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Abstract

When the number of variables compared with the number of observations
is large this paper presents a new approach of estimating the parameters
describing the mean structure in the Growth Curve model. An explicit
estimator is obtained which is unbiased, consistent and asymptotically
normally distributed. Its variance is also derived.
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1 Introduction

In this paper we derive estimators of the mean parameters in general mul-
tivariate linear models in a high-dimensional setting. The focus will be on
the Growth Curve model introduced by Potthoff & Roy (1964) but also more
general models, such as the Sum of Profiles model (Verbyla & Venables, 1988)
or generalized Growth Curve models (see Kollo & von Rosen, 2005, Chapter
4), could have been considered.

If more variables (p) than observations (n) should be studied, most high-
dimensional approaches construct some kind of summary statistic or study
some function of the parameters. For example, test statistics, discriminant
functions, spectral densities or different score functions are studied under dif-
ferent types of asymptotics. Sometimes the general case p → ∞, n → ∞
(see Srivastava & Du, 2008) is studied but more commonly the condition
p
n → c > 0, for some constant c, is added to the assumptions. The asymp-
totics under this condition will be referred to as p

n -asymptotics. In the liter-
ature this asymptotics is also called Kolmogorov asymptotics. In Takemura
& Sheena (2005) and Sheena & Takemura (2008) an alternative approach in
high-dimensional statistical analysis is considered.

Under the p
n -asymptotics the spectral density is the most widely studied

statistic (e.g. see the books by Girko, 1990, and Bai & Silverstein, 2006). Con-
cerning some inference problems on eigenvalues in a high-dimensional setting
we refer to Schott (2006). Moreover, the literature concerning testing proce-
dures for the mean is growing: e.g. see Läuter et al. (1996, 1998), Läuter et
al. (2005), Srivastava & Fujikoshi, (2006), Schott (2007) and Srivastava & Du
(2008), where also many other references are given. Tests about the covariance
structure such as the sphericity test have, among others, been considered by
Ledoit & Wolf (2002, 2004), and Srivastava (2005, 2006a). Several authors,
when treating high-dimensional problems, have proposed to use shrinkage (reg-
ularized) estimators in order to obtain meaningful results (see Sancetta, 2008).
It is interesting to observe that, in particular, high-dimensional discrimination
analysis (supervised classification), has frequently been considered over the
years (see Girko, 1990; Pavlenko & von Rosen, 2001, 2004; Srivastava, 2006b).

In general, a classical likelihood analysis is usually inappropriate to use,
in high-dimensional analysis. Moreover, estimation is a harder problem than
testing. For testing, one should construct a one-dimensional criterion which
should reflect the null hypothesis and which is independent of nuisance pa-
rameters. For estimation we often have many parameters which should be
estimated and sometimes the number of nuisance parameters increases to in-
finity which makes inference much more complicated.
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The Growth Curve model is defined as follows:

X = ABC + E, (1.1)

where X: p×n is the data matrix, B: q×k is a matrix of unknown parameters,
A: p × q and C: k × n are known design matrices, E = (e1, e2, . . . ,en) is a
normally distributed error matrix, where ei ∼ Np(0,Σ) are i.i.d. and Σ is an
unknown positive definite parameter matrix. The model in (1.1) belongs to
the curved exponential family and has a relatively long history. For reviews
of the model see Woolson & Leeper (1980), von Rosen (1991) or Srivastava
& von Rosen (1999). Kshirsagar & Smith (1995) have written a book on this
model and for a recent contribution see Kollo & von Rosen (2005, Chapter
4), where the model and some extensions are presented. If A = Ip, we have
the standard MANOVA model. However, in the context of the present paper
the MANOVA model is not appropriate to study since the number of mean
parameters turns to infinity as p →∞. For the Growth Curve model the mean
parameter space is independent of p and n whereas the covariance matrix Σ
increases in size with p.

Sufficient statistics for the Growth Curve model are

S = X(I −C ′(CC ′)−C)X ′ (1.2)

and

XC ′(CC ′)−C.

Due to the normality assumption, i.e. since the distribution is symmetric
around the mean, in order to estimate the mean parameters it is natural
to consider

1
p tr{Σ−1(X −ABC)(X −ABC)′}

= 1
p tr{Σ−1(XC ′(CC ′)−C −ABC)(XC ′(CC ′)−C −ABC)′}
+1

p tr{Σ−1S}.

The factor 1/p is used to handle the increase in size of tr(•) when p → ∞,
i.e. the trace functions have been averaged.

The results in the paper are presented in three sections. Section 2 presents
the asymptotic distribution for

T 1 = 1
p tr{Σ−1S} (1.3)
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as well as

T 2 = 1
p tr{Σ−1(XC ′(CC ′)−C −ABC)(XC ′(CC ′)−C −ABC)′}, (1.4)

and these results are utilized in Section 3 where estimators of B are obtained.
Finally, in Section 4 the mean and dispersion matrix of the estimator of B
as well as its asymptotic distribution will be obtained which turns out to be
normal.

2 Asymptotics of T 1 and T 2

In high-dimensional analysis, one often considers 1
p tr(S) or 1

p tr(S2) (e.g. see
Ledoit & Wolf, 2002 or Srivastava, 2005) but then the asymptotics de-
pends on Σ. However, because of normality S is Wishart distributed,
(S ∼ Wp(Σ, n′), n′ = n−r(C)), and from Kollo & von Rosen (2005, Corollary
2.4.2.2, p. 238) it follows that T 1, given in (1.3), is chi-square distributed with
n′ degrees of freedom. Hence, the characteristic function ϕT 1(t) equals

ϕT 1(t) = (1− i t2
p)−pn′/2,

where i is the imaginary unit. If taking the logarithm of the characteristic
function and expanding it as a power series in p and n, it follows that

ln ϕT 1(t) = −pn′/2 ln(1− i t2
p) =

pn′

2

∞∑

j=1

(
2
p

)j
1
j ik tj

= i tn′ − n′p
2

22

p2

1
2
t2 +

n′p
2

23

p3
i3

1
3
t3 + · · ·

≈ i tn′ − n′p
2

22

p2

1
2
t2.

This implies that under p
n -asymptotics

1
p tr{Σ−1S} − n′√

n′
p

a∼ N(0, 2), (2.1)

where a∼ means “asymptotically distributed as”.
Representing T 2, given in (1.4), as T 2 = 1

p tr{Σ−1V V ′}, where

V = XC ′(CC ′)−C −ABC (2.2)
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with V V ′ ∼ Wp(Σ, r), r = r(C), it is observed that since in this case the num-
ber of degrees of freedom of the distribution is fixed, the speed of convergence
is slower than the speed of convergence of T 1.

The logarithm of the characteristic function of T 2 equals

lnϕT 2(t) = − rp
2 ln(1− i t 2√

p).

Thus,

ln ϕT 2(t) = − rp
2 ln(1− i t 2√

p) = rp
2

∞∑

j=1

p−
j
2 2j 1

j ij tj

= i tr
√

p− rt2 + i3 t3rp−
1
2 1

3 + · · ·

and

1√
p tr{Σ−1V V ′} − r

√
p

√
r

a∼ N(0, 2). (2.3)

Hence, the following theorem has been verified:

Theorem 2.1. Under p
n -asymptotics (2.1) holds, and for any n and p →∞,

(2.3) holds.

Since S and XC ′(CC ′)−C are sufficient statistics we may note that (2.1)
and (2.3) include the relevant information for estimating the mean parameters
of the Growth Curve model. Thus, based on (2.1) and (2.3) an asymptotic
likelihood approach may be presented.

3 Estimation of B in the Growth Curve model

From the previous section it follows that an asymptotic likelihood function for
(1.1) based on T 1 and T 2 is proportional to

exp{−1
4(pn′( 1

pn′ tr{Σ−1S} − 1)2)}exp{−1
4(pr( 1

pr tr{Σ−1V V ′} − 1)2)}. (3.1)

Following the likelihood principle we maximize this function. However, since
Σ is assumed to be of full rank and unstructured, and S may be singular if
p
n → c > 1, from (3.1) it is impossible to get appropriate estimators for all
elements of Σ and B. However, we are only interested in the estimation of B
and its variance. Therefore we will study the two terms in (3.1) separately, and
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suggest an approach similar to the restricted maximum likelihood approach.
Let us start with the first term, i.e.

(
1

pn′
tr{Σ−1S} − 1)2. (3.2)

By choosing

Σ̂
−1

= n′S− (3.3)

the expression in (3.2) equals 0, where S− denotes an arbitrary g-inverse of S.
The main drawback with this estimator is that it is not unique. However, it is
natural to suppose that r(S−) = r(S) which implies that S− is a reflexive g-
inverse, i.e. S−SS− = S− holds besides the defining condition SS−S = S. If
r(S) < r(S−) (r(S) > r(S−) never holds) it means that we can estimate more
elements in Σ−1 than in Σ which does not make sense. It follows from Khatri
& Mitra (1976) that there is only one g-inverse which is positive semi definite
(p.s.d.) and reflexive, i.e. we may choose the g-inverse to be the Moore-Penrose
g-inverse which will be denoted S+. In the next we replace Σ−1 by n′S+ in
the second exponent in (3.1) and thus have to minimize

(
n′

pr
tr{S+V V ′} − 1)2.

Differentiating this expression and taking into account (2.2) we get with re-
spect to B the equation

(
n′

pr
trS+V V ′ − 1)A′S+(XC ′(CC ′)−C −ABC)C ′ = 0.

With probability 1, the expression (n′
pr trS+V V ′ − 1) differs from 0, and thus

the following linear equation in B emerge:

A′S+(XC ′(CC ′)−C −ABC)C ′ = 0. (3.4)

This equation is consistent if the column space relation C(A′S+) =
C(A′S+A) holds which is true since S+ is p.s.d. Hence, for B in (3.4) the
general solution can be written (see Kollo & von Rosen, 2005; Theorem 1.3.4)

B̂ = (A′S+A)−A′S+XC ′(CC ′)− + (A′S+A)oZ1 + A′S+AZ2C
o′ , (3.5)

where Z1 and Z2 are arbitrary matrices, and (A′S+A)o and Co are any
arbitrary matrices spanning the orthogonal complement to C(A′S+A) and
C(C), respectively. From here we obtain the following result:
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Theorem 3.1. The estimator B̂, given in (3.5), is unique and with probability
1 equals

B̂ = (A′S+A)−1A′S+XC ′(CC ′)−1, (3.6)

if and only if r(A) = q < min(p, n′), r(C) = k and C(A) ∩ C(S)⊥ = {0},
where S is given in (1.2).

Proof. We only show that C(A)∩C(S)⊥={0} is equivalent to (A′S+A)o = 0:

r(A′S+A) = r(A′S+) = r(A : (S+)o)− r((S+)o) = r(A) (3.7)

with probability 1, since C(A) ∩ C(S+)⊥ = C(A) ∩ C(S)⊥ = {0} with prob-
ability 1. The relation C(S+) = C(S) holds because S+S = SS+.

If S is of full rank (p ≤ n′), B̂ in (3.6) is identical to the maximum
likelihood estimator (see Kollo & von Rosen, 2005; p. 360).

4 Properties of B̂

In this section it is assumed that B̂ is unique. Since XC and S are indepen-
dently distributed

E[B̂] = E[(A′S+A)−1A′S+]E[XC ′(CC ′)−1]
= E[(A′S+A)−1A′S+]AB = B.

The dispersion matrix

D[B̂] = E[vec(B̂ −B)vec′(B̂ −B)],

where vec(·) is the usual vec-operator, is much more complicated to obtain.
Since D[X] = I ⊗Σ,

D[B̂] = (CC ′)−1 ⊗E[(A′S+A)−1A′S+ΣS+A(A′S+A)−1].

In the next the expectation will be written in a canonical form. There exist
always an orthogonal matrix Γ and a non-singular matrix T such that

A′ = T (Iq : 0)ΓΣ
1
2 . (4.1)

Let

U = Σ−1
2 SΣ−1

2 ∼ Wp(Ip, n
′),
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and thus

E[(A′S+A)−1A′S+ΣS+A(A′S+A)−1]

= (T ′)−1E[
(
(Iq : 0)U+

(
Iq

0

))−1
(Iq : 0)U+U+

(
Iq

0

)

× (
(Iq : 0)U+

(
Iq

0

))−1
]T−1. (4.2)

Since B̂ does not depend on the order of observations, we may suppose that
the observations are ordered so that

U+ =
(

W−1 0
0 0

)
, W ∼ Ws(Is, n

′), s = min(p, n′).

By assumption q ≤ s, and we may partition W as

W =
(

W 11 W 12

W 21 W 22

)
,

(
q × q q × (s− q)

(s− q)× q (s− q)× (s− q)

)

and correspondingly W−1 as

W−1 =
(

W 11 W 12

W 21 W 22

)
,

(
q × q q × (s− q)

(s− q)× q (s− q)× (s− q)

)
.

Thus (4.2) equals

(T ′)−1T−1 + (T ′)−1E[W 11)−1W 12W 12W 11)−1](T ′)−1

= (T ′)−1T−1 + (T ′)−1E[W 12W
−1
22 W−1

22 W 21](T ′)−1.

From calculations in Kollo & von Rosen (2005, p. 413) it follows that

D[B̂] =
n′ − 1

n′ + q − s− 1
(CC ′)−1 ⊗ (A′Σ−1A)−1,

since (T ′)−1T−1 = (A′Σ−1A)−1. Note that when p/n > 1

D[B̂] =
n′ − 1
q − 1

(CC ′)−1 ⊗ (A′Σ−1A)−1. (4.3)

Moreover, (A′S+A)−1 ∼ Wq((A′Σ−1A)−1, n′ + q − s) and therefore an unbi-
ased estimator of (A′Σ−1A)−1 is given by

1
n′ + q − s

(A′S+A)−1.
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Thus, an unbiased estimator of the D[B̂] is

D̂[B̂] =
n′ − 1

(q − 1)(n′ + q − s)
(CC ′)−1 ⊗ (A′S+A)−1. (4.4)

Finally we will find the asymptotic distribution of B̂. Using (4.1)

B̂ = (T ′)−1
(
(Iq : 0)U+

(
Iq

0

))−1
(Iq : 0)U+Y C ′(CC ′)−1,

where Y ∼ Np(0, Ip, In). Since 1
n′W

p→ Is (
p→ denotes convergence in prob-

ability)

n′U+ p→
(

Is 0
0 0.

)

Thus,

B̂ − (T ′)−1
(
(Iq : 0)Is

(
Iq

0

))−1
(Iq : 0)IsY C ′(CC ′)−1 p→ 0

and using (T ′)−1(Iq : 0)Y = (A′Σ−1A)−1A′Σ−1X it follows that

B̂ − (A′Σ−1A)−1A′Σ−1XC ′(CC ′)−1 p→ 0.

This means that B̂ is asymptotically normally distributed as well as it shows
that the proposed estimation procedure leads to a natural estimator because
when Σ is known, we would have obtained the best (in the sense of smallest
variance) estimator B̂ = (A′Σ−1A)−1A′Σ−1XC ′(CC ′)−1. Moreover, under
mild conditions on C, i.e. the columns of C should not differ too much, the
matrix XC ′(CC ′)−1 converges in probability to its mean AB. This implies
that B̂ is a consistent estimator of B even when p > n. The results of this
section are summarized in the next theorem

Theorem 4.1. Let B̂ be given by (3.6). Then,

(i) B̂ is an unbiased and consistent (under some conditions on C) estimator
of B;

(ii) the dispersion matrix of B̂, D[B̂], is given by (4.3);

(iii) the estimated dispersion matrix D̂[B̂] is given by (4.4);
(iv) B̂ is asymptotically equivalent to a random variable with a matrix normal

distribution.

Remark : The results show that if n → ∞ or the p
n -asymptotics holds the

estimator of the mean parameter, proposed by the approach of this paper,
behaves in the same way, i.e the large number of dispersion parameters does
not seriously influence the estimator of B.
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