, K2 > 0 and K3 ≥ 0 such
that the inequality

P
(n)
θ0

(∫

θ∈Θ1: dn(θ,θ0)>ε
R

(n)
θ (X(n))Πn(dθ)

)α

≤ K1 e−K2nε2
C(ε, {θ ∈ Θ1 : dn(θ, θ0) > ε}, α, en)K3

holds for any ε > 0, Θ1 ⊂ Θ and for all n large enough.

We usually take K3 = 1 but here we let K3 ≥ 0 in order to increase the
scope of applicability. It was shown in Xing [17] that Assumption 2 holds
when the observations are i.i.d. and r en = dn = d for some constant r > 2
and some metric d which is dominated by the Hellinger distance. The integral
of Assumption 2 depends on the prior Πn and hence is trivially equal to zero
when Πn puts zero mass outside of θ0. So Assumption 2 cannot generally
imply Assumption 1. In fact, Assumption 2 is weaker than Assumption 1 as
shown in the following.

Proposition 1. Assumption 1 implies Assumption 2 for all 0 < α < 1, where
one can choose K1 = 2, K2 = (1− α) K ∧ α K and K3 = 1.

We shall use the Hellinger distance H(f, g) = ||√f − √
g||2

and its modification H∗(f, g) =
∣∣∣∣(√f − √

g)
(

2
3

√
f
g + 1

3

)1/2∣∣∣∣
2
, where

||h||p =
( ∫

X(n) |h|p dµ(n)
)1/p. The inequalities 1√

3
H(f, g) ≤ H∗(f, g) ≤

∣∣∣∣f/g
∣∣∣∣1/4

∞ H(f, g) hold for all densities f and g, since
∣∣∣∣f/g

∣∣∣∣
∞ ≥ 1. The

quantity H∗ was used by Xing [16] in computation of prior concentration
rates. Denote

Wn(θ0, ε) =
{

θ ∈ Θ : H∗(p
(n)
θ0

, p
(n)
θ ) ≤

√
2
3
(e

3
2
nε2 − 1)

}
.

Note that Wn(θ0, ε) contains the set
{
θ ∈ Θ : H∗(p

(n)
θ0

, p
(n)
θ ) ≤ √

nε
}

because

of nε2 < 2
3(e

3
2
nε2 − 1). The following proposition shows that Assumption
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2 holds automatically when dn = en = d1
n for some metrics d1

n such that
d1

n(θ, θ1)s is a convex function of θ and

d1
n(θ1, θ2)2 ≤ − 2

n
log

(
1− H(p(n)

θ1
, p

(n)
θ2

)2

2
)

(1)

for all n and θ1, θ2 ∈ Θ, where s is a fixed positive constant. Throughout this
paper we let d1

n stand for a metric with this property.

Proposition 2. Let 0 < δ < 1/2 and 0 < α < 1. Then the inequality

P
(n)
θ0

(∫

θ∈Θ1: d1
n(θ,θ0)>ε

R
(n)
θ (X(n))Πn(dθ)

)α

≤ 2 e−
1
2
(1−α)(1−2δ)2nε2

C(δ ε, {θ ∈ Θ1 : d1
n(θ, θ0) > ε}, α, d1

n)

holds for all n, ε > 0 and Θ1 ⊂ Θ.

Another advantage of adoption of Assumption 2 is that it enables us more
easily to construct prior distributions Πn which may receive good posterior
convergence rates. Here we present a result which implies that Assumption
2 with K3 = 0 holds for data-dependent priors Πn(dθ)

/
p
(n)
θ (X(n))1−β for any

given constant 0 < β < 1. Data-dependent priors have been studied by
Wasserman [15], Walker and Hjort [13] and Xing and Ranneby [19].

Proposition 3. The inequality

P
(n)
θ0

(∫

θ∈Θ1: d1
n(θ,θ0)>ε

R
(n)
θ (X(n))β Πn(dθ)

)α

≤ e−
(
(1−β)∧β

)
αnε2

Πn(θ ∈ Θ1 : d1
n(θ, θ0) > ε)α

holds for all n, 0 < α < 1, 0 < β < 1, ε > 0 and Θ1 ⊂ Θ.

Now we are ready to represent our first main result of this paper.

Theorem 1. Suppose that Assumption 2 holds and that εn > 0, n ε2
n ≥

c0 log n for all large n and some fixed constant c0 > 0. Suppose that there
exist a constant c1 < K2 and a sequence of subsets Θn on Θ such that

C(jεn, {θ ∈ Θn : jεn < dn(θ, θ0) ≤ 2jεn}, α, en)K3 ≤ ec1j2nε2
n Πn

(
Wn(θ0, εn)

)α

(2)
for all sufficiently large integers j and n. Then for each r large enough we
have that

Πn

(
θ ∈ Θn : dn(θ, θ0) ≥ r εn|X(n)

) −→ 0
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almost surely as n →∞. If furthermore there exists c2 > 1
c0

such that

∞∑

n=1

en ε2
n (3+2c2) Πn(Θ \Θn)
Πn

(
Wn(θ0, εn)

) < ∞,

then there exists a constant b > 0 such that for each large r and all large n,

Πn

(
θ ∈ Θ : dn(θ, θ0) ≥ r εn|X(n)

) ≤ e−bnε2
n almost surely

which tends to zero as n →∞.

Under Assumption 1 and εn & n−γ with 0 < γ < 1/2, Ghosal and van
der Vaart ([5], Theorem 2) proved an almost sure convergence rate theorem
and obtained that P

(n)
θ0

Πn

(
θ ∈ Θn : dn(θ, θ0) ≥ rn εn|X(n)

)
= O(ε2

n) for
every rn →∞. The upper bound ε2

n is slower than e−bnε2
n of Theorem 1, and

moreover Theorem 1 can be applied to obtain the posterior convergence at
the rate εn =

√
log n/n. Note that when K3 = 0 the inequality (2) follows

from Πn

(
Wn(θ0, εn)

) ≥ e−
c1
α

nε2
n . So Theorem 1 gives that in the special case

of K3 = 0 the concentration rate is precisely equal to the convergence rate.
We also mention that in the case that the set Θ is convex and dn(θ, θ0)s for
some constant s > 0 is a bounded convex function of θ in Θ, it turns out
from Jensen’s inequality that the posterior expectation θ̂n :=

∫
θ dΠn(θ|X(n))

under the assumptions of Theorem 1 yields a point estimator of θ0 with the
convergence rate at least εn. Together with Proposition 2, Theorem 1 implies
the following direct consequence for the metric d1

n.

Corollary 1. Suppose that εn > 0, n ε2
n ≥ c0 log n for all large n and some

fixed constant c0 > 0. Suppose that there exist 0 < α < 1, 0 < δ < 1/2 and
c1 < 1

2(1− α)(1− 2δ)2 such that

C(δjεn, {θ ∈ Θ : jεn < d1
n(θ, θ0) ≤ 2jεn}, α, d1

n) ≤ ec1j2nε2
n Πn

(
Wn(θ0, εn)

)α

for all sufficiently large integers j and n. Then there exists a constant b > 0
such that for each large r and all large n,

Πn

(
θ ∈ Θ : d1

n(θ, θ0) ≥ r εn|X(n)
) ≤ e−bnε2

n almost surely

which tends to zero as n →∞.

It is also worth pointing out that from Lemma 1 in Xing and Ranneby
[18] it follows that the inequality (2) can be derived from the following two
inequalities:
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N
(
jεn, {θ ∈ Θn : jεn < dn(θ, θ0) ≤ 2jεn}, en

)K3(1−α) ≤ ec3j2nε2
n

and

Πn

(
θ ∈ Θn : jεn < dn(θ, θ0) ≤ 2jεn

)K3α ≤ ec4j2nε2
n Πn

(
Wn(θ0, εn)

)α

for some constants c3 and c4 with c3 + c4 < K2. Thus, we have the following
consequence.

Corollary 2. Suppose that Assumption 2 holds and that εn > 0, n ε2
n ≥

c0 log n for all large n and some fixed constant c0 > 0. Suppose that there
exist constants c1, c2, c3 with c1(1− α) + c2α < K2 and c3 > 1/c0 and there
exists a sequence of subsets Θn on Θ such that for all large j and n,

(i) N
(
jεn, {θ ∈ Θn : jεn < dn(θ, θ0) ≤ 2jεn}, en

)K3 ≤ ec1j2nε2
n ;

(ii) Πn

(
θ ∈ Θn : jεn < dn(θ, θ0) ≤ 2jεn

)K3 ≤ ec2j2nε2
n Πn

(
Wn(θ0, εn)

)
;

(iii)
∞∑

n=1

en ε2
n (3+2c3) Πn(Θ \Θn)
Πn

(
Wn(θ0, εn)

) < ∞.

Then there exists a constant b > 0 such that for each large r and all large n,

Πn

(
θ ∈ Θ : dn(θ, θ0) ≥ r εn|X(n)

) ≤ e−bnε2
n almost surely

which tends to zero as n →∞.

Our next theorem gives a slightly weaker version of Theorem 1.

Theorem 2. The following statements are true.

(a) Theorem 1 holds if the inequality (2) is replaced by

C(εn,Θn, α, en)K3 ≤ ec1nε2
n Πn

(
Wn(θ0, εn)

)α for all large n.

(b) Corollary 2 holds if both (i) and (ii) are replaced by

N(εn,Θn, en)K3 ≤ ec1nε2
n and Πn(Θn)K3 ≤ ec2nε2

n Πn

(
Wn(θ0, εn)

)
.
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In order to deal with convergence rates of posterior distributions in the
sense of in-probability, following Ghosal and van der Vaart [5], we adopt no-
tations Vk(f, g) =

∫
X(n) f

∣∣ log(f/g)
∣∣k dµ(n) and Vk,0(f, g) =

∫
X(n) f

∣∣ log(f/g)−
K(f, g)

∣∣k dµ(n), where K(f, g) =
∫
X(n) f log(f/g) dµ(n) is the Kullback-Leibler

divergence of densities f and g. Denote

Bn(θ0, ε; k) =
{
θ ∈ Θ : K(p(n)

θ0
, p

(n)
θ ) ≤ nε2, Vk,0(p

(n)
θ0

, p
(n)
θ ) ≤ nk/2εk

}
.

Our result in this direction is

Theorem 3. Suppose that Assumption 2 holds and that k > 1, εn > 0,
n ε2

n ≥ c0 for all large n and some fixed constant c0 > 0. Suppose that there
exist a constant c1 < K2 and a sequence of subsets Θn on Θ such that

C(jεn, {θ ∈ Θn : jεn < dn(θ, θ0) ≤ 2jεn}, α, en)K3 ≤ ec1j2nε2
n Πn

(
Bn(θ0, εn; k)

)α

(3)
for all sufficiently large integers j and n. Then for each rn →∞ we have that

Πn

(
θ ∈ Θn : dn(θ, θ0) ≥ rn εn|X(n)

) −→ 0

in probability as n → ∞. If furthermore there exists c2 > 1 such that
ec2nε2n Πn(Θ\Θn)

Πn

(
Bn(θ0,εn;k)

) −→ 0 as n →∞, then

Πn

(
θ ∈ Θ : dn(θ, θ0) ≥ rn εn|X(n)

) −→ 0

in probability as n →∞.

Similarly, Theorem 3 holds if one replaces the inequality (3) by

C(εn, Θn, α, en)K3 ≤ ec1nε2
n Πn

(
Bn(θ0, εn; k)

)α for large n.

Moreover, as a consequence of Theorem 3 we obtain the following result which
is a slightly stronger version of Theorem 1 in Ghosal and van der Vaart [5].

Corollary 3. Suppose that Assumption 2 holds and that k > 1, εn > 0,
n ε2

n ≥ c0 for all large n and some fixed constant c0 > 0. Suppose that there
exist constants c1, c2 > 0 with c1(1 − α) + c2α < K2, c3 > 1 and a sequence
of subsets Θn on Θ such that for all large j and n,

(i) N
(
jεn, {θ ∈ Θn : jεn < dn(θ, θ0) ≤ 2jεn}, en

)K3 ≤ ec1j2nε2
n ;

(ii) Πn

(
θ ∈ Θn : jεn < dn(θ, θ0) ≤ 2jεn

)K3 ≤ ec2j2nε2
n Πn

(
Bn(θ0, εn; k)

)
;
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(iii)
ec3nε2

n Πn(Θ \Θn)
Πn

(
Bn(θ0, εn; k)

) −→ 0 as n →∞.

Then for each rn →∞ we have that

Πn

(
θ ∈ Θ : dn(θ, θ0) ≥ rn εn|X(n)

) −→ 0

in probability as n →∞.

3 Some special cases

In this section we apply our general convergence rate theorems to i.n.i.d. ob-
servations and Markov processes. For i.n.i.d. observations we establish almost
sure convergence rate theorems both on pseudoposterior distributions and on
posterior distributions. We derive an almost sure posterior convergence rate
theorem for general Markov processes.

3.1 Independent observations

We consider the case that X(n) is a random vector (X1, X2, . . . , Xn) of in-
dependent variables Xi, where each Xi is generated from some density pθ,i

relative to a σ-finite measure µi on (Xi,Ai), and that P
(n)
θ is the product

distribution with the density p
(n)
θ (X(n)) =

∏n
i=1 pθ,i(xi) relative to the direct

product measure µ(n) = µ1×µ2×· · ·×µn on X(n) = X1×X2×· · ·×Xn. Assume
that d0

n(θ1, θ2) =
(

1
n

∑n
i=1 Hi(pθ1,i, pθ2,i)2

)1/2, where each Hi(pθ1,i, pθ2,i) =( ∫
(√pθ1,i − √pθ2,i)2 dµi

)1/2 is the Hellinger diatance between pθ1,i and pθ2,i

relative to µi on Xi. It is clear that d0
n satisfies the triangle inequality and

hence is a metric on Θ.
Denote

H∗,i(pθ1,i, pθ2,i) =
( ∫

(
√

pθ1,i −√pθ2,i)2(
2
3

√
pθ1,i

pθ2,i
+

1
3
) dµi

)1/2
.

An advantage of adoption of H∗ in computation of concentration rates for
independent observations is that we have the following quality

1 +
3
2

H∗
( n∏

i=1

pθ1,i,
n∏

i=1

pθ2,i

)2
=

n∏

i=1

(
1 +

3
2

H∗,i(pθ1,i, pθ2,i)2
)

≤ e
3
2

∑n
i=1 H∗,i(pθ1,i,pθ2,i)

2
,
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which implies that Wn(θ0, ε) contains the set

Wn(θ0, ε) :=
{
θ ∈ Θ :

1
n

n∑

i=1

H∗,i(pθ0,i, pθ,i)2 ≤ ε2
}
.

Similarly, we have

1− 1
2

H
( n∏

i=1

pθ1,i,
n∏

i=1

pθ2,i

)2
=

n∏

i=1

(
1− 1

2
Hi(pθ1,i, pθ2,i)2

)

≤ e−
1
2

∑n
i=1 Hi(pθ1,i,pθ2,i)

2
= e−

1
2

n d0
n(θ1,θ2)2 ,

which implies that the metric d0
n satisfies the inequality (1) and hence by

the convexity of (d0
n)2 one can apply Proposition 2 and Proposition 3 for d0

n.
Now we are ready to present two results for i.n.i.d. observations by means of
Wn(θ0, ε) and d0

n.

3.1.1 Pseudoposterior convergence rate

Given 0 < β < 1, we define a pseudoposterior distribution Πβ,n based on the
prior Πn by

Πβ,n

(
B

∣∣X1, X2, . . . , Xn

)
=

∫
B

n∏
i=1

pθ,i(Xi)β Πn(dθ)

∫
Θ

n∏
i=1

pθ,i(Xi)β Πn(dθ)
for each B ⊂ Θ.

In other words, we use the data-dependent prior Πn(dθ)
/ n∏

i=1
pθ,i(Xi)1−β.

Wasserman [15] first applied psuedolikelihood function-data-dependent priors
in study of asymptotic inference for mixture models. The pseudoposterior Πβ,n

for i.i.d. observations was introduced by Walker and Hjort [13] who proved
a Hellinger consistency theorem when β = 1/2. The Hellinger consistency
theorem for any 0 < β < 1 was obtained by Xing and Ranneby [19]. Here we
study the convergence rates of the pseudoposteriors for i.n.i.d. observations.
Using Proposition 3 for d0

n, we obtain

Proposition 4. The inequality

P
(n)
θ0

(∫

θ∈Θ1: d0
n(θ,θ0)>ε

( n∏

i=1

pθ,i(Xi)
pθ0,i(Xi)

)β
Πn(dθ)

)α

≤ e−
(
(1−β)∧β

)
αnε2

Πn(θ ∈ Θ1 : d0
n(θ, θ0) > ε)α

holds for all n, 0 < α < 1, 0 < β < 1, ε > 0 and Θ1 ⊂ Θ.
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Therefore, we have

Theorem 4. Let 0 < β < 1. Suppose that εn > 0, n ε2
n ≥ c0 log n for all large

n and some fixed constant c0 > 0. Suppose that there exists c1 > 0 such that

Πn(θ ∈ Θ : d0
n(θ, θ0) > εn) ≤ ec1nε2

n Πn

(
Wn(θ0, εn)

)

for all large n. Then for each large r,

Πβ,n

(
θ ∈ Θ : d0

n(θ, θ0) ≥ r εn|X1, X2, . . . , Xn

) −→ 0

almost surely as n →∞.

Since the total mass of Πn is always equal to one, Theorem 4 implies
that the convergence rate εn of the pseudoposterior distribution Πβ,n can
be completely determined by the concentration condition Πn

(
Wn(θ0, εn)

) ≥
ec1nε2

n . In other words, the convergence rate does not depend on the rate of
the metric entropy which describes how large the model is.

3.1.2 Posterior convergence rate

By a result of Birgé (see [6], page 491, or [5], Lemma 2) we know that there
exist tests satisfying Assumption 1. Based on this fact, Ghosal and van der
Vaart ([5], Theorem 4) gave an in-probability convergence rate theorem for
i.n.i.d. observations and the metric d0

n. Now, together with Proposition 2 and
Wn(θ0, ε) ⊂ Wn(θ0, ε), Theorem 1 implies the following almost sure assertion.

Theorem 5. Let 0 < δ < 1/2 and 0 < α < 1. Suppose that εn > 0, n ε2
n ≥

c0 log n for all large n and some fixed constant c0 > 0. Suppose that there
exist c1 < 1

2(1− α)(1− 2δ)2, c2 > 1
c0

and a sequence of subsets Θn on Θ such
that

C(δjεn, {θ ∈ Θn : jεn < d0
n(θ, θ0) ≤ 2jεn}, α, d0

n) ≤ ec1j2nε2
n Πn

(
Wn(θ0, εn)

)α

for all large j, n, and

∞∑

n=1

en ε2
n (3+2c2) Πn(Θ \Θn)
Πn

(
Wn(θ0, εn)

) < ∞.

Then there exists b > 0 such that for each large r and all large n,

Πn

(
θ ∈ Θ : d0

n(θ, θ0) ≥ r εn|X(n)
) ≤ e−bnε2

n almost surely.
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For readers’ convenience, we here copy a direct consequence of Theorem 5
for α = 1/2.

Corollary 4. Let 0 < δ < 1/2. Suppose that εn > 0, n ε2
n ≥ c0 log n for all

large n and some fixed constant c0 > 0. Suppose that there exist c1, c2, c3

with c1 + c2 < 1
2(1 − 2δ)2 and c3 > 1/c0 and a sequence of subsets Θn on Θ

such that for all large j and n,

(i) N
(
δjεn, {θ ∈ Θn : jεn < d0

n(θ, θ0) ≤ 2jεn}, d0
n

) ≤ ec1j2nε2
n ;

(ii) Πn

(
θ ∈ Θn : jεn < d0

n(θ, θ0) ≤ 2jεn

) ≤ ec2j2nε2
n Πn

(
Wn(θ0, εn)

)
;

(iii)
∞∑

n=1

en ε2
n (3+2c3) Πn(Θ \Θn)
Πn

(
Wn(θ0, εn)

) < ∞.

Then there exists b > 0 such that for each large r and all large n,

Πn

(
θ ∈ Θ : d0

n(θ, θ0) ≥ r εn|X(n)
) ≤ e−bnε2

n almost surely.

3.2 Markov chains

Let X0, X1, . . . be a Markov chain with transition density pθ(y|x) and initial
density qθ(x0) with respect to some σ-finite measure µ on a measurable space
(X,A). Here we assume that for each θ ∈ Θ the 2-variable function (x, y) 7→
pθ(y|x) is measurable. So the joint distribution P

(n)
θ of X0, X1, . . . , Xn has

a density given by p
(n)
θ (x(n)) = qθ(x0)

n∏
i=1

pθ(xi|xi−1) relative to the product

measure µ(x0)µ(x1) . . . µ(xn). We shall adopt the following Hellinger type
semimetrics.

H
(
pθ1(y|x), pθ2(y|x)

)
=

(∫

X

∫

X

(√
pθ1(y|x)−

√
pθ2(y|x)

)2
dµ(y)dν(x)

)1/2
,

H
(
qθ1(x), qθ2(x)

)
=

(∫

X

(√
qθ1(x)−

√
qθ2(x)

)2
dµ(x)

)1/2
,

H∗
(
pθ1(y|x), pθ2(y|x)

)
=

(∫

X

∫

X

(√
pθ1(y|x)−

√
pθ2(y|x)

)2

·(2
3

√
pθ1(y|x)
pθ2(y|x)

+
1
3
)
dµ(y)dν(x)

)1/2
,

H∗
(
qθ1(x), qθ2(x)

)
=

(∫

X

(√
qθ1(x)−

√
qθ2(x)

)2(2
3

√
qθ1(x)
qθ2(x)

+
1
3
)
dµ(x)

)1/2
.
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Denote

W 1
n(θ0, ε) =

{
θ ∈ Θ : H∗(pθ0 , pθ)2 +

1
n

H∗(qθ0 , qθ)2 ≤ ε2
}
.

By means of the metric d(θ, θ0) := H(pθ, pθ0), Ghosal and van der Vaart
([5], Theorem 5) gave an in-probability posterior convergence rate theorem
for stationary α-mixing Markov chains. Since calculation of the α-mixing
coefficients is generally not easy and many processes are neither mixing nor
stationary, it seems worth to develop a posterior convergence rate theorem for
Markov chains which may be neither stationary nor α-mixing. Now we have
an almost sure assertion in this direction. Our result is based on the following
proposition.

Proposition 5. Suppose that there exist a µ-integrable function r(y) and
constants a1 ≥ a0 > 0 with a1 ≥ 1 such that dν(y) = r(y)dµ(y) and
a0r(y) ≤ pθ(y|x) ≤ a1r(y) for all θ ∈ Θ and x, y ∈ X. Let 0 < δ <

√
a0

2
√

a1

and 0 < α < 1
2 . Then the inequality

P
(n)
θ0

(∫

θ∈Θ1: d(θ,θ0)>ε

qθ(X0)
qθ0(X0)

n∏

i=1

pθ(Xi|Xi−1)
pθ0(Xi|Xi−1)

Πn(dθ)
)α

≤ 2 e−( 1
2
−α)(

√
a0
2
−√a1δ)2nε2

C(δ ε, {θ ∈ Θ1 : d(θ, θ0) > ε}, α, d)

holds for all n, ε > 0 and Θ1 ⊂ Θ, where d(θ, θ0) = H(pθ, pθ0).

Therefore we have

Theorem 6. Suppose that all assumptions of Proposition 5 hold and suppose
that εn > 0, n ε2

n ≥ c0 log n for all large n and some fixed constant c0 > 0.
Suppose that there exist c1 < (1

2 − α)(
√

a0

2 − √a1δ)2, c2 > 1
c0

and a sequence
of subsets Θn on Θ such that

C(δjεn, {θ ∈ Θn : jεn < d(θ, θ0) ≤ 2jεn}, α, d) ≤ ec1j2nε2
n Πn

(
W 1

n(θ0, εn)
)α

for all large j, n, and

∞∑

n=1

en ε2
n (3a1+4c2) Πn(Θ \Θn)
Πn

(
W 1

n(θ0, εn)
) < ∞.

Then there exists b > 0 such that for each large r and all large n,

Πn

(
θ ∈ Θ : d(θ, θ0) ≥ r εn|X0, X1, . . . , Xn

) ≤ e−bnε2
n almost surely.
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By choosing δ =
√

a0

4
√

a1
and α = 1

4 we can easily get

Corollary 5. Suppose that there exist a µ-integrable function r(y) and con-
stants a1 ≥ a0 > 0 such that dν(y) = r(y)dµ(y) and a0r(y) ≤ pθ(y|x) ≤ a1r(y)
for all θ ∈ Θ and x, y ∈ X. Suppose that εn > 0, n ε2

n ≥ c0 log n for all large
n and some fixed constant c0 > 0. Suppose that there exist c1, c2, c3 with
3c1 + c2 < a0/16 and c3 > 1/c0 and a sequence of subsets Θn on Θ such that
for all large j and n,

(i) N
( √a0

4
√

a1
jεn, {θ ∈ Θn : jεn < d(θ, θ0) ≤ 2jεn}, d

) ≤ ec1j2nε2
n ;

(ii) Πn

(
θ ∈ Θn : jεn < d(θ, θ0) ≤ 2jεn

) ≤ ec2j2nε2
n Πn

(
W 1

n(θ0, εn)
)
;

(iii)
∞∑

n=1

en ε2
n (3a1+4c3) Πn(Θ \Θn)
Πn

(
W 1

n(θ0, εn)
) < ∞.

Then there exists b > 0 such that for each large r and all large n,

Πn

(
θ ∈ Θ : d(θ, θ0) ≥ r εn|X0, X1, . . . , Xn

) ≤ e−bnε2
n almost surely.

4 Applications

In this section we gives three examples of applications of our theorems. By
means of Corollary 5, we improve on the posterior rate of convergence for the
nonlinear autoregressive model in Ghosal and van der Vaart [5]. Corollary
1 is applied to find the posterior convergence rate for an infinite-dimensional
normal model, which extends the known results in Ghosal and van der Vaart
[5], Scricciolo [8], Shen and Wasserman [9] and Zhao [20] for the white noise
model with a conjugate prior. Finally, we use Corollary 4 to study priors
based on uniform distributions, which extends the corresponding result for
priors based on discrete distributions in Ghosal and van der Vaart [5].

4.1 Nonlinear autoregression

We observe X1, X2, . . . , Xn of a time series {Xt : t ∈ Z} given by

Xi = f(Xi−1) + ξi for i = 1, 2, . . . , n,

where ξ1, ξ2, . . . , ξn are i.i.d. random variables with the standard normal distri-
bution and the unknown regression function f is in the space F which consists
of all functions f with supx∈R

∣∣f(x)
∣∣ ≤ M for some fixed positive constant M .

14



Let qf (x) be the density of X0 relative to the Lebesgue measure dµ on R. So
X0, X1, . . . can be considered as a Markov chain generated by the transition
density pf (y|x) = φ

(
y−f(x)

)
with φ(x) = (2π)−1/2e−x2/2 and the initial den-

sity qf (x). Since φ(x) is a strictly positive continuous function tending to zero
as x → ±∞, there exist two constants 0 < a0 < 1 < a1 depending only on
M such that a0φ(y) ≤ pf (y|x) ≤ a1φ(y) for all f ∈ F and −∞ < y, x < ∞.
Assume that there exists a constant N > 0 such that the set of initial densities
of the Markov chain satisfies H∗(qf1 , qf2) ≤ N for all initial densities qf1 and
qf2 . For instance, all of the initial densities with a0φ(x) ≤ qf (x) ≤ a1φ(x)
satisfy H∗(qf1 , qf2) ≤

√
2(a1/a0)1/4 and hence form a set with the require-

ment. Define a measure dν = φdµ in R and a norm ||f ||2 =
( ∫
R |f |2dν

)1/2

on F . Assume that the true regression function f0 ∈ F belongs to the Lip-
schitz continuous space LipM , which consists of all functions f on (−∞,∞)
satisfying |f(x)− f(y)| ≤ L |x− y| for all −∞ < x, y < ∞, where L is a fixed
positive constant. When the Markov chain is stationary, Ghosal and van der
Vaart ([5], Section 7.4) constructed a prior on the regression functions and
obtained the in-probability posterior convergence rate n−1/3(log n)1/2, which
is the minimax rate times the logarithmic factor (log n)1/2. In the following we
shall apply Corollary 5 to get the posterior convergence rate n−1/3(log n)1/6

in the almost sure sense for a general Markov chain defined as above.
First, we note that for any f ∈ F ,

H∗(pf0 , pf )2 +
1
n

H∗(qf0 , qf )2

≤
√

a1

a0
H(pf0 , pf )2 +

N2

n

=
1
2

√
a1

a0

∫ ∞

−∞

(
1− e−

(f(x)−f0(x))2

4

)
dν(x) +

N2

n

≤ ||f − f0||22
8

√
a1

a0
+

N2

n
,

where the last inequality follows from the elementary inequality 1− e−t ≤ t.
Hence for some small constant b1 > 0 we have that W 1

n(f0, εn) ⊃ {f ∈ F :
||f − f0||2 ≤ b1 εn} for all large n. Similarly, ||f − f0||2 ≈ H(pf , pf0) hold for
all f ∈ F with ||f − f0||2 ≤ 1. Hence Corollary 5 works well for the metric
|| · ||2.

We also need some basic facts on approximation of Lipschitz continu-
ous functions by means of step functions. Given a finite interval [−An, An)
and a positive integer Kn, we make the partition [−An, An) =

⋃Kn
k=1 Ik

15



with Ik =
[ − An + 2An(k−1)

Kn
,−An + 2Ank

Kn

)
for k = 1, 2, . . . ,Kn. Write

I0 = R\ [−An, An). The space of step functions relative to the partition is the
set of functions h : [−An, An) 7→ R such that h is identically equal to some con-
stant on each Ik for k = 1, 2, . . . , Kn, more precisely, h(x) =

∑Kn
k=1 βk 1Ik

(x)
for some β = (β1, β2, . . . , βKn) ∈ [−M, M ]Kn ⊂ RKn , where 1Ik

(x) denotes
the indicator function of Ik. Denote by fβ(x) the function on (−∞,∞) which
is equal to

∑Kn
k=1 βk 1Ik

(x) on [−An, An) and vanish outside [−An, An). Hence
fβ ∈ F and ||fβ1 − fβ2 ||2 = ||β1 − β2||∗, where ||β||∗ =

( ∑Kn
k=1 β2

k(
∫
Ik

dν)2
)1/2.

Let Πn be the prior on F which is induced by the map β 7→ fβ such
that all the coordinates βk of β are chosen to be i.i.d. random variables
with the uniform distribution on [−M,M ]. Hence the support Fn of Πn

consists of all such functions fβ. Take An = 2
√

log(1/εn) ≈ √
log n and

Kn = b3LAn
b1εn

c+ 1 with εn =
(√log n

n

)1/3. Then Kn ≈ (n log n)1/3 ≈ nε2
n. Write

β0 = (β0,1, β0,2, . . . , β0,Kn) for β0,k = f0

(−An + 2Ank−1
Kn

)
. Since f0 ∈ F ∩LipL,

we have that fβ0 ∈ F and sup−An≤x<An
| fβ0(x)−f0(x) | ≤ LAn/Kn ≤ b1εn/3.

From the triangle inequality and the inequality
∫∞
x φ(t)dt ≤ φ(x)/x for all

x > 0, it follows that for all fβ ∈ Fn and for all large n,
∣∣ ||fβ − f0||2 − ||fβ − fβ0 ||2

∣∣ ≤ ||fβ0 − f0||2

=
(∫ An

−An

|f0 − fβ0 |2 dν
)1/2

+
(∫

I0

f2
0 dν

)1/2

≤ b1εn

3

(∫ An

−An

dν
)1/2

+ M
(φ(An)

An

)1/2

≤ b1εn

3
+

Mεn

(2π)1/4A
1/2
n

≤ b1εn

2
.

Thus for all large j and n, we have

Πn

(
fβ ∈ Fn : jεn < ||fβ − f0||2 ≤ 2jεn

)

Πn

(
W 1

n(θ0, εn)
)

≤ Πn

(
fβ ∈ Fn : ||fβ − f0||2 ≤ 2jεn

)

Πn

(
fβ ∈ Fn : ||fβ − f0||2 ≤ b1εn

)

≤ Πn

(
fβ ∈ Fn : ||fβ − f0||2 ≤ 3jεn

)

Πn

(
fβ ∈ Fn : ||fβ − fβ0 ||2 ≤ b1

2 εn

)

=
Πn

(
β ∈ [−M,M ]Kn : ||β − β0||∗ ≤ 3jεn

)

Πn

(
β ∈ [−M, M ]Kn : ||β − β0||∗ ≤ b1

2 εn

) .

Note that the Euclidean volume of the Kn-dimensional ellipsoid {β ∈ RKn :
||β − β0||∗ ≤ r} is equal to rKn times the Euclidean volume of the ”unit”
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Kn-dimensional ellipsoid {β ∈ RKn : ||β − β0||∗ ≤ 1}. So the last quotient
doer not exceed j2Kn = eKn log(2j), which is less than ec2j2nε2

n for any given
c2 > 0 and all large j. Hence we have obtained condition (ii) of Corollary 5.
Similarly, for all large j and n, we have

N
( √a0

4
√

a1
jεn, {fβ ∈ Fn : jεn < ||fβ − f0||2 ≤ 2jεn}, || · ||2

)

≤ N
( √a0

4
√

a1
jεn, {fβ ∈ Fn : ||fβ − fβ0 ||2 ≤ 3jεn}, || · ||2

)

≤ N
( √a0

4
√

a1
jεn, {β ∈ [−M,M ]Kn : ||β − β0||∗ ≤ 3jεn}, || · ||∗

)
,

which, by Lemma 4.1 in Pollard [7], is less than bKn
2 = eKn log b2 for some

constant b2 > 0, and therefore condition (i) of Corollary 5 holds for any given
c1 > 0.

4.2 Infinite-dimensional normal model

We observe an infinite-dimensional random vector (X1, X2, . . . ), where the
random vector X(n) = (X1, . . . , Xn) for each n is normally distributed ac-
cording to N(θ(n), Σ(n)) with density p

(n)
θ(n)

(x(n)), θ(n) = (θ1, . . . , θn), and the
covariance matrix Σ(n) is known and satisfies

αΣ−1
(n)α

T ≈ n

n∑

i=1

α2
i (a)

for all α = (α1, . . . , αn) ∈ Rn and for all n. The parameter space Θ consists
of all vectors θ = (θ1, θ2, . . . ) in R∞ with ||θ||2 :=

(∑∞
i=1 θ2

i

)1/2
< ∞. In this

section we identify θ(n) = (θ1, . . . , θn) with (θ1, . . . , θn, 0, 0, . . . ) and hence the
norm ||θ(n)||2 makes sense. Let γ be a positive constant. The true parameter
θ0 = (θ0,1, θ0,2, . . . ) is assumed to satisfy

∞∑

i=1

θ2
0,ii

2γ < ∞. (b)

In the special case that X1, X2, . . . are independent random variables and each
Xi is normally distributed with mean θi and variance 1/n, the Bayesian es-
timation problem on parameters θ = (θ1, θ2, . . . ) has been studied by many
authors including Cox [2], Freedman [3], Ghosal and van der Vaart [5], Scric-
ciolo [8], Shen and Wasserman [9] and Zhao [20]. They showed that posteriors
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can attain the minimax rate n−γ/(2γ+1). Observe that every white noise model
can be described as an infinite-dimensional normal model via an orthonormal
basis.

Now we construct a prior such that the posterior attains the optimal rate
of convergence in our framework. We put the prior on the parameter θ =
(θ1, θ2, . . . ) such that θ(k) = (θ1, . . . , θk) is distributed as N(0,Σk) and that
θk+1, θk+2, . . . are set to be zero, where k = bn1/(2γ+1)cc with some positive
constant c which is determined later and the covariance matrix Σk is assumed
to satisfy

αΣ−1
k αT . k

k∑

i=1

α2
i i

2γ (c)

for all α = (α1, . . . , αk) ∈ Rk and for all such k. For instance, the last
inequality holds if eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λk of positive definite matrices
Σ−1

k satisfy λi ≤ k i2γ for i = 1, 2, . . . , k, which for independent variables
X1, X2, . . . is slightly weaker than the condition (7.8) given in Ghosal and van
der Vaart [5]. In the following we shall apply Corollary 1 to show that the
corresponding posterior converges at the rate εn = n−γ/(2γ+1).

Theorem 7. Assume that (a), (b) and (c) hold. Let k = bn1/(2γ+1)cc and
εn = n−γ/(2γ+1). Then there exist constants c > 0 and r > 0 such that

Πn

(
θ ∈ Θ : ||θ − θ0||2 ≥ r εn|X(n)

) −→ 0

almost surely as n →∞.

Proof. For any α1 = (θ1,1, θ1,2, . . . , θ1,n) and α2 = (θ2,1, θ2,2, . . . , θ2,n) we have

H(p(n)
α1

, p(n)
α2

)2

= 2− 2
∫

Rn

√
p
(n)
α1 (x)p(n)

α2 (x) dx

= 2− 2
(2π)n/2

√
detΣ(n)

·
∫

Rn

exp
(
− 1

4
(
(x− α1)Σ−1

(n)(x− α1)T + (x− α2)Σ−1
(n)(x− α2)T

))
dx,
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where x = (x1, x2, . . . , xn) and

(x− α1)Σ−1
(n)(x− α1)T + (x− α2)Σ−1

(n)(x− α2)T

= 2xΣ−1
(n)x

T − 2(α1 + α2)Σ−1
(n)x

T + α1Σ−1
(n)α

T
1 + α2Σ−1

(n)α
T
2

= 2(x− α1

2
− α2

2
)Σ−1

(n)(x−
α1

2
− α2

2
)T

−1
2
(α1 + α2)Σ−1

(n)(α1 + α2)T + α1Σ−1
(n)α

T
1 + α2Σ−1

(n)α
T
2

= 2(x− α1

2
− α2

2
)Σ−1

(n)(x−
α1

2
− α2

2
)T +

1
2
(α1 − α2)Σ−1

(n)(α1 − α2)T

≥ 2(x− α1

2
− α2

2
)Σ−1

(n)(x−
α1

2
− α2

2
)T + b1 n ||α1 − α2||22

for some positive constant b1 independent of α1, α2, where the last inequality
follows from condition (a). Hence we get

H(p(n)
α1

, p(n)
α2

)2 ≥ 2− 2 e−
b1
4

n ||α1−α2||22 ,

which implies that the norm 2−1b1||·||2 satisfies the inequality (1). So Corollary
1 can be applied for the metric 2−1b1|| · ||2 and for constants α = 1/2 and
δ = 1/4.

It follows from condition (b) that

||θ(k) − θ0||22 =
k∑

i=1

(θi − θ0,i)2 +
∞∑

i=k+1

θ2
0,i

≤ ||θ(k) − θ0,(k)||22 + k−2γ
∞∑

i=k+1

θ2
0,ii

2γ

= ||θ(k) − θ0,(k)||22 + O(ε2
n),

where θ(k) = (θ1, . . . , θk) and θ0,(k) = (θ0,1, . . . , θ0,k). This implies that for each
large j,

C(
1
4
jεn, {θ(k) : jεn <

b1

2
||θ(k) − θ0||2 ≤ 2jεn}, 1

2
,
b1

2
|| · ||2)

≤ C(
1
5
jεn, {θ(k) : ||θ(k) − θ0,(k)||2 ≤ 3jεn}, 1

2
, || · ||2),

which by Lemma 1 in Xing and Ranneby [18] does not exceed

Πn(θ(k) : ||θ(k)−θ0,(k)||2 ≤ 3jεn)
1
2 N(

1
5
jεn, {θ(k) : ||θ(k)−θ0,(k)||2 ≤ 3jεn}, ||·||2)

1
2
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≤ Πn(θ(k) : ||θ(k) − θ0,(k)||2 ≤ 3jεn)
1
2 bk

2

≤ Πn(θ(k) : ||θ(k) − θ0,(k)||2 ≤ 3jεn)
1
2 e

1
40

j2nε2
n

for some constant b2 > 1 and all large j, n, where we have applied Lemma 4.1
in Pollard [7]. It remains to prove that for large j and n,

Πn(θ(k) : ||θ(k) − θ0,(k)||2 ≤ 3jεn) ≤ e
1
20

j2nε2
n Πn

(
Wn(θ0, εn)

)
.

By the proof of Lemma 1 in Xing [16] we have

1 +
3
2

H∗(p
(n)
θ0,(n)

, p
(n)
θ(n)

)2 = Eθ0,(n)

√
p
(n)
θ0,(n)

/
p
(n)
θ(n)

=
1

(2π)n/2
√

detΣ(n)

∫

Rn

exp
(
− 3

4
(x− θ0,(n))Σ

−1
(n)(x− θ0,(n))

T +
1
4
(x− θ(n))Σ

−1
(n)(x− θ(n))

T
)
dx.

Write

−3
4
(x− θ0,(n))Σ

−1
(n)(x− θ0,(n))

T +
1
4
(x− θ(n))Σ

−1
(n)(x− θ(n))

T

= −1
2
(x− θ0,(n))Σ

−1
(n)(x− θ0,(n))

T +
1
2
(θ0,(n) − θ(n))Σ

−1
(n)x

T

−1
4
θ0,(n)Σ

−1
(n)θ

T
0,(n) +

1
4
θ(n)Σ

−1
(n)θ

T
(n)

= −1
2
(x− θ0,(n))Σ

−1
(n)(x− θ0,(n))

T +
1
2
(θ0,(n) − θ(n))Σ

−1
(n)(x− θ0,(n))

T

+
1
4
(θ0,(n) − θ(n))Σ

−1
(n)(θ0,(n) − θ(n))

T

= −1
2
(
(x− θ0,(n))Σ

−1
(n)(x− θ0,(n))

T − (θ0,(n) − θ(n))Σ
−1
(n)(x− θ0,(n))

T

+
1
4
(θ0,(n) − θ(n))Σ

−1
(n)(θ0,(n) − θ(n))

T
)

+
3
8
(θ0,(n) − θ(n))Σ

−1
(n)(θ0,(n) − θ(n))

T

= −1
2
(x− 3

2
θ0,(n) +

1
2
θ(n))Σ

−1
(n)(x−

3
2
θ0,(n) +

1
2
θ(n))

T

+
3
8
(θ0,(n) − θ(n))Σ

−1
(n)(θ0,(n) − θ(n))

T .

Hence we obtain

1 +
3
2

H∗(p
(n)
θ0,(n)

, p
(n)
θ(n)

)2 = exp
(3

8
(θ0,(n) − θ(n))Σ

−1
(n)(θ0,(n) − θ(n))

T
)
.

It then follows from condition (a) that there exists a positive constant b3 not
depending on n such that

1 +
3
2

H∗(p
(n)
θ0,(n)

, p
(n)
θ(n)

)2 ≤ e
3
2
b3 n ||θ0,(n)−θ(n)||22 .
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The constant c is now chosen so largely that b3||θ(k) − θ0,(n)||22 ≤ b3||θ(k) −
θ0,(k)||22 + 2−1ε2

n. Since the support Πn is {(θ1, θ2, . . . ) : θl = 0 for l ≥ k + 1},
we get

Πn

(
Wn(θ0, εn)

) ≥ Πn(θ(k) : ||θ(k) − θ0,(k)||2 ≤ (2b3)−1/2εn)

and hence

Πn(θ(k) : ||θ(k) − θ0,(k)||2 ≤ 3jεn)
Πn

(
Wn(θ0, εn)

)

≤ Πn(θ(k) : ||θ(k) − θ0,(k)||2 ≤ 3jεn)
Πn(θ(k) : ||θ(k) − θ0,(k)||2 ≤ (2b3)−1/2εn)

=

∫
||θ(k)−θ0,(k)||2≤3jεn

exp
(− 1

2θ(k)Σ
−1
k θT

(k)

)
dθ(k)∫

||θ(k)−θ0,(k)||2≤(2b3)−
1
2 εn

exp
(− 1

2θ(k)Σ
−1
k θT

(k)

)
dθ(k)

≤
∫
||θ(k)−θ0,(k)||2≤3jεn

dθ(k)

min
||θ(k)−θ0,(k)||2≤(2b3)−

1
2 εn

exp
(− 1

2θ(k)Σ
−1
k θT

(k)

) ∫
||θ(k)−θ0,(k)||2≤(2b3)−

1
2 εn

dθ(k)

= max
||θ(k)−θ0,(k)||2≤(2b3)−

1
2 εn

exp
(1
2
θ(k)Σ

−1
k θT

(k)

) (3j)k

(
(2b3)−1/2

)k

≤ e
1
40

j2nε2
n max
||θ(k)−θ0,(k)||2≤(2b3)−

1
2 εn

exp
(1
2
θ(k)Σ

−1
k θT

(k)

)

for all large j and n. On the other hand, it turns out from condition (c) that
there exists b4 > 0 such that for any θ(k) = (θ1, . . . , θk) with ||θ(k)− θ0,(k)||2 ≤
(2b3)−1/2εn, we have

exp
(1
2
θ(k)Σ

−1
k θT

(k)

) ≤ exp
(
b4k

k∑

i=1

θ2
i i

2γ
)

≤ exp
(
2b4k

k∑

i=1

(θi − θ0,i)2i2γ + 2b4k
k∑

i=1

θ2
0,ii

2γ
)

≤ exp
(
2b4k

2γ+1
k∑

i=1

(θi − θ0,i)2 + 2b4k
∞∑

i=1

θ2
0,ii

2γ
)

≤ exp
(
b4b

−1
3 k2γ+1ε2

n + 2b4k

∞∑

i=1

θ2
0,ii

2γ
) ≤ e

1
40

j2nε2
n

21



for all large j and n, where the second inequality follows from the inequality
(s + t)2 ≤ 2s2 + 2t2 for all s, t ∈ R. Therefore, we have proved the required
inequality and the proof of Theorem 7 is complete.

4.3 Prior based on uniform distributions

Assume, just as in Section 3.1, that (X1, X2, . . . , Xn) of independent variables
Xi has a density

∏n
i=1 pθ,i(xi) relative to the product measure µ1×µ2×· · ·×µn

on X1×X2×· · ·×Xn. We follow the notations of Section 3.1. By means of the
componentwise Hellinger upper bracketing numbers for Θ, Ghosal and van der
Vaart [5] have obtained an in-probability convergence rate theorem for priors
based on discrete distributions. Their result can be extended to an almost
sure assertion in terms of Theorem 5. In the following we give an almost sure
result for priors based on uniform distributions, which gives us an opportunity
to adopt the average Hellinger metric d0

n(θ1, θ2) =
(

1
n

∑n
i=1 Hi(pθ1,i, pθ2,i)2

)1/2

instead of the componentwise Hellinger upper bracketing numbers. This also
extends a result for i.i.d. observations given by Xing ([16], Section 3.2).

Let c > 1 and let d̄n be metrics on Θ. Assume that Θc,n for n = 1, 2 . . . are
subsets of Θ such that 1

c2 n

∑n
i=1 H∗,i(pθ1,i, pθ2,i)2 ≤ d̄n(θ1, θ2)2 for all θ1, θ2 ∈

Θc,n. By the definition of H∗,i we have d0
n ≤

√
3c d̄n on Θc,n. Note that d̄n

can be taken as a constant multiple of d0
n in the case that H∗,i(pθ1,i, pθ2,i) .

Hi(pθ1,i, pθ2,i) for all θ1, θ2 in Θ and i = 1, 2, . . . , n. Given εn > 0, we assume
that {B1, . . . , BKn} is a partition of Θc,n such that for each Bi there exists bi

in Θ with Bi ⊂ {θ ∈ Θc,n : d̄n(bi, θ) ≤ εn/2 c}. Let Πn be a prior distribution
supported on Θc,n such that Πn(Bi) = 1/Kn for i = 1, 2, . . . , Kn. Corollary 4
implies the following result.

Theorem 8. Suppose that θ0 ∈ Θc,n for all n and suppose that log Kn+log n =
O(n ε2

n) as n →∞. Then for each large r,

Πn

(
θ ∈ Θ : d0

n(θ, θ0) ≥ r εn|X1, X2, . . . , Xn

) −→ 0

almost surely as n →∞.

Proof. Take Θn = Θc,n for all n. Then condition (iii) of Corollary 4 is trivially
fulfilled. For δ = 1/(2

√
3c2) we have that for any given c1 > 0 and all large j

and n,

N
(
δjεn, {θ ∈ Θn : jεn < d0

n(θ, θ0) ≤ 2jεn}, d0
n

) ≤ N
( εn

2
√

3c2
,Θn, d0

n

)

≤ N
(εn

2c
, Θn, d̄n

) ≤ Kn ≤ ec1j2nε2
n ,
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where the last inequality follows from log Kn = O(n ε2
n). This implies condi-

tion (i) of Corollary 4. To see condition (ii), by θ0 ∈ Θc,n we can take bi0 ∈ Θ
such that d̄n(bi0 , θ0) ≤ εn/2c. Then, for all θ ∈ Bi0 we have

1
n

n∑

i=1

H∗,i(pθ0,i, pθ,i)2 ≤ c2d̄n(θ0, θ)2 ≤ c2
(
d̄n(θ0, bi0) + d̄n(bi0 , θ)

)2 ≤ ε2
n,

which implies that Wn(θ0, εn) contains the whole set Bi0 and hence
Πn

(
Wn(θ0, εn)

) ≥ Πn(Bi0) = 1/Kn ≥ e−c2j2nε2
n for any given c2 > 0 and

all large j and n. So we have verified condition (ii) and the proof of Theorem
8 is complete.

Example (Nonparametric Poisson regression): Assume that U ≥ L > 0 are
two given constants. We consider Poisson distributed independent random
variables X1, X2, . . . , Xn with parameters θ(z1), θ(z2), . . . , θ(zn), where θ :
R → [L,U ] is an unknown increasing link function and z1, z2, . . . , zn are one-
dimensional covariates. The joint mass function of (X1, X2, . . . , Xn) is given

by
n∏

i=1
pθ,i(xi) with pθ,i(xi) = e−θ(zi) θ(zi)

xi

xi!
. For a, b ∈ [L,U ] we have

∞∑

x=0

( √
e−a

ax

x!
−

√
e−b

bx

x!

)2(2
3

√
e−a ax

x!

e−b bx

x!

+
1
3

)

=
∞∑

x=0

(e−
a
2 a

x
2 − e−

b
2 b

x
2 )2

x!

(2
3

√
eb−aax

bx
+

1
3

)

≤ (a− b)2e−L
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x=0

(U
x
2 + xU

x
2
−1)2

x!

(2
3

√
eU−LUx

Lx
+

1
3

)

≤ (a− b)2e
U−3L

2

∞∑

x=0

(U
x
2 + xU

x
2
−1)2

x!

(U

L

)x
2 . (a− b)2,

where the first inequality follows from the inequality |e−a
2 a

x
2 − e−

b
2 b

x
2 | ≤

|a − b|e−L
2 (U

x
2 + xU

x
2
−1) for all a, b ∈ [L, U ]. This implies that

1
n

∑n
i=1 H∗,i(pθ1,i, pθ2,i)2 .

∫
(θ1−θ2)2dPz

n for all link functions θ1 and θ2, where
Pz

n = n−1
∑n

i=1 δzi denotes the empirical distribution of z1, z2, . . . , zn. So one
can use the L2(Pz

n)-matric to produce the partition {B1, . . . , BKn} of the space
of link functions. By Theorem 2.7.5 of [10] we know that log Kn . ε−1

n . Let-
ting ε−1

n = nε2
n we obtain εn = n−1/3, and hence by Theorem 8 the posterior

based on uniform distributions converges almost surely at the rate εn = n−1/3

with respect to the metric d0
n, which is the minimax rate for this model. The
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in-probability convergence rate n−1/3 for the posterior based on discrete dis-
tributions has been obtained in Section 7.1.1 of Ghosal and van der Vaart
[5].

It is worth pointing out that in this example the suprenorm ||pθ1,i/pθ2,i||∞
may not be finite. Therefore, the approach on determination of prior concen-
tration rates by means of H(pθ1,i, pθ2,i) ||pθ1,i/pθ2,i||∞ in Ghosal, Ghosh and
van der Vaart [4] fails to be applied in this case, but the modified Hellinger
distance H∗(pθ1,i, pθ2,i) works well. A similar argument holds even for the
infinite-dimensional normal model.
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Appendix

Proof of Proposition 1. Given δ > 1, by the definition of the Haus-
dorff α-constant and Assumption 1, there exist pairwise disjoint subsets
B1, B2, . . . , BNn of Θ1 such that (1) ∪Nn

k=1Bk = {θ ∈ Θ1 : dn(θ, θ0) > ε};
(2) each Bk is contained in some ball of en-radius not exceeding ε; (3)∑Nn

k=1 Πn(Bk)α ≤ δC(ε, {θ ∈ Θ1 : dn(θ, θ0) > ε}, α, en); (4) there exist test
functions φk such that P

(n)
θ0

φk ≤ e−Knε2
and P

(n)
θ φk ≥ 1− e−Knε2

for all θ in
Bk. Then by the inequality (x + y)α ≤ xα + yα for all x, y ≥ 0, we get

P
(n)
θ0
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θ∈Θ1: dn(θ,θ0)>ε
R
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θ (X(n))Πn(dθ)
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≤
Nn∑
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P
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R
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φ1−α

k

( ∫
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R
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θ (X(n)) Πn(dθ)
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+
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P
(n)
θ0

{
(1− φk)1−α

(∫

Bk

R
(n)
θ (X(n))Πn(dθ)

)α}

:= L1 + L2.

It turns out from Hölder’s inequality and Fubini’s theorem that

L1 ≤
Nn∑

k=1

(
P

(n)
θ0

φk

)1−α
(
P

(n)
θ0

∫

Bk

R
(n)
θ (X(n))Πn(dθ)

)α

≤ e−(1−α)Knε2
Nn∑

k=1

(∫

Bk

P
(n)
θ0

R
(n)
θ (X(n))Πn(dθ)

)α

= e−(1−α)Knε2
Nn∑

k=1

Πn(Bk)α

≤ δe−(1−α)Knε2
C(ε, {θ ∈ Θ1 : dn(θ, θ0) > ε}, α, en).
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To estimate L2, we deal with 1/2 ≤ α < 1 and 0 < α < 1/2 separately. In the
case of 1/2 ≤ α < 1 we have 0 ≤ (2α− 1)/α < 1 and by Hölder’s inequality,

L2 =
Nn∑

k=1

P
(n)
θ0

{
(1− φk)1−α

(∫

Bk

R
(n)
θ (X(n))Πn(dθ)

)1−α

·
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Bk

R
(n)
θ (X(n))Πn(dθ)

)2α−1}

≤
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P
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θ0

(
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R
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θ (X(n))Πn(dθ)
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·
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P
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θ0
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R
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) 2α−1
α

}α

≤
Nn∑

k=1

(∫
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P
(n)
θ (1− φk)Πn(dθ)

)1−α(
P

(n)
θ0

∫

Bk

R
(n)
θ (X(n))Πn(dθ)

)2α−1

≤
Nn∑

k=1

e−(1−α)Knε2
Πn(Bk)1−αΠn(Bk)2α−1

= e−(1−α)Knε2
Nn∑

k=1

Πn(Bk)α

≤ δe−(1−α)Knε2
C(ε, {θ ∈ Θ1 : dn(θ, θ0) > ε}, α, en).

In the case of 0 < α < 1/2 we have 0 ≤ (1−φk)1−α ≤ (1−φk)α ≤ 1 and hence
by Hölder’s inequality,

L2 ≤
Nn∑

k=1

P
(n)
θ0

{(
(1− φk)

∫

Bk

R
(n)
θ (X(n))Πn(dθ)

)α}

≤
Nn∑

k=1

{
P

(n)
θ0

(
(1− φk)

∫
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R
(n)
θ (X(n))Πn(dθ)

)}α
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Nn∑

k=1

(∫

Bk

P
(n)
θ (1− φk)Πn(dθ)

)α
≤ e−αKnε2

Nn∑

k=1

Πn(Bk)α

≤ δe−αKnε2
C(ε, {θ ∈ Θ1 : dn(θ, θ0) > ε}, α, en).

Thus for any 0 < α < 1 we have obtained the required inequality for K1 = 2δ
and K2 = α K if 0 < α < 1/2 and K2 = (1 − α) K if 1/2 ≤ α < 1. Finally,
letting δ ↘ 1, we conclude the proof of Proposition 1.
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Proof of Proposition 2. Take nonempty disjoint subsets Bj , j = 1, 2, . . . , N ,
of Θ such that

∑N
j=1 Π(Bj)α ≤ 2C(δ ε, {θ ∈ Θ1 : d1

n(θ, θ0) > ε}, α, d1
n),

∪N
j=1Bj = {θ ∈ Θ1 : d1

n(θ, θ0) > ε} and d1
n-diameters of all Bj do not exceed

2 δ ε. Then we have
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n) max
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,

where Ij(X(n)) = Πn(Bj)−1
∫
Bj

p
(n)
θ (X(n))Πn(dθ) is the integral mean of the

likelihood p
(n)
θ (X(n)) and hence is a density function. With a slight abuse of

notation we also let Ij stand for the corresponding parameter of this integral
means. Take θj ∈ Bj for each j. By Jensen’s inequality for d1

n(·, θj)s we have
d1

n(Ij , θj) ≤ 2δε and thus d1
n(Ij , θ0) ≥ d1

n(θj , θ0)− d1
n(Ij , θj) ≥ (1− 2δ) ε. Take

an nonnegative integer m with α
1−α ≤ 2m < 2α

1−α . From Hölder’s inequality it
turns out that for each j,

P
(n)
θ0

( Ij(X(n))

p
(n)
θ0

(X(n))

)α

= P
(n)
θ0

(( Ij(X(n))

p
(n)
θ0

(X(n))

)α
2

( Ij(X(n))

p
(n)
θ0

(X(n))

)α
2

)

≤
(

P
(n)
θ0

( Ij(X(n))

p
(n)
θ0

(X(n))

)α
2
· 2
2−α

) 2−α
2

(
P

(n)
θ0

( Ij(X(n))

p
(n)
θ0

(X(n))

)α
2
· 2
α

)α
2

=
(

P
(n)
θ0

( Ij(X(n))

p
(n)
θ0

(X(n))

) α
2−α

) 2−α
2

,
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which, by repeating the above procedure m− 1 more times, does not exceed

(
P

(n)
θ0

( Ij(X(n))

p
(n)
θ0

(X(n))

) α
2m(1−α)+α

) 2m(1−α)+α
2m

≤
(

P
(n)
θ0

( Ij(X(n))

p
(n)
θ0

(X(n))

) 1
2

) α
2m−1

=
( ∫ √

Ij(X(n)) p
(n)
θ0

(X(n)) µ(dX(n))
) α

2m−1

=
(
1− H

(
Ij(X(n)) p

(n)
θ0

(X(n))
)2

2

) α
2m−1 ≤ e−2−m α n d1

n(Ij θ0)2

≤ e−2−m (1−2δ)2 α n ε2 ≤ e−
1
2
(1−α) (1−2δ)2 n ε2

,

which completes the proof of Proposition 2.

Proof of Proposition 3. Denote S = {θ ∈ Θ1 : d1
n(θ, θ0) > ε}. Assume first

0 < β ≤ 1/2. By Hölder’s inequality and the inequality 1− x ≤ e−x, we have

P
(n)
θ0

(∫

S
R

(n)
θ (X(n))β Πn(dθ)

)α

≤ P
(n)
θ0

(∫

S
R

(n)
θ (X(n))β· 1

2β Πn(dθ)
)2βα

Πn(S)(1−2β)α

≤
(
P

(n)
θ0

∫

S
R

(n)
θ (X(n))

1
2 Πn(dθ)

)2βα
Πn(S)(1−2β)α

=
(∫

S
P

(n)
θ0

R
(n)
θ (X(n))

1
2 Πn(dθ)

)2βα
Πn(S)(1−2β)α

≤
(∫

S
e−

1
2
nε2

Πn(dθ)
)2βα

Πn(S)(1−2β)α = e−βαnε2
Πn(S)α,

which gives the required inequality when 0 < β ≤ 1/2. If 1/2 < β < 1 we take
p = 1

2−2β and q = 1
2β−1 . It then follows from Hölder’s inequality that

29



P
(n)
θ0

(∫

S
R

(n)
θ (X(n))β Πn(dθ)

)α

≤ P
(n)
θ0

( ∫

S
R

(n)
θ (X(n))

1
2p
·p Πn(dθ)

)α
p

( ∫

S
R

(n)
θ (X(n))(β−

1
2p

)·q Πn(dθ)
)α

q

≤
(

P
(n)
θ0

(∫

S
R

(n)
θ (X(n))

1
2 Πn(dθ)

)α
) 1

p
(

P
(n)
θ0

( ∫

S
R

(n)
θ (X(n))Πn(dθ)

)α
) 1

q

≤
(

P
(n)
θ0

∫

S
R

(n)
θ (X(n))

1
2 Πn(dθ)

)α
p

(
P

(n)
θ0

∫

S
R

(n)
θ (X(n))Πn(dθ)

)α
q

≤
(∫

S
e−

1
2
nε2

Πn(dθ)
)α

p Πn(S)
α
q = e−(1−β)αnε2

Πn(S)α.

The proof of Proposition 3 is complete.

To prove Theorem 1 we need two simple lemmas.

Lemma 1. Let ε > 0 and c > 0. Then the inequality

P
(n)
θ0

( ∫

Θ
R

(n)
θ (X(n))Πn(dθ) ≤ e−n ε2 (3+2c) Πn

(
Wn(θ0, ε)

) )
≤ e−n ε2 c

holds for all n.

Proof. Without loss of generality, we may assume that Πn

(
Wn(θ0, ε)

)
> 0.

From Jensen’s inequality and Chebyshev’s inequality it follows that

P
(n)
θ0

( ∫

Θ
R

(n)
θ (X(n))Πn(dθ) ≤ e−n ε2 (3+2c) Πn

(
Wn(θ0, ε)

) )

≤ P
(n)
θ0

(
en ε2 ( 3

2
+c) ≤

( 1
Πn

(
Wn(θ0, ε)

)
∫

Wn(θ0,ε)
R

(n)
θ (X(n))Πn(dθ)

)− 1
2

)

≤ P
(n)
θ0

(
en ε2 ( 3

2
+c) ≤ 1

Πn

(
Wn(θ0, ε)

)
∫

Wn(θ0,ε)
R

(n)
θ (X(n))−

1
2 Πn(dθ)

)

≤
∫
Wn(θ0,ε) P

(n)
θ0

R
(n)
θ (X(n))−

1
2 Πn(dθ)

en ε2 ( 3
2
+c)Πn

(
Wn(θ0, ε)

) ,
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where

P
(n)
θ0

R
(n)
θ (X(n))−

1
2

= 1 +
∫ (√

p
(n)
θ0

(X(n))−
√

p
(n)
θ (X(n))

)2

√
p
(n)
θ0

(X(n))
√

p
(n)
θ (X(n))

µ(dx)

+
∫ (

p
(n)
θ0

(X(n))−
√

p
(n)
θ (X(n)) p

(n)
θ0

(X(n))
)

µ(dx)

= 1 +
∫ (√

p
(n)
θ0

(X(n))−
√

p
(n)
θ (X(n))

)2

√
p
(n)
θ0

(X(n))
√

p
(n)
θ (X(n))

µ(dx)

+
1
2

∫ (√
p
(n)
θ0

(X(n))−
√

p
(n)
θ (X(n))

)2
µ(dx)

= 1 +
3
2

H∗(p
(n)
θ0

, p
(n)
θ )2 ≤ e

3
2
nε2

,

which implies the required inequality and the proof of Lemma 1 is complete.

Lemma 2. Under Assumption 2, the inequality

P
(n)
θ0

(∫

θ∈Θ1: dn(θ,θ0)≥rε
R

(n)
θ (X(n))Πn(dθ)

)α

≤ K1

∞∑

j=[r−1]

e−K2nj2ε2
C(jε, {θ ∈ Θ1 : jε < dn(θ, θ0) ≤ 2jε}, α, en)K3

holds for all r ≥ 2, ε > 0, Θ1 ⊂ Θ and for all n large enough.

Proof. Note that {θ ∈ Θ1 : dn(θ, θ0) ≥ rε} ⊂ {θ ∈ Θ1 : dn(θ, θ0) ≥ [r]ε} =
∪∞j=[r−1]{θ ∈ Θ1 : jε < dn(θ, θ0) ≤ 2jε} := ∪∞j=[r−1]Θ1,j . Using the inequality
(x + y)α ≤ xα + yα for all x, y ≥ 0 and Assumption 2 for Θ1 = Θ1,j we obtain
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P
(n)
θ0

( ∫

θ∈Θ1: dn(θ,θ0)≥rε
R

(n)
θ (X(n))Πn(dθ)

)α

≤
∞∑

j=[r−1]

P
(n)
θ0

(∫

Θ1,j

R
(n)
θ (X(n))Πn(dθ)

)α

≤ K1

∞∑

j=[r−1]

e−K2nj2ε2
C(jε, {θ ∈ Θ1,j : dn(θ, θ0) > jε}, α, en)K3

= K1

∞∑

j=[r−1]

e−K2nj2ε2
C(jε, {θ ∈ Θ1 : jε < dn(θ, θ0) ≤ 2jε}, α, en)K3 .

The proof of Lemma 2 is complete.

Proof of Theorem 1. Take a constant c > 1/c0. Then e−n ε2
n c ≤ e−cc0 log n =

1/ncc0 and hence
∑∞

n=1 e−n ε2
n c < ∞. By Lemma 1 and the first Borel-Cantelli

lemma, we get that for almost all X(n) the inequality∫

Θ
R

(n)
θ (X(n))Πn(dθ) ≥ e−n ε2

n (3+2c) Πn

(
Wn(θ0, εn)

)

holds for all large n. Thus, for any δ > 0 we have

P
(n)
θ0

(
Πn

(
θ ∈ Θn : dn(θ, θ0) ≥ r εn|X(n)

) ≥ δ
)

= P
(n)
θ0

(
δ−αΠn

(
θ ∈ Θn : dn(θ, θ0) ≥ r εn|X(n)

)α ≥ 1
)

≤ δ−αP
(n)
θ0

(
Πn

(
θ ∈ Θn : dn(θ, θ0) ≥ r εn|X(n)

)α
)

≤ δ−αeαn ε2
n (3+2c)Πn

(
Wn(θ0, εn)

)−α

·P (n)
θ0

(∫

θ∈Θn: dn(θ,θ0)≥rεn

R
(n)
θ (X(n))Πn(dθ)

)α
,

which, by Lemma 2 and the inequality (2), does not exceed

K1δ
−αeαn ε2

n (3+2c)
∞∑

j=[r−1]

e−K2nj2ε2
n+c1j2nε2

n

≤ K1δ
−αeαn ε2

n (3+2c)
∞∑

j=[r−1]

e(c1−K2)jnε2
n

=
K1e

(c1−K2)[r−1]nε2
n+α(3+2c)n ε2

n

δα(1− e(c1−K2)nε2
n)

≤ K1n
(c1−K2)[r−1]c0+α(3+2c)c0

δα(1− n(c1−K2)c0)

≤ 2K1δ
−αn(c1−K2)[r−1]c0+α(3+2c)c0 ,
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where the next last inequality holds for all large r and the last inequality holds
for all large n. Since the last exponent is strictly less than −1 for all large r,
by the first Borel-Cantelli lemma we obtain that for almost all X(n),

Πn

(
θ ∈ Θn : dn(θ, θ0) ≥ r εn|X(n)

) ≤ δ

if n is large enough, which yields the first assertion.
To get the second assertion, choose a positive constant b with c2− b

2 > 1
c0

.
We then follow the above proof, but take c = c2 − b

2 and δ = e−bnε2
n instead,

and note that

P
(n)
θ0

(
Πn

(
θ ∈ Θ : dn(θ, θ0) ≥ r εn|X(n)

) ≥ e−bnε2
n

)

≤ P
(n)
θ0

(
Πn

(
θ ∈ Θn : dn(θ, θ0) ≥ r εn|X(n)

) ≥ 1
2

e−bnε2
n

)

+P
(n)
θ0

(
Πn

(
θ ∈ Θ \Θn : dn(θ, θ0) ≥ r εn|X(n)

) ≥ 1
2

e−bnε2
n

)
,

where by Lemma 1 the second term on the right hand side is dominated by

2ebnε2
nen ε2

n (3+2c2−b)

Πn

(
Wn(θ0, εn)

) P
(n)
θ0

∫

θ∈Θ\Θn: dn(θ,θ0)≥rεn

R
(n)
θ (X(n))Πn(dθ)

≤ 2en ε2
n (3+2c2)

Πn

(
Wn(θ0, εn)

)
∫

Θ\Θn

P
(n)
θ0

R
(n)
θ (X(n))Πn(dθ)

=
2en ε2

n (3+2c2)Πn

(
Θ \Θn

)

Πn

(
Wn(θ0, εn)

) .

Then, using the same argument as the above, one can easily prove the second
assertion and the proof of Theorem 1 is complete.

Using the trivial inequality C(δεn, Θn, α, en) ≤ C(εn, Θn, α, en) for δ ≥ 1,
it is easy to see that Theorem 2 follows from Theorem 1. The proof of Theorem
3 is only a slight modification of the proof of Theorem 1 except that we need
to apply Lemma 10 in Ghosal and van der Vaart [5]. The proof of Theorem 4
is completely similar to the proof of Theorem 1, but instead of an application
of Lemma 1 one needs the following Lemma.

Lemma 3. For independent observations (X1, X2, . . . , Xn) we have that the
inequality

P
(n)
θ0

( ∫

Θ

( n∏

i=1

pθ,i(Xi)
pθ0,i(Xi)

)β
Πn(dθ) ≤ e−n ε2 (3+2c)β Πn

(
Wn(θ0, ε)

))
≤ e−n ε2 c

holds for all n, ε > 0, c > 0 and 0 < β ≤ 1.
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Proof of Lemma 3. Similar to the proof of Lemma 1 one can get that

P
(n)
θ0

(∫

Θ

( n∏

i=1

pθ,i(Xi)
pθ0,i(Xi)

)β
Πn(dθ) ≤ e−n ε2 (3+2c)β Πn

(
Wn(θ0, ε)

)
)

≤ P
(n)
θ0


en ε2 ( 3

2
+c) ≤

(
∫
W n(θ0,ε)

( n∏
i=1

pθ,i(Xi)
pθ0,i(Xi)

)β
Πn(dθ)

Πn

(
Wn(θ0, ε)

)
)− 1

2β




≤ P
(n)
θ0


en ε2 ( 3

2
+c) ≤

∫
W n(θ0,ε)

( n∏
i=1

pθ,i(Xi)
pθ0,i(Xi)

)− 1
2 Πn(dθ)

Πn

(
Wn(θ0, ε)

)




≤
∫
W n(θ0,ε)

∏n
i=1

(
1 + 3

2 H∗,i(pθ1,i, pθ2,i)2
)
Πn(dθ)

en ε2 ( 3
2
+c)Πn

(
Wn(θ0, ε)

)

≤
∫
W n(θ0,ε) e

3
2

∑n
i=1 H∗,i(pθ1,i,pθ2,i)

2
Πn(dθ)

en ε2 ( 3
2
+c)Πn

(
Wn(θ0, ε)

)

≤ e−n ε2 c,

which concludes the proof.

Proof of Proposition 5. It is no restriction to assume that n = 2k is an even
number. Similar to the proof of Proposition 2 we get that the left side of the
required inequality does not exceed 2C(δ ε, {θ ∈ Θ1 : d(θ, θ0) > ε}, α, d) times

max
1≤j≤N

P
(n)
θ0

(
1

Πn(Bj)

∫

Bj

qθ(X0)
2k∏
i=1

pθ(Xi|Xi−1)

qθ0(X0)
2k∏
i=1

pθ0(Xi|Xi−1)
Πn(dθ)

)α

= max
1≤j≤N

P
(n)
θ0

(∫
Bj

qθ(X0)Πn(dθ)

qθ0(X0)Πn(Bj)

2k−1∏

s=0

Ij,s

pθ0(Xs+1|Xs)

)α

=

max
1≤j≤N

P
(n)
θ0

((∫
Bj

qθ(X0)Πn(dθ)

qθ0(X0)Πn(Bj)

k∏

t=1

Ij,2t−1

pθ0(X2t|X2t−1)

)α( k−1∏

t=0

Ij,2t

pθ0(X2t+1|X2t)

)α
)

≤ max
1≤j≤N

(
P

(n)
θ0

(∫
Bj

qθ(X0)Πn(dθ)

qθ0(X0)Πn(Bj)

k∏

t=1

Ij,2t−1

pθ0(X2t|X2t−1)

)2α
) 1

2
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max
1≤j≤N

(
P

(n)
θ0

( k−1∏

t=0

Ij,2t

pθ0(X2t+1|X2t)

)2α
) 1

2

:=
(

max
1≤j≤N

Aj,k

) (
max

1≤j≤N
Bj,k

)
,

where the last inequality follows from Hölder’s inequality, the set Bj is defined
in a similar way as that of Proposition 2 and we have used the notations
0∏

i=1
pθ(Xi|Xi−1) = 1 and

Ij,s =

∫
Bj

qθ(X0)
s+1∏
i=1

pθ(Xi|Xi−1)Πn(dθ)

∫
Bj

qθ(X0)
s∏

i=1
pθ(Xi|Xi−1)Πn(dθ)

for s = 0, 1, . . . , 2k − 1. We also let Ij,s stand for the parameter of the corre-
sponding integral means. Take θj ∈ Bj for each j. From Jensen’s inequality
and the assumption a0r(Xs) ≤ pθ(Xs|Xs−1) ≤ a1r(Xs) it turns out that

d(Ij,s, θj)2 =
∫

X

∫

X

(√
Ij,s −

√
pθj (Xs+1|Xs)

)2
dµ(Xs+1)dν(Xs)

≤
∫

Bj

∫

X

∫

X

(√
pθ(Xs+1|Xs)−

√
pθj (Xs+1|Xs)

)2
dµ(Xs+1)

qθ(X0)
s∏

i=1
pθ(Xi|Xi−1)

∫
Bj

qθ(X0)
s∏

i=1
pθ(Xi|Xi−1)Πn(dθ)

dν(Xs)Πn(dθ)

≤ a1

a0

∫

Bj

∫

X

∫

X

(√
pθ(Xs+1|Xs)−

√
pθj (Xs+1|Xs)

)2
dµ(Xs+1)dν(Xs)

qθ(X0)
s−1∏
i=1

pθ(Xi|Xi−1)

∫
Bj

qθ(X0)
s−1∏
i=1

pθ(Xi|Xi−1)Πn(dθ)
Πn(dθ)

=
a1

a0

∫

Bj

d(θ, θj)2
qθ(X0)

s−1∏
i=1

pθ(Xi|Xi−1)

∫
Bj

qθ(X0)
s−1∏
i=1

pθ(Xi|Xi−1)Πn(dθ)
Πn(dθ)

≤ 4a1δ
2ε2

a0

Thus, d(Ij,s, θj) ≤ 2
√

a1δε√
a0

and d(Ij,s, θ0) ≥ d(θj , θ0)−d(Ij,s, θj) ≥ (1− 2
√

a1δ√
a0

)ε.

35



Write

A2
j,k

=
∫

X2k−1

(∫

X

(∫

X

( Ij,2k−1

pθ0(X2k|X2k−1)
)2α

dµ(X2k)
)

pθ0(X2k−1|X2k−2) dµ(X2k−1)

)

·
(∫

Bj
qθ(X0)Πn(dθ)

qθ0(X0)Πn(Bj)

k−1∏

t=1

Ij,2t−1

pθ0(X2t|X2t−1)

)2α

· qθ0(X0)
2k−3∏

s=0

pθ0(Xs+1|Xs) dµ(X0)dµ(X1) . . . dµ(X2k−2).

Take an nonnegative integer m with 2α
1−2α ≤ 2m < 4α

1−2α . Repeating the proof
of Proposition 2 (applying the same procedure m+1 times instead of m times)
we get that
∫

X

(∫

X

( Ij,2k−1

pθ0(X2k|X2k−1)
)2α

dµ(X2k)
)

pθ0(X2k−1|X2k−2) dµ(X2k−1)

≤
∫

X

(
1− 1

2

∫

X

(√
Ij,2k−1 −

√
pθ0(X2k|X2k−1)

)2
dµ(X2k)

) α

2m−1

· pθ0(X2k−1|X2k−2) dµ(X2k−1)

≤
[
1− 1

2

∫

X

∫

X

(√
Ij,2k−1 −

√
pθ0(X2k|X2k−1)

)2
pθ0(X2k−1|X2k−2)dµ(X2k)dµ(X2k−1)

] α

2m−1

≤
(

1− a0

2

∫

X

∫

X

(√
Ij,2k−1 −

√
pθ0(X2k|X2k−1)

)2
dµ(X2k)dν(X2k−1)

) 1
2−α

=
(
1− a0d(Ij,2k−1, θ0)2

2

) 1
2−α

≤ e−(1−2α)(
√

a0
2 −√a1δ)2ε2

.

Hence we have

A2
j,k ≤ e−(1−2α)(

√
a0
2
−√a1δ)2ε2

∫

X2k−1

(∫
Bj

qθ(X0)Πn(dθ)

qθ0(X0)Πn(Bj)

k−1∏

t=1

Ij,2t−1

pθ0(X2t|X2t−1)

)2α

qθ0(X0)
2k−3∏

s=0

pθ0(Xs+1|Xs) dµ(X0)dµ(X1) . . . dµ(X2k−2).
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Repeating the same argument k − 1 times one can get that

A2
j,k ≤ e−(1−2α)(

√
a0
2
−√a1δ)2kε2

∫

X

(∫
Bj

qθ(X0)Πn(dθ)

qθ0(X0)Πn(Bj)

)2α

qθ0(X0) dµ(X0)

≤ e−(1−2α)(
√

a0
2
−√a1δ)2kε2

( ∫

X

∫
Bj

qθ(X0)Πn(dθ)

qθ0(X0)Πn(Bj)
qθ0(X0) dµ(X0)

)2α

= e−(1−2α)(
√

a0
2
−√a1δ)2kε2

.

Similarly, we have
B2

j,k ≤ e−(1−2α)(
√

a0
2
−√a1δ)2kε2

.

Hence we have proved the required inequality and the proof of Proposition 5
is complete.

The proof of Theorem 6 is completely similar to that of Theorem 1 except
that we apply Proposition 5 and the following lemma.

Lemma 4. If there exists a constant a1 ≥ 1 such that
∫
A pθ0(y|x)dµ(y) ≤

a1

∫
A dν(y) for all x ∈ X and A ∈ A, then the inequality

P
(n)
θ0

( ∫

Θ

qθ(X0)
qθ0(X0)

n∏

i=1

pθ(Xi|Xi−1)
pθ0(Xi|Xi−1)

Πn(dθ) ≤ e−n ε2 (3a1+4c) Πn

(
W 1

n(θ0, ε)
))

≤ e−n ε2 c

holds for all n, ε > 0 and c > 0.

Proof of Lemma 4. Similar to the proof of Lemma 1 we have that the left
hand side of the required inequality does not exceed

∫
W 1

n(θ0,ε) P
(n)
θ0

(
qθ0

(X0)

qθ(X0)

n∏
i=1

pθ0
(Xi|Xi−1)

pθ(Xi|Xi−1)

) 1
4 Πn(dθ)

en ε2 (
3a1
4

+c)Πn

(
W 1

n(θ0, ε)
) .

So it suffices to prove that P
(n)
θ0

(
qθ0

(X0)

qθ(X0)

n∏
i=1

pθ0
(Xi|Xi−1)

pθ(Xi|Xi−1)

) 1
4 ≤ e

3a1
4

nε2
for all

θ ∈ W 1
n(θ0, ε). We assume without loss of generality that n is an even number,

say n = 2k. Write

qθ0(X0)
qθ(X0)

n∏

i=1

pθ0(Xi|Xi−1)
pθ(Xi|Xi−1)

=
qθ0(X0)
qθ(X0)

k∏

j=1

pθ0(X2j |X2j−1)
pθ(X2j |X2j−1)

k∏

j=1

pθ0(X2j−1|X2j−2)
pθ(X2j−1|X2j−2)

.
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From Hölder’s inequality it then turns out that

P
(n)
θ0

(qθ0(X0)
qθ(X0)

n∏

i=1

pθ0(Xi|Xi−1)
pθ(Xi|Xi−1)

) 1
4

≤

P

(n)
θ0

(qθ0(X0)
qθ(X0)

k∏

j=1

pθ0(X2j |X2j−1)
pθ(X2j |X2j−1)

) 1
2




1
2


P

(n)
θ0

( k∏

j=1

pθ0(X2j−1|X2j−2)
pθ(X2j−1|X2j−2)

) 1
2




1
2

:= AkBk.

Hence by Fubini’s theorem we get that A2
k is equal to

∫

X2k+1

qθ0(X0)
3
2

qθ(X0)
1
2

k∏

j=1

(
pθ0(X2j |X2j−1)

3
2

pθ(X2j |X2j−1)
1
2

pθ0(X2j−1|X2j−2)
)

dµ(X0)dµ(X1) . . . dµ(X2k)

=
∫

X2k−1

(∫

X

(∫

X

pθ0(X2k|X2k−1)
3
2

pθ(X2k|X2k−1)
1
2

dµ(X2k)
)

pθ0(X2k−1|X2k−2) dµ(X2k−1)

)

qθ0(X0)
3
2

qθ(X0)
1
2

k−1∏

j=1

pθ0(X2j |X2j−1)
3
2

pθ(X2j |X2j−1)
1
2

pθ0(X2j−1|X2j−2) dµ(X0)dµ(X1) . . . dµ(X2k−2),

where by the proof of Lemma 1 in Xing [16] we have

∫

X

(∫

X

pθ0(X2k|X2k−1)
3
2

pθ(X2k|X2k−1)
1
2

dµ(X2k)
)

pθ0(X2k−1|X2k−2) dµ(X2k−1)

=
∫

X

(
1 +

3
2
H∗

(
pθ0(·|X2k−1), pθ(·|X2k−1)

)2
)

pθ0(X2k−1|X2k−2) dµ(X2k−1)

= 1 +
∫

X

3
2
H∗

(
pθ0(·|X2k−1), pθ(·|X2k−1)

)2
pθ0(X2k−1|X2k−2) dµ(X2k−1)

≤ 1 +
∫

X

3a1

2
H∗

(
pθ0(·|X2k−1), pθ(·|X2k−1)

)2
dν(X2k−1)

= 1 +
3a1

2
H∗(pθ0 , pθ)2 ≤ e

3a1
2

H∗(pθ0
,pθ)2 .

Thus, we have obtained that Ak ≤ e
3a1
4

H∗(pθ0
,pθ)2Ak−1. Repeating the same
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argument k − 1 times and using a1 ≥ 1 one can get

Ak ≤ e
3a1
4

kH∗(pθ0
,pθ)2

(∫

X

qθ0(X0)
3
2

qθ(X0)
1
2

dµ(X0)
) 1

2

= e
3a1
4

kH∗(pθ0
,pθ)2

(
1 +

3
2
H∗(qθ0 , qθ)2

) 1
2

≤ e
3
4
H∗(qθ0

,qθ)2+
3a1
4

kH∗(pθ0
,pθ)2 .

Similarly, we can get that Bk ≤ e
3a1
4

kH∗(pθ0
,pθ)2 . Therefore AkBk ≤

e
3
4
H∗(qθ0

,qθ)2+
3a1
4

nH∗(pθ0
,pθ)2 ≤ e

3a1
4

nε2
for all θ ∈ W 1

n(θ0, ε), and the proof of
Lemma 4 is complete.
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