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The estimation of parameters of a multivariate p-dimensional random
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1 Introduction

The multivariate normal distribution plays an important role in multivariate
statistical analysis. Most of the testing, estimation, and confidence interval
procedures discussed by statistical researches are based on the assumption
that the observation vectors are independent and normally distributed (An-
derson, 1984; Srivastava, 2002; Muirhead, 2005). It is true that in practice the
multivariate normal assumption does not always hold, but in many cases the
normal model will still be very useful, even though the data are not normally
distributed. Two main reasons for using multivariate normality are that it
is often the case that multivariate observations are, at least approximately,
normally distributed, and that the multivariate normal distribution is mathe-
matically tractable.

Since normally distributed data can be modeled entirely in terms of their
means and variances/covariances, these parameters actually specify the com-
plete probability distribution of data. Estimating the mean and the covariance
matrix is therefore a problem of great interest within the statistical science.

There is a lot of literature on estimating the mean and the covariance
matrix in the multivariate normal distribution. The majority is based on
the idea of maximizing the likelihood. The basic idea of using the likelihood
function as the foundation for statistical inference is due to Fisher (1922), who
also introduced maximum likelihood (ML) estimation.

However, estimation of a covariance matrix can be difficult, especially when
the size of the covariance matrix, p × p, is large. The two main difficulties
are that the number of unknown elements in the covariance matrix increases
quadratically with p, and that it is difficult to deal directly with individual
elements of the covariance matrix because it is necessary to keep the esti-
mated matrix positive definite. Unless the number of observations, n, is very
large, estimation is often inefficient, and models with many parameters are, in
general, difficult to interpret.

A number of approaches have been suggested for estimating a covari-
ance matrix efficiently. The earliest works are probably by Wishart (1928),
who studied the probability distribution of the maximum likelihood estimator
(MLE) of the covariance matrix of a multivariate normal distribution, and
Hotelling (1931), who presented a generalization of Student’s t-statistic to
multivariate hypothesis testing. James and Stein (1961) showed that the es-
timator of the mean of a multivariate normal distribution with the identity
as covariance matrix is inadmissible, and presented the general problem of
admissibility of estimators for problems with quadratic loss. Efron and Morris
(1976) showed domination of the MLE for the mean of a multivariate normal
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distribution. Haff (1980) presented empirical Bayes estimation of the multi-
variate normal covariance matrix. Sinha and Ghosh (1987) studied the best
equivariant estimators of the variance-covariance matrix under entropy loss.
Pal (1993) dealt with the estimation of a normal precision matrix. Yang and
Berger (1994) used a Bayesian approach based on a spectral decomposition
of the covariance matrix. Leonard and Hsu (1992) and Chiu et al. (1996)
modeled the matrix logarithm of the covariance matrix. Pourahmadi (1999,
2000) estimated the covariance matrix by parameterizing the Cholesky de-
composition of its inverse. A more comprehensive review on approaches using
an unconstrained parametrization and on general work in variance-covariance
estimation is provided in Diggle et al. (2003). Another important aspect of
statistical inference in the multivariate analysis is the testing hypotheses about
the covariance matrix. In the literature, these tests have been studied exten-
sively under the assumption of normality, see, for example, Anderson (1984);
Srivastava (2002); Muirhead (2005). It has been found that the most robust
test within the elliptical family is likelihood ratio test (LRT), that was first
introduced by Wilks (1935) and Neyman and Pearson (1938).

In many practical situations there will be some inter-relationships among
several variables that will impose a structure on the covariance matrix.

For example, patterned covariance matrices arise from a variety of con-
texts and were studied by a number of authors. Wilks (1946), in one of the
early papers with patterned structure, considered a set of measurements on
k equivalent psychological tests. This led to a covariance matrix with equal
diagonal elements and equal off-diagonal elements. Votaw (1948) extended
this model to a set of blocks in which each block had a pattern. Goodman
(1963) looked at the covariance matrix of multivariate complex normals, which
arise in spectral analysis of multiple time series. Browne (1977) reviews pat-
terned correlation matrices arising from multiple psychological measurements.
Chinchilli and Carter (1984) considered a patterned covariance arising from a
multivariate growth-curve model.

Covariance matrices with banded structure arise frequently in signal pro-
cessing applications, including autoregressive or moving average image model-
ing, covariances of Gauss-Markov random processes (Woods, 1972; Moura and
Balram, 1992), or with finite difference numerical approximations to partial
differential equations. Banded matrices are also used to model the correla-
tion of cyclostationary processes in periodic time series (Chakraborty, 1998).
For autoregressive and moving average models that have been largely used
for the analysis of time series, the autocovariance function is known to have
a symmetric Toeplitz covariance structure (see for example, Anderson (1971);

2



Brockwell and Davis (1991); Brown and Prescott (1999); Fuller (1996); Marin
and Dhorne (2002)).

One special class of the banded covariance matrices of a multivariate ran-
dom vector is that under the constraint that some variables are conditionally
independent given other remaining variables. For the multivariate normal dis-
tribution, this will correspond to some zeros among the entries of the inverse
covariance matrix (Dempster, 1972; Whittaker, 1990). Bayesian model selec-
tion of detecting zeros in the inverse of covariance matrix can be found in Wong
et al. (2003). To assume such a covariance matrix is in many cases a natu-
ral assumption and usually much more natural than to suppose independence
between observations which is frequently applied.

If widely separated observations appear to be uncorrelated, it is reasonably
to create a banded covariance structure by setting all covariances more than
m steps apart equal to zero. We will call such a structure as banded covariance
structure of order m.

It should be noted that such a situation differs from standard time series
cases in a way that one allows unequal variances and correlation coefficients.
That results in more parameters to be estimated than in traditional time series.

In univariate analysis when not assuming any particular distribution one
often constructs estimators so that some property is fulfilled. In multivariate
analysis one has tried to copy the univariate approaches by constructions of
various criteria which remind of the univariate ones. The basic maximum-
likelihood problem for the multivariate case was first studied in detail by
Dempster (1972), who used the name covariance selection. For the special
case without conditional independence between variables the problem reduces
to traditional maximum-likelihood estimation of the covariances for multivari-
ate Gaussian random variables.

However, little attention has been given to a derivation of explicit analyt-
ical expressions for estimators of the model with banded covariance structure
under m-dependence. Moreover, m-dependence implies a specific covariance
structure and REML as well as ML estimators are inconvenient to obtain since
they imply an iterative treatment.

In this paper we focus on estimation of parameters of a multivariate ran-
dom vector under the constraint that certain covariances are zero, namely we
consider a banded covariance of order m = 1. The case with m > 1 will be
analyzed in a forthcoming paper. To avoid singularity, we limit ourselves to
the case when the matrix dimension p is small compared to the sample size
n. The aim in our research is to present explicit estimators for the mean and
the covariance matrix and to test some hypotheses for covariance matrices.
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In this paper a simple estimation procedure is suggested which gives unbi-
ased and consistent estimators of the mean and consistent estimators of the
covariance matrix.

The paper is organized as follows. In Section 2, we present the main
definitions and the notations used through the paper. Section 3 provides the
algorithm for estimation the mean and the covariance matrix when m = 1. In
the univariate (p = 1) and the bivariate (p = 2) cases the estimators obtained
coincide with the usual ML estimators. The three-variate case, p = 3, is
analyzed in details. Here a proposed algorithm consists of maximizing the
likelihood function via inserting the estimated parameters from previous steps.
The properties of estimators are presented as well. Furthermore, the general
p-variate case is considered. In section 4 the likelihood ratio test is presented
and likelihood based tests for banded covariance matrices are derived. Finally,
Section 5 presents some simulation results and Section 6 summarizes the paper.

2 Basic notations

Unless otherwise stated, matrices will be denoted throughout the article by
bold capital letters, vectors by bold font, scalars and matrix elements by or-
dinary letters.

Let a p-dimensional random vector x have a multivariate normal distribu-
tion with mean µ : p × 1 and dispersion matrix Σp : p × p, x ∼ Np(µ,Σp),
and suppose that we have n independent samples on x. Then the observation
matrix X : p× n,

X =




x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
. . .

...
xp1 xp2 . . . xpn


 =




x1i

x2i
...

xpi


 =




x1

x2
...

xp


 , (1)

belongs to the p-variate normal distribution, X ∼ Np,n(M,Σp, In), with mean

M = µ1′n, µ = (µ1, µ2, . . . , µp)′. (2)

The covariance (between rows) is Σp, and In : n×n indicates that columns are
independent. Here, 1n : n × 1 is the unity vector and In the identity matrix,
and we assume that the covariance matrix Σp is positive definite.
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Let X, M, Σp be partitioned as

X =
(

X1

X2

)
:
(

r × n
(p− r)× n

)
, M =

(
M1

M2

)
:
(

r × n
(p− r)× n

)
,

Σp =
(

Σ11 Σ12

Σ21 Σ22

)
:
(

r × r r × (p− r)
(p− r)× r (p− r)× (p− r)

)
. (3)

Then we have the conditional distribution

X2|X1 ∼ Nr,n

(
M2|1,Σ2|1, In

)
, (4)

where we adopt the notation of Srivastava and Khatri (1979, p.47) and Kollo
and von Rosen (2005, p.195):

M2|1 = M2 + Σ21Σ−1
11 (X1 −M1) , Σ2|1 = Σ22 −Σ21Σ−1

11 Σ12. (5)

The joint probability density function of X is

f(X) = (2π)−np/2 |Σp|−n/2 exp
(
− 1

2
(X−M) Σ−1

p (X−M)′
)
, (6)

and it can be written as the product of conditional and marginal distributions:

f(X) = f(x1, x2, . . . , xp) = f(x1) f(x2, . . . , xp | x1)
= f(x1) f(x2 | x1) . . . f(xp | x1, . . . , xp−1). (7)

For convenience, the following notation will be used

x2 | x1 = x2|1i, . . . , xp | x1, . . . ,xp−1 = xp|1, ..., p−1;i (8)

The probability density function (6) considered as a function of the parameters
M and Σp (for fixed observed X) will serve as the likelihood function.

In this paper we consider the estimation of the mean and of the covariance
matrix provided that a specific assumption holds, i.e., the covariance matrix
Σp of the underlying normal distribution is patterned as follows

Σp =




σ11 σ12 0 0 . . . 0 0
σ21 σ22 σ23 0 . . . 0 0
0 σ32 σ33 σ34 . . . 0 0
...

. . . . . . . . . . . . . . .
...

0 0 . . . σp−2,p−3 σp−2,p−2 σp−2,p−1 0
0 0 . . . 0 σp−1,p−2 σp−1,p−1 σp−1,p

0 0 . . . 0 0 σp,p−1 σp,p




. (9)
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The main aim is to find reasonable explicit estimators.
We denote by Σ−1 the inverse of Σ, and by Σk, k < p, the k×k submatrix

of Σp located on the top left corner of Σp. |Σk| stands for the determinant of
corresponding matrix.

3 Estimation of parameters in a multivariate nor-
mal distribution

Statistical inference can take several forms. Point estimation is one of the most
common forms, where one replaces the value of an unknown parameter θ with
an appropriate function of the sample. If one replaces the sample values by
the corresponding random variables, one gets an estimator. A good estimator
must fulfill some criteria, such as unbiasedness, consistency etc. Another kind
of statistical inference is to test whether the parameter θ equals a given value
θ0. One puts up a hypothesis H0 : θ = θ0 and based on some criteria one
decides whether H0 is true or not.

We focus now on the estimation of M and Σ under the assumptions given
in (2) and (9).

3.1 Univariate case, p = 1

For the univariate case when p = 1

µ = µ1, Σ1 = σ11, (10)

and

x1i ∼ N1(µ1, σ11). (11)

The likelihood function based on all the observations can be written as

L1 =
(
2πσ11

)−n/2
exp

(
− 1

2σ11

n∑

i=1

(x1i − µ1)2
)
. (12)

It can be maximized with respect to two parameters, µ1 and σ11, and the
estimators of these parameters are given as follows:

µ̂1 =
1
n

n∑

i=1

x1i,

σ̂11 =
1
n

n∑

i=1

(x1i − µ̂1)2. (13)
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It is well known that the estimator of the mean is unbiased and consistent;
the estimator of the variance is not unbiased, but consistent.

3.2 Bivariate case, p = 2

When p = 2 one has again a standard (unstructured) case,

µ =
(

µ1

µ2

)
, Σ2 =

(
σ11 σ12

σ21 σ22

)
. (14)

Therefore, the traditional ML approach should work, and there are five pa-
rameters to be estimated, µ1, µ2, σ11, σ22, σ12.

Under the assumption of bivariate normality of (x1i, x2i), the distributions
of interest are

x1i ∼ N1(µ1, σ11),
x2|1i ∼ N1(µ2|1i, σ2|1). (15)

The likelihood function based on all the observations is therefore given by

L2 =
(
2πσ11

)−n/2
exp

(
− 1

2σ11

n∑

i=1

(x1i − µ1)2
)

×
(
2πσ2|1

)−n/2
exp

(
− 1

2σ2|1

n∑

i=1

(x2i − µ2|1i)
2
)
. (16)

Here

µ2|1i = µ2 + σ21 σ−1
11 (x1i − µ1) = β10 + β1x1i,

σ2|1 = σ22 − σ21 σ−1
11 σ12 = σ22 − β2

1 σ11, (17)

where

β10 = µ2 − β1µ1, β1 =
σ21

σ11
. (18)

The likelihood can now be maximized with respect to five parameters, (µ1,
σ11, β10, β1, σ2|1), and each part (each line) of the likelihood in (16) can be
maximized separately. Then the estimators of the initial parameters, (µ1, µ2,
σ11, σ22, σ12), can be carried out. One should note that the estimators of µ1
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and σ11 coincide with those given by (13), whereas the estimators of µ2, σ22,
σ12 are given by

µ̂2 =
1
n

n∑

i=1

x2i,

σ̂22 = σ̂2|1 + β̂2
1 σ̂11 =

1
n

n∑

i=1

(x2i − µ̂2)2,

σ̂12 = β̂1 σ̂11 =
1
n

n∑

i=1

(x2i − µ̂2) (x1i − µ̂1). (19)

Here

β̂1 =
∑n

i=1 (x2i − µ̂2) (x1i − µ̂1)∑n
i=1 (x1i − µ̂1)2

,

σ̂2|1 =
1
n

n∑

i=1

(x2i − µ̂2|1i)
2 =

1
n

n∑

i=1

(
(x2i − µ̂2)2 − β̂2

1 (x1i − µ̂1)2
)
,

µ̂2|1i = β̂10 + β̂1x1i, β̂10 = µ̂2 − β̂1µ̂2. (20)

The estimators are of course the usual MLEs. Thus, the estimator of the mean
is unbiased and consistent and the estimator of the covariance matrix is not
unbiased, but consistent.

3.3 Three-dimensional case, p = 3

The banded covariance matrix of order m = 1 in the case p = 3 provides us
with a situation different from the one considered in Subsections 3.1 and 3.2,
because now there are zero elements in the covariance matrix,

µ =




µ1

µ2

µ3


 , Σ3 =




σ11 σ12 0
σ21 σ22 σ23

0 σ32 σ33


 . (21)

There are eight parameters to be estimated, (µ1, µ2, µ3, σ11, σ22, σ12, σ33,
σ23), and under the assumption of normality of (x1i, x2i, x3i) we observe

x1i ∼ N1(µ1, σ11),
x2|1i ∼ N1(µ2|1i, σ2|1),

x3|1,2i ∼ N1(µ3|1,2i, σ3|1,2). (22)
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The likelihood function based on all the observations is now given by

L3 =
(
2πσ11

)−n/2
exp

(
− 1

2σ11

n∑

i=1

(x1i − µ1)2
)

×
(
2πσ2|1

)−n/2
exp

(
− 1

2σ2|1

n∑

i=1

(x2i − µ2|1i)
2
)

×
(
2πσ3|1,2

)−n/2
exp

(
− 1

2σ3|1,2

n∑

i=1

(x3i − µ3|1,2i)
2
)
. (23)

Here µ2|1i and σ2|1 are the same as in the previous subsection, see (17), and

µ3|1,2i = µ3 + (0 σ32) Σ−1
2

(
x1i − µ1

x2i − µ2

)
,

σ3|1,2 = σ33 − (0 σ32) Σ−1
2

(
0

σ23

)
. (24)

It is easy to see that

µ3|1,2i = µ3 + β2(x2i − µ2|1i) = µ3 + β2(x2i − µ2 − β1(x1i − µ1))

= β20 + β2(x2i − β1x1i),

σ3|1,2 = σ33 − β2
2 σ2|1 =

|Σ3|
|Σ2| , (25)

where

β20 = µ3 − β2(µ2 − β1µ1), β2 = σ32
|Σ1|
|Σ2| . (26)

Now β1 appears in both the expression for µ2|1i, and for µ3|1,2i, which
causes some problems. Therefore the likelihood cannot be maximized directly
as we did before, i.e. by maximizing each part of the likelihood separately. We
propose a sequential approach: the likelihood is factored according to (7) and
(23). The estimation starts with the first factor. Parameters are estimated
and those parameters which also appear in the second factor are replaced by
the estimators from the previous factor. The estimation proceeds in a same
manner until the parameters of the last factor have been obtained.

Thus, the likelihood can be maximized with respect to eight parameters,
(µ1, σ11, β10, β1, σ2|1, β20, β2, σ3|1,2), and the estimators of the initial pa-
rameters can be retrieved from there. Again, the estimators of µ1 and σ11 are
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given by (13), the estimators of µ2, σ22 and σ12 are given by (19), and the
estimators of µ3, σ33 and σ23 equal

µ̂3 =
1
n

n∑

i=1

x3i,

σ̂33 = σ̂3|1,2 + β̂2
2 σ̂2|1 =

1
n

n∑

i=1

(x3i − µ̂3)2,

σ̂23 = β̂2 σ̂2|1 =
1
n

n∑

i=1

(x3i − µ̂3)
(
x2i − µ̂2 − β̂1(x1i − µ̂1)

)
, (27)

where β̂1 and σ̂2|1 are derived in Section 3.2, and

β̂2 =
∑n

i=1 (x3i − µ̂3)
(
x2i − µ̂2 − β̂1 (x1i − µ̂1)

)
∑n

i=1

(
x2i − µ̂2 − β̂1 (x1i − µ̂1)

)2 ,

σ̂3|1,2 =
1
n

n∑

i=1

(x3i − µ̂3|1,2i)
2

=
1
n

n∑

i=1

(
(x3i − µ̂3)2 − β̂2

2

(
(x2i − µ̂2)2 − β̂2

1 (x1i − µ̂1)2
))

,

µ̂3|1,2i = β̂20 + β̂2(x2i − β̂1x1i), β̂20 = µ̂3 − β̂2(µ̂2 − β̂1µ̂1). (28)

It is seen that the estimators of the mean coincide with the standard MLE,
and are therefore unbiased and consistent. The estimators of all elements of
the covariance matrix, besides σ̂23, coincide with the standard MLE and are
therefore consistent but not unbiased. To study the properties of σ̂23, we first
look on the conditional expectation and conditional variance of β̂2. Taking
into account (22) and (25) one has

E
(
β̂2|x1i, x2i

)
= E

(∑n
i=1 (x3i − µ̂3)

(
x2i − µ̂2 − β̂1 (x1i − µ̂1)

)
∑n

i=1

(
x2i − µ̂2 − β̂1 (x1i − µ̂1)

)2

∣∣ x1i, x2i

)

=
∑n

i=1 β2

(
x2i − µ̂2 − β̂1 (x1i − µ̂1)

)2

∑n
i=1

(
x2i − µ̂2 − β̂1 (x1i − µ̂1)

)2 = β2,
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V ar
(
β̂2|x1i, x2i

)
= V ar

(∑n
i=1 (x3i − µ̂3)

(
x2i − µ̂2 − β̂1 (x1i − µ̂1)

)
∑n

i=1

(
x2i − µ̂2 − β̂1 (x1i − µ̂1)

)2

∣∣ x1i, x2i

)

=
∑n

i=1

(
x2i − µ̂2 − β̂1 (x1i − µ̂1)

)2
V ar

(
(x3i − µ̂3)|x1i, x2i

)
(∑n

i=1

(
x2i − µ̂2 − β̂1 (x1i − µ̂1)

)2
)2

=
σ3|1,2∑n

i=1

(
x2i − µ̂2 − β̂1 (x1i − µ̂1)

)2 . (29)

Finally,

E
(
β̂2

)
= E

(
E

(
β̂2 | x1i, x2i

))
= β2,

V ar
(
β̂2

)
= E

(
V ar

(
β̂2 | x1i, x2i

))
+ V ar

(
E

(
β̂2 | x1i, x2i

))

= σ3|1,2 E
( 1∑n

i=1

(
x2i − µ̂2 − β̂1 (x1i − µ̂1)

)2

)

= σ3|1,2 E
(
E

( 1∑n
i=1

(
x2i − µ̂2 − β̂1 (x1i − µ̂1)

)2 | x1i

))

=
σ3|1,2

σ2|1

1
n− 4

. (30)

The last equality here follows from the fact that for

Y ≡
∑n

i=1

(
x2i − µ̂2 − β̂1 (x1i − µ̂1)

)2

σ2|1
| x1i ∼ χ2

n−2, E(Y −1) =
1

n− 4
. (31)

According to (30) β̂2 is an unbiased and consistent estimator of β2.

3.4 General p-variate case

In this section we extend the results of the previous section to a general p.
It is observed that p-variate normality implies

x1i ∼ N1(µ1, σ11),
x2|1i ∼ N1(µ2|1i, σ2|1),

...
xp|1,2,...,p−1;i ∼ N1(µp|1,2,...,p−1;i, σp|1,2,...,p−1), (32)
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and the likelihood equals

Lp =
(
2πσ11

)−n/2
exp

(
− 1

2σ11

n∑

i=1

(x1i − µ1)2
)

×
p∏

k=2

(
2πσk|1,...k−1

)−n/2
exp

(
− 1

2σk|1,...k−1

n∑

i=1

(xki − µk|1,...k−1)
2
)
, (33)

where

µp|1,2,...,p−1;i = µp + (0 ... 0 σp,p−1) Σ−1
p−1




x1i − µ1
...

xp−2;i − µp−2

xp−1;i − µp−1


 ,

σp|1,2,...,p−1 = σp,p − (0 ... 0 σp,p−1) Σ−1
p−1




0
...
0

σp−1,p


 . (34)

Again, it is easy to see that

µp|1,2,...,p−1;i = µp + βp−1(xp−1;i − µp−1|1,...,p−2;i)

= ... = βp−1,0 + βp−1(xp−1;i − βp−2(xp−2;i − βp−3(...))),

σp|1,2,...,p−1 = σp,p − β2
p−1 σp−1|1,2,...,p−2 =

|Σp|
|Σp−1| , (35)

where

βp−1,0 = µp − βp−1(µp−1 − βp−2(µp−2 − βp−3(...)), βp−1 = σp,p−1
|Σp−2|
|Σp−1| .

(36)

The likelihood can now be maximized with respect to 3p − 1 parameters,
(µ1, σ11; β10, β1, σ2|1, ..., βp−1,0, βp−1, σp|1,...,p−1), and the estimators of
initial parameters, can be carried out from there. In general, the estimators
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of parameters for p ≥ 2 can be written as

µ̂p =
1
n

n∑

i=1

xpi,

σ̂p,p = σ̂p|1,...,p−1 + β̂2
p−1 σ̂p−1|1,...,p−2 =

1
n

n∑

i=1

(xpi − µ̂p)2,

σ̂p−1,p = β̂p−1 σ̂p−1|1,...,p−2

=
1
n

n∑

i=1

(xp,i − µ̂p)
(
xp−1,i − µ̂p−1 − β̂p−2

(
xp−2,i − µ̂p−2 − β̂p−3(. . .)

))
,

(37)

with the estimators of µ1 and σ11 being given by (13). Here

β̂p−1 =

∑n
i=1 (xp,i − µ̂p)

(
xp−1,i − µ̂p−1 − β̂p−2

(
xp−2,i − µ̂p−2 − β̂p−3 (. . .)

))

∑n
i=1

(
xp−1,i − µ̂p−1 − β̂p−2

(
xp−2,i − µ̂p−2 − β̂p−3 (. . .)

))2 ,

σ̂p|1,...,p−1 =
1
n

n∑

i=1

(xpi − µ̂p|1,...,p−1;i)
2

=
1
n

n∑

i=1

(
(xp,i − µ̂p)2 − β̂2

p−1

(
(xp−1,i − µ̂p−1)2 − β̂2

p−2(. . .)
2
))

=
|Σ̂p−1|
|Σ̂p|

,

µ̂p|1,...,p−1;i = β̂p−1,0 + β̂p−1

(
xp−1;i − β̂p−2(xp−2;i − β̂p−3(...))

)
,

β̂p−1,0 = µ̂p − β̂p−1

(
µ̂p−1 − β̂p−2(µ̂p−2 − β̂p−3(...))

)
. (38)

The unbiasedness and the consistency of these estimators will be analyzed
in details in a forthcoming publication. It should be noted however that the
estimators of the mean coincide with the standard MLEs, and are therefore un-
biased and consistent. The estimators of the diagonal elements of the banded
covariance matrix coincide with the standard MLEs for the unstructured co-
variance matrix and are therefore consistent but not unbiased.

4 The likelihood ratio test

Making inference about hypothesis often relies on the theory of the likelihood
ratio statistic. A likelihood-ratio test, denoted as Λ, is a statistical test in
which a ratio is computed between the maximum likelihood of a result un-
der two different hypotheses. The numerator corresponds to the maximum

13



likelihood of an observed result under the null hypothesis, H0, the denomina-
tor corresponds to the maximum likelihood of an observed result under the
alternative hypothesis, H1:

Λ =
supH0

L(H0)
supH1

L(H1)
. (39)

The likelihood ratio is between 0 and 1. Lower values of the likelihood ratio
mean that the observed result was less likely to occur under the null hypothesis.
Higher values mean that the observed result was more likely to occur under
the null hypothesis.

In most cases the exact distribution of the likelihood ratio corresponding
to specific hypotheses is very difficult to determine. A convenient result tells
us that under certain regularity conditions the distribution of −2 lnΛ will tend
to be a χ2 distribution for large sized samples. The likelihood-ratio test rejects
the null hypothesis if the value of this statistic is too small.

In many problems, it is desired to test the hypothesis H0 : θ ∈ Ω0 against
H1 : θ ∈ Ω, where Ω is the k-dimensional parameter space and Ω0 is an r-
dimensional (r < k) subset of Ω. Wilks (1938) proved that in such a case, when
the null hypothesis is nested within the alternative hypothesis the distribution
of the statistic −2 ln Λ is asymptotically χ2 with k − r degrees of freedom.

4.1 H0 : Σkj = 0 for all k, j = 1, ..., q; k 6= j; unstructured
covariance matrix

Let X : p× n and M : p× n be given by (1)-(2) and Σ be a positive definite
unstructured covariance matrix.

Suppose that X, M, Σ can be partitioned as (see, for example, Muirhead
(2005))

X =




X1
...

Xq


 , M =




M1
...

Mq


 , µ =




µ1
...

µq


 ,

Σ =




Σ11 Σ12 . . . Σ1q

Σ21 Σ22 . . . Σ2q
...

...
. . .

...
Σq1 Σq2 . . . Σqq


 , (40)
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where

Xk = (Xk1 : Xk2 : . . . : Xkn) = (Xki) : pk × n, Mk = µk1
′
n : pk × n,

Σkj : pk × pj for k, j = 1, ..., q,

q∑

k=1

pk =
q∑

j=1

pj = p. (41)

We wish to test the null hypothesis that the submatrices (subsamples)
Xk, ...,Xj (k, j = 1, ..., q; k 6= j) are independent, i.e.,

H0 : Σkj = 0 for all k, j = 1, ..., q; k 6= j, (42)

against the alternative H1 that H0 is not true.
Let Σ∗ be the covariance matrix when H0 is true,

Σ∗ =




Σ11 0 . . . 0
0 Σ22 . . . 0
...

...
. . .

...
0 0 . . . Σqq


 . (43)

Then the likelihood function becomes

Lp(µ,Σ∗) =
q∏

k=1

Lpk
(µk,Σkk), (44)

where

Lpk
(µk,Σkk) =

(
2π|Σkk|

)−n/2
exp

(
− 1

2
Σ−1

kk

n∑

i=1

(Xki − µk)
2
)
, (45)

and µk, Σkk and Xki are defined in (40)-(41). It follows that

sup
µ,Σ∗

Lp(µ,Σ∗) =
q∏

k=1

sup
µk,Σkk

Lpk
(µk,Σkk) =

q∏

k=1

Lpk
(µ̂k, Σ̂kk), (46)

where the hats over µk and Σkk mean that we deal with standard MLEs,
which are known to be the mean and the sample covariance matrix of the
corresponding subsample. Finally,

sup
µ,Σ∗

Lp(µ,Σ∗) = c

q∏

k=1

|Σ̂kk|−n/2, (47)
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where |Σkk| is the determinant of the corresponding submatrix and

c = (2π)−pn/2 exp
(
− pn

2

)
. (48)

The likelihood function under H1 is given by (6) and the maximum likelihood
estimators in the case of an unstructured covariance matrix are known to be
the sample mean and the sample covariance matrix, therefore

sup
µ,Σ

Lp(µ,Σ) = Lp(µ̂, Σ̂) = (2π)−pn/2 exp
(
− pn

2

)
|Σ̂|−n/2 = c |Σ̂|−n/2.

(49)

The likelihood ratio test is then given by (see, for example, Muirhead (2005))

Λ =
|Σ̂p|n/2

∏q
k=1 |Σ̂kk|n/2

=

(
|Σ̂|∏q

k=1 |Σ̂kk|

)n/2

. (50)

For the unstructured covariance matrix of size p×p the number of parame-
ters to be estimated under H1 is p(p+1)/2, whereas the number of parameters
to be estimated under H0 is

∑q
k=1 pk(pk + 1)/2 = (

∑q
k=1 p2

k + p)/2. Thus the
difference in the number of parameters is f = (p2 −∑q

k=1 p2
k)/2 and the dis-

tribution of statistics −2 ln Λ is asymptotically χ2 with f degrees of freedom.

4.2 H0 : σkj = 0 for all k, j = 1, ..., p; k 6= j; banded covariance
matrix

Let X be given by (1) and Σ by (9). We wish to test the null hypothesis that
the subvectors xk, ...,xj (k, j = 1, ..., p; k 6= j) are independent, i.e.,

H0 : σkj = 0 for all k, j = 1, ..., p; k 6= j, (51)

against the alternative H1 that H0 is not true.
Let Σ∗ be the covariance matrix when H0 is true,

Σ∗ =




σ11 0 . . . 0
0 σ22 . . . 0
...

...
. . .

...
0 0 . . . σpp


 . (52)

Then the likelihood function becomes

Lp(µ,Σ∗) =
p∏

k=1

L1(µk, σkk), (53)
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where

L1(µk, σkk) =
(
2πσkk

)−n/2
exp

(
− 1

2σkk

n∑

i=1

(xki − µk)2
)
. (54)

Thus,

sup
µ,Σ∗

Lp(µ,Σ∗) =
p∏

k=1

sup
µk,σkk

L1(µk, σkk) =
p∏

k=1

L1(µ̂k, σ̂kk) = c

p∏

k=1

(σ̂kk)−n/2,

(55)

where µ̂k and σ̂kk are standard MLEs, and c is given by (48).
The likelihood function under H1 is given by (33). Let s̃upµ,Σ Lp(µ,Σ) be

the likelihood value when our estimators have been inserted in the likelihood.
Using the approach presented in Section 3, one has

s̃up
µ,Σ

Lp(µ,Σ) =
(
2πσ̂11

)−n/2
exp

(
− 1

2σ̂11

n∑

i=1

(x1i − µ̂1)2
)

×
p∏

k=2

(
2πσ̂k|1,...k−1

)−n/2
exp

(
− 1

2σ̂k|1,...k−1

n∑

i=1

(xki − µ̂k|1,...k−1)
2
)

= c (σ̂11)−n/2
p∏

k=2

(
σ̂k|1,...k−1

)−n/2
, (56)

with the estimators of µ1 and σ11 being given by (13) and those of µk|1,...k−1

and σk|1,...k−1 by (38). Finally, it reduces to

s̃up
µ,Σ

Lp(µ,Σ) = c

(
σ̂11

p∏

k=2

|Σ̂k|
|Σ̂k−1|

)−n/2

= c |Σ̂p|−n/2. (57)

We have indicated in Section 3 that our estimators for the banded covari-
ance matrix are consistent and therefore are asymptotically equivalent to the
maximum likelihood estimators. Thus, we can use the estimators to construct
a test similar to the traditional likelihood ratio test. This likelihood-based test
is given by

Λr =
supµ,Σ∗ Lp(µ,Σ∗)
s̃upµ,Σ Lp(µ,Σ)

=
|Σ̂p|n/2

∏p
k=1(σ̂kk)n/2

=

(
|Σ̂p|∏p

k=1(σ̂kk)

)n/2

, (58)
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and the distribution of −2 ln Λr is asymptotically that of χ2. As far as we
have shown in Section 3 that the estimators of the diagonal elements of the
covariance matrix coincide with the standard MLEs, therefore we replaced σ̂kk

by our explicit estimators σ̂kk in (58).
Formally, (57)-(58) coincide with the expressions for the unstructured co-

variance matrix in the previous subsection, see (49)-(50). However, here Σp

stands for the banded covariance matrix. There is also a significant difference
in the number of degrees of freedom of the χ2 distribution. For a banded co-
variance matrix of size p× p the number of parameters to be estimated under
H1 is 2p − 1, whereas the number of parameters to be estimated under H0

is p. Thus the difference in the number of parameters is f = p − 1 and the
distribution of −2 ln Λr is asymptotically χ2 with f = p−1 degrees of freedom.

For example, if p = 3, the likelihood ratio test is given by

Λr =

(
|Σ̂3|

σ̂11σ̂22σ̂33

)n/2

(59)

and the statistics follows asymptotically that of χ2 with 2 degrees of freedom.

4.3 H0 : σkj = 0 for some k, j = 1, ..., p; k 6= j; banded covari-
ance matrix

The model (40)-(42) can be used when one wants to test the null hypothesis

H0 : σkj = 0 for some k, j = 1, ..., p; k 6= j, (60)

against the alternative H1 that H0 is not true.
For example, if p = 3 and one wants to test the null hypothesis

H0 : σ12 = 0, (61)

against the alternative H1 that H0 is not true. It is easy to see that one may
use (40)-(42), with

Σ3 =
(

Σ11 Σ12

Σ21 Σ22

)
,

Σ11 =
(

σ11

)
, Σ12 =

(
σ12 0

)
, Σ22 =

(
σ22 σ23

σ32 σ33

)
. (62)

In such a case,

sup
µ,Σ∗

Lp(µ,Σ∗) = c
(|Σ̂11||Σ̂22|

)−n/2
, s̃up

µ,Σ
Lp(µ,Σ) = c |Σ̂3|−n/2. (63)
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The test is then based on

Λr =

(
|Σ̂3|

|Σ̂11||Σ̂22|

)n/2

=

∣∣∣∣∣
σ̂11(σ̂22σ̂33 − σ̂2

23)− σ̂33σ̂
2
12

σ̂11(σ̂22σ̂33 − σ̂2
23)

∣∣∣∣∣
n/2

, (64)

where the asymptotical distribution of−2 ln Λr is χ2 with 1 degrees of freedom.
The null hypothesis

H0 : σ23 = 0, (65)

implies in (40)-(42)that

Σ =
(

Σ11 Σ12

Σ21 Σ22

)
,

Σ11 =
(

σ11 σ12

σ21 σ22

)
, Σ22 =

(
σ33

)
, Σ12 =

(
0

σ23

)
. (66)

In such a case,

sup
µ,Σ∗

Lp(µ,Σ∗) = c
(|Σ̂11||Σ̂22|

)−n/2
, s̃up

µ,Σ
Lp(µ,Σ) = c |Σ̂3|−n/2. (67)

The test is then given by

Λr =

(
|Σ̂3|

|Σ̂11||Σ̂22|

)n/2

=

∣∣∣∣∣
σ̂33(σ̂11σ̂22 − σ̂2

12)− σ̂11σ̂
2
23

σ̂33(σ̂11σ̂22 − σ̂2
12)

∣∣∣∣∣
n/2

, (68)

and the asymptotical distribution of −2 lnΛr is χ2 with 1 degrees of freedom.
Another example could be the case with p = 6, where one wants to test

the null hypothesis

H0 : σ34 = σ56 = 0, (69)

against the alternative H1 that H0 is not true. Then (40)-(42) equals

Σ =




Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33


 ,

Σ11 =




σ11 σ12 0
σ21 σ22 σ23

0 σ32 σ33


 , Σ22 =

(
σ44 σ45

σ54 σ55

)
, Σ33 =

(
σ66

)
,

Σ12 =




0 0
0 0

σ34 0


 , Σ13 =




0
0
0


 , Σ23 =

(
0

σ56

)
. (70)
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Now,

sup
µ,Σ∗

Lp(µ,Σ∗) = c
(|Σ̂11||Σ̂22||Σ̂33|

)−n/2
, s̃up

µ,Σ
Lp(µ,Σ) = c |Σ̂6|−n/2.

(71)

The test is then given by

Λr =

(
|Σ̂6|

|Σ̂11||Σ̂22||Σ̂33|

)n/2

, (72)

with

|Σ̂11| = σ̂11σ̂22σ̂33 − σ̂11σ̂
2
23 − σ̂33σ̂

2
12, |Σ̂22| = σ̂44σ̂55 − σ̂2

45, |Σ̂33| = σ̂66,

|Σ̂6| = |Σ̂11||Σ̂22||Σ̂33| − |Σ̂11|σ̂44σ̂
2
56 − σ̂2

34(σ̂11σ̂22 − σ̂2
12)(σ̂55σ̂66 − σ̂2

56),
(73)

and the asymptotical distribution of −2 lnΛr is χ2 with 2 degrees of freedom.

5 Simulation

The examples presented here illustrate the results obtained in Section 3. We
will compare the explicit estimators derived in our study for the mean and
covariance matrix with the true values.

In each simulation a sample of observations was randomly generated from
p-variate normal distributions Np,n using Release 14 of MATLAB Version 7.0.1
(The Mathworks Inc., Natick, MA, USA).

A small sample with the number of observations equal to n = 10, a moder-
ate sample with n = 100, and a large sample with n = 1000 were considered.
Simulations were repeated N = 1000 times and estimators were averaged.

Banded covariance structures with m=1 and p = (3, 4, 5, 6, 8, 10) were
analyzed and the results of the simulation study are presented in the tables
given below.

5.1 True values vs explicit estimators for the mean and covari-
ance matrix

Here p stands for the dimension of observations in the sample, i.e. the size of
the covariance matrix, and n for a number of observations in a sample.
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Table 1. p = 3

True Estimators
values n = 10 n = 100 n = 1000

µ1 1.0000 1.0062 1.0005 0.9995
µ2 2.0000 1.9966 1.9997 2.0015
µ3 3.0000 2.9939 3.0017 3.0030

True Estimators
values n = 10 n = 100 n = 1000

σ11 2.0000 1.8494 1.9698 1.9999
σ22 3.0000 2.7277 2.9662 2.9936
σ33 4.0000 3.6174 3.9574 4.0036
σ12 1.0000 0.9414 0.9819 1.0006
σ23 2.0000 1.6344 1.9677 1.9957

Table 2. p=4

True Estimators
values n = 10 n = 100 n = 1000

µ1 1.0000 1.0169 0.9982 1.0002
µ2 2.0000 2.0082 1.9871 1.9989
µ3 3.0000 3.0165 2.9986 2.9965
µ4 4.0000 4.0232 3.9961 4.0035

True Estimators
values n = 10 n = 100 n = 1000

σ11 2.0000 1.8204 1.9794 1.9995
σ22 3.0000 2.7000 2.9881 2.9954
σ33 4.0000 3.6449 3.9790 3.9951
σ44 5.0000 4.6039 4.9367 5.0033
σ12 1.0000 0.9002 0.9944 1.0003
σ23 2.0000 1.6003 1.9759 1.9939
σ34 1.0000 0.8332 0.9633 0.9956
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Table 3. p=5

True Estimators
values n = 10 n = 100 n = 1000

µ1 1.0000 1.0120 1.0016 0.9964
µ2 2.0000 1.9979 2.0025 1.9991
µ3 3.0000 2.9849 3.0018 3.0042
µ4 4.0000 4.0054 3.9912 4.0004
µ5 5.0000 5.0107 4.9936 4.9989

True Estimators
values n = 10 n = 100 n = 1000

σ11 2.0000 1.8340 1.9763 1.9987
σ22 3.0000 2.7016 2.9597 3.0057
σ33 4.0000 3.5490 3.9554 4.0023
σ44 5.0000 4.4250 4.9717 5.0031
σ55 6.0000 5.4363 5.9244 5.9836
σ12 1.0000 0.9579 0.9914 0.9985
σ23 2.0000 1.5541 1.9515 2.0056
σ34 1.0000 0.7870 1.0003 0.9939
σ45 2.0000 1.6075 1.9502 1.9987

Table 4. p=6

True Estimators
values n = 10 n = 100 n = 1000

µ1 1.0000 1.0014 1.0064 0.9993
µ2 2.0000 1.9926 1.9922 2.0031
µ3 3.0000 2.9884 2.9843 3.0030
µ4 4.0000 4.0248 3.9946 3.9995
µ5 5.0000 5.0094 4.9967 5.0008
µ6 6.0000 6.0098 5.9919 5.9984
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True Estimators
values n = 10 n = 100 n = 1000

σ11 2.0000 1.8152 1.9780 2.0014
σ22 3.0000 2.7969 2.9692 3.0017
σ33 4.0000 3.6454 3.9568 4.0008
σ44 5.0000 4.3763 4.9740 4.9905
σ55 6.0000 5.4598 5.9381 5.9864
σ66 7.0000 6.5996 6.9157 6.9704
σ12 1.0000 0.9523 0.9805 1.0034
σ23 2.0000 1.6375 1.9676 1.9991
σ34 1.0000 0.8158 0.9734 1.0019
σ45 2.0000 1.5502 1.9681 1.9929
σ56 3.0000 2.5652 2.9344 2.9868

Table 5. p=8

True Estimators
values n = 10 n = 100 n = 1000

µ1 1.0000 1.0162 0.9987 1.0015
µ2 2.0000 2.0125 2.0053 2.0012
µ3 3.0000 3.0067 3.0024 3.0011
µ4 4.0000 4.0238 4.0005 4.0030
µ5 5.0000 5.0007 4.9993 5.0028
µ6 6.0000 6.0223 5.9991 6.0020
µ7 5.0000 5.0185 5.0079 4.9989
µ8 4.0000 4.0158 4.0036 4.0017
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True Estimators
values n = 10 n = 100 n = 1000

σ11 2.0000 1.7645 1.9812 2.0012
σ22 3.0000 2.7091 2.9638 2.9984
σ33 4.0000 3.6563 3.9383 3.9959
σ44 5.0000 4.5560 4.9521 5.0014
σ55 6.0000 5.3711 5.9683 5.9912
σ66 7.0000 6.2825 6.9551 6.9852
σ77 6.0000 5.2672 5.9502 6.0034
σ88 5.0000 4.5454 4.9850 5.0048
σ12 1.0000 0.8562 0.9913 1.0001
σ23 2.0000 1.6602 1.9483 1.9959
σ34 1.0000 0.7859 0.9804 1.0031
σ45 2.0000 1.5737 1.9655 1.9912
σ56 3.0000 2.4004 2.9528 2.9956
σ67 2.0000 1.5227 1.9878 1.9956
σ78 1.0000 0.8537 0.9613 0.9998

Table 6. p=10

True Estimators
values n = 10 n = 100 n = 1000

µ1 1.0000 0.9926 1.0005 0.9997
µ2 2.0000 2.0005 1.9997 1.9998
µ3 3.0000 3.0048 3.0034 2.9979
µ4 4.0000 3.9489 3.9930 3.9969
µ5 5.0000 4.9874 4.9986 5.0030
µ6 6.0000 6.0208 6.0037 6.0019
µ7 5.0000 4.9872 5.0196 4.9980
µ8 4.0000 4.0081 3.9998 3.9977
µ9 3.0000 3.0128 2.9988 2.9982
µ10 2.0000 1.9976 2.0024 2.0001
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True Estimators
values n = 10 n = 100 n = 1000

σ11 2.0000 1.8204 1.9754 1.9932
σ22 3.0000 2.6713 2.9648 2.9971
σ33 4.0000 3.6196 3.9598 3.9959
σ44 5.0000 4.4362 4.9438 4.9880
σ55 6.0000 5.4208 5.9384 5.9958
σ66 7.0000 6.2828 6.9378 6.9943
σ77 6.0000 5.4992 5.9232 6.0029
σ88 5.0000 4.4700 4.9506 4.9904
σ99 4.0000 3.6308 3.9199 3.9939

σ10,10 3.0000 2.7154 2.9984 2.9920
σ12 1.0000 0.8789 0.9784 0.9996
σ23 2.0000 1.5962 1.9587 1.9932
σ34 1.0000 0.8173 0.9838 0.9968
σ45 2.0000 1.6463 1.9597 1.9960
σ56 3.0000 2.4161 2.9247 2.9936
σ67 2.0000 1.6141 1.9659 1.9993
σ78 1.0000 0.7389 1.0032 1.0042
σ89 2.0000 1.5883 1.9340 1.9936
σ9,10 1.0000 0.8441 0.9798 0.9921

5.2 Discussion

The numerical examples presented above show that our explicit estimators for
the mean and covariance matrix resemble the true values. However, in the case
of small sample study, with a number of observations in a sample n = 10, the
estimators and true values are not always very close to each other, especially
for larger p. However, already for moderate sample study, with n = 100,
the averages provide reasonable agrement. In general, results of large sample
study, with n = 1000, are much better, especially for smaller p.

6 Conclusions

In this paper, we have presented a simple algorithm for estimating the mean
and covariance matrix for a multivariate normal distribution with banded
covariance structure of order m = 1. It is shown that the estimator of the
mean coincides with the MLE and is unbiased and consistent. The estimator
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of the covariance matrix is found to be consistent. Simulations confirm that
the estimators are accurate.

Acknowledgement

The work of Zhanna Andrushchenko was supported by Swedish Research
Council, VR 621-2002-5578.

References

Anderson, T. W. (1971). The Statistical Analysis of Time Series. Wiley, New
York.

Anderson, T. W. (1984). Introduction to Multivariate Statistical Analysis.
John Wiley & Sons, New York, USA, 2nd edition.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods.
Springer, New York, 2nd edition.

Brown, H. and Prescott, R. (1999). Applied Mixed Models in Medicine. Statis-
tics in Practice. Wiley, New York.

Browne, M. W. (1977). The analysis of patterned correlation matrices by
generalized least squares. British Journal of Mathematical and Statistical
Psychology, 30:113–124.

Chakraborty, M. (1998). An efficient algorithm for solving general periodic
toeplitz system. IEEE Transactions on Signal Processing, 46:784–787.

Chinchilli, V. M. and Carter, W. (1984). A likelihood ratio test for a patterned
covariance matrix in a multivariate growth-curve model. Biometrics, 40:151–
156.

Chiu, T. Y. M., Leonard, T., and Tsui, K. W. (1996). The matrix-logarithm
covariance model. J. Amer. Statist. Assoc., 91:198–210.

Dempster, A. M. (1972). Covariance selection. Biometrics, 28:157–175.

Diggle, P., Heagerty, P., Liang, K., and Zeger, S. (2003). Analysis of Longitu-
dinal Data. Oxford University Press, Oxford.

Efron, B. and Morris, C. (1976). Multivariate empirical bayes and estimation
of covariance matrices. Ann. Statist., 4:22–32.

26



Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics.
Phil. Trans. Royal Soc. A, 222:309–368.

Fuller, W. A. (1996). Introduction to Statistical Time Series. Wiley Series in
Probability and Statistics. Wiley, New York, 2nd edition.

Goodman, N. (1963). Statistical analysis based on a certain multivariate com-
plex gaussian distribution (an introduction). The Annals of Mathematical
Statistics, 34(1):152–177.

Haff, L. R. (1980). Empirical bayes estimation of the multivariate normal
covariance matrix. The Annals of Statistics, 8:586–597.

Hotelling, H. (1931). The generalization of Student’s ratio. The Annals of
Mathematical Statistics, 2:360–378.

James, W. and Stein, C. (1961). Estimation with quadratic loss. In Proc. of
the Fourth Berkeley Symposium on Mathematical Statistics and Probability,
volume 1, pages 361–379. University of California Press, Berkeley.

Kollo, T. and von Rosen, D. (2005). Advanced Multivariate Statistics with
Matrices. Springer, Dordrecht.

Leonard, T. and Hsu, J. S. J. (1992). Bayesian inference for a covariance
matrix. Ann. Statist., 20:1669–1696.

Marin, J.-M. and Dhorne, T. (2002). Linear toeplitz covariance structure
models with optimal estimators of variance components. Linear Algebra
and its Applications, 354:195–212.

Moura, J. M. F. and Balram, N. (1992). Recursive structure of noncausal
gauss markov random fields. IEEE Transactions on Information Theory,
38(2):334–354.

Muirhead, R. (2005). Aspects of Multivariate Statistical Theory. John Wiley
& Sons, New York, USA.

Neyman, J. and Pearson, E. (1938). Contribution to the theory of testing
statistical hypothesis. Stat. Res. Mem., 2:25–57. (Also in Neyman, J., and
Pearson, E. (1967): Joint Statistical Papers. Cambridge: The University
Press).

Pal, N. (1993). Estimating the normal dispersion matrix and the precision
matrix from a decision theoretic point of view: A review. Statistical Papers,
34:1–26.

27



Pourahmadi, M. (1999). Joint mean-covariance models with application to
longitudinal data: unconstrained parameterisation. Biometrika, 86:677–690.

Pourahmadi, M. (2000). Maximum likelihood estimation of generalised linear
models for multivariate normal covariance matrix. Biometrika, 87:425–435.

Sinha, B. K. and Ghosh, M. (1987). Inadmissibility of the best equivariant
estimators of the variance-covariance matrix, the precision matrix, and the
generalized variance under entropy loss. Statistics and Decisions, 5:201–227.

Srivastava, M. S. (2002). Methods of Multivariate Statistics. Wiley-
Interscience, New York, USA.

Srivastava, M. S. and Khatri, C. G. (1979). An Introduction to Multivariate
Statistics. Elsevier North Holland, Inc., New York, USA. p.47.

Votaw, D. F. (1948). Testing compound symmetry in a normal multivariate
distribution. The Annals of Mathematical Statistics, 19:447–473.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics.
John Wiley and Sons, New York, USA.

Wilks, S. S. (1935). On the independence of k sets of normally distributed
statistical variables. Econometrika, 3:309–326.

Wilks, S. S. (1938). The large sample distribution of the likelihood ratios
for testing composite hypothesis. The Annals of Mathematical Statistics,
9:60–62.

Wilks, S. S. (1946). Sample criteria for testing equality of means, equality of
variances, and equality of covariances in a normal multivariate distribution.
The Annals of Mathematical Statistics, 17:257–281.

Wishart, J. (1928). The generalized product moment distribution in samples
from a normal multivariate population. Biometrika, 20:32–52.

Wong, F., Carter, C. K., and Kohn, R. (2003). Efficient estimation of covari-
ance selection models. Biometrika, 90:809–830.

Woods, J. W. (1972). Two-dimensional discrete markovian fields. IEEE Trans-
actions on Information Theory, IT-18(2):232–240.

Yang, R. and Berger, J. O. (1994). Estimation of a covariance matrix using
the reference prior. The Annals of Statistics, 22:1195–1211.

28


