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1 Introduction

Many testing, estimation and confidence interval procedures discussed in the
multivariate statistical literature are based on the assumption that the ob-
servation vectors are independent and normally distributed (Muirhead, 1982;
Srivastava, 2002). The main reasons for this are that multivariate observa-
tions are often, at least approximately, normally distributed. Moreover, the
multivariate normal distribution is mathematically tractable. Since normally
distributed data can be modelled entirely in terms of their means and vari-
ances/covariances, these parameters specify the complete probability distribu-
tion of data. Estimating the mean and the covariance matrix is therefore a
problem of great interest in statistics.

Patterned covariance matrices arise from a variety of contexts and have
been studied by many authors. Below we mention some papers. Wilks (1946),
is one of the early papers dealing with patterned structures, considered a set
of measurements on k equivalent psychological tests. This led to a covariance
matrix with equal diagonal elements and equal off-diagonal elements. Votaw
(1948) extended this model to a set of blocks in which each block had a pattern.
Goodman (1963) studied the covariance matrix of the multivariate complex
normal distribution, which for example arise in spectral analysis of multiple
time series. A direct extension is to study quaternions which has been per-
formed by many authors, e.g., see Andersson et al. (1983). Olkin and Press
(1969) considered a circular stationary model, where variables are thought of
as being equally spaced around a circle, and the covariance between two vari-
ables depends on their distance. Olkin (1973) studied a multivariate version in
which each element was a matrix, and the blocks were patterned. More gen-
erally, permutation invariant covariance matrices may be of interest, see for
example Nahtman (2006). Browne (1977) reviews patterned correlation ma-
trices arising from multiple psychological measurements. In this context one
may mention LISREL models (Jöreskog, 1981) or more sophisticated struc-
tures within the frame of graphical models (Lauritzen, 1996). From linear
models with one error term we have natural extensions to mixed linear models
and variance component models as well as to patterned covariance matrices in
multivariate growth curve models, e.g., see Chinchilli and Carter (1984) and
Searle et al. (1992). Block structures in covariance matrices has recently been
studied by Naik and Rao (2001), Lu and Zimmerman (2005) and Roy and
Khattree (2005), as well as others.

Banded covariance matrices and their inverses arise frequently in sig-
nal processing applications, including autoregressive or moving average im-
age modelling, covariances of Gauss-Markov random processes (Woods, 1972;
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Moura and Balram, 1992), or numerical approximations to partial differ-
ential equations based on finite difference. Banded matrices are also used
to model the correlation of cyclostationary processes in periodic time series
(Chakraborty, 1998). There exist many papers on Toeplitz covariance matri-
ces, e.g., see Marin and Dhorne (2002) and Christensen (2007), which all are
banded matrices. To have a Toeplitz structure means that certain invariance
conditions are fulfilled, e.g., equality of variances. In this report we will study
banded matrices with unequal elements except that certain covariances are
zero. The basic idea is that widely separated observations appear often to be
uncorrelated and therefore it is reasonable to work with a banded covariance
structure where all covariances more than m steps apart equal zero. We will
call such a structure an m-dependent structure.

In univariate analysis when not assuming any particular distribution one
often constructs estimators via a least squares criterion or a generalized least
squares criterion. An alternative is to construct estimators so that some prop-
erty is fulfilled. In multivariate analysis one has tried to copy the univariate
approaches by constructions of various criteria which remind on the univariate
ones. However, there is a fundamental difference between the univariate and
multivariate setups. In the univariate case we have independent observations
with a scalar variance. The variance will not effect the estimator of the mean
in, for example, the least squares approach. In a multivariate setting we have
independent observations with both a covariance structure and a mean struc-
ture. When estimating parameters we should often consider both structures
simultaneously. For example, we know from studies concerning the growth
curve model (Potthoff and Roy, 1964; Kollo and von Rosen, 2005) that esti-
mators of the mean structure and the covariance matrix are connected. In a
series of papers, Szatrowski (1985) discussed how to obtain maximum likeli-
hood estimators (MLEs) for the elements of a class of patterned covariance
matrices. Godolphin and De Gooijer (1982) computed the exact MLEs of the
parameters of a Gaussian moving average process. However, little attention
has been given to a derivation of explicit analytical expressions for estimators
of the model with banded covariance structure under m-dependence.

In this report we focus on estimation of parameters of a multivariate ran-
dom vector (with dimensionality p and sample size n) under the constraint
that certain covariances are zero, namely we consider a banded covariance
structure under m-dependence. To avoid singularity, we limit ourselves to the
case when the matrix dimension p is small compared to the sample size n.
The aim in our research is to present explicit estimators for the mean and the
covariance matrix under m-dependence. In many applications, e.g., in image
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analysis, computations are heavy and explicit expressions of estimators are
more useful than iterative algorithms obtained for MLEs or restricted MLEs.
In this report a simple estimation procedure is suggested which gives unbi-
ased and consistent estimators of the mean and consistent estimators of the
covariance matrix.

The report is organized as follows. In Section 2, we present the main
definitions and notation used throughout the report. Section 3 provides the
algorithm for estimation of the mean and the covariance matrix when m = 1.
First, the univariate (p = 1) and the bivariate (p = 2) cases are presented.
Estimators are calculated and their properties are analyzed. It is shown that
the estimators obtained coincide with the usual MLE. Next, the three-variate
case, p = 3, is analyzed in detail. Here the algorithm consists of maximizing
the likelihood function via inserting the estimated parameters from previous
steps. Finally, the general p-variate case is considered. Again, the properties
of the estimators are presented. Section 4 provides a further generalization of
the approach. Here we consider the case of arbitrary m > 1. In the section
the main proposition of the report is formulated and motivated, as well as
estimators and their properties are presented. Finally, in Section 5 we present
some simulations and Section 6 summarizes the report.

2 Definitions and Notation

Throughout this report matrices will be denoted by capital letters, vectors by
bold font, scalars and elements in matrices by ordinary letters if nothing else
is stated.

Let X be matrix normally distributed (Kollo and von Rosen, 2005), X ∼
Np,n(Ξ, Σ, In), where In is the identity matrix of dimension n and partition X
as

X =




x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...
xp1 xp2 · · · xpn


 =




x′1
x′2
...
x′p


 ,

where x′i = (xi1, xi2, . . . , xin) : (1× n) for i = 1, . . . , p and x′i is the transpose
of xi. If we have i and j such that 1 ≤ i < j ≤ p, we will also use the notation
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Xi:j for the matrix including the rows from i to j, i.e.,

Xi:j =




x′i
x′i+1

...
x′j


 .

In this report we suppose that the expectation is given by

Ξ = E(X) = µp1
′
n,

where

µ′p = (µ1, µ2, . . . , µp)

and

1′n = (1, 1, . . . , 1) : (1× n).

For k = m + 1, . . . , p and Σ = (σij), i, j = 1, 2, . . . , p, define Σ(m)
(k) as

Σ
(m)

(k) =




σ11 . . . σ1,m+1 0 0 . . . 0
σ21 . . . σ2,m+1 σ2,m+2 0 . . . 0
...

. . .

σm+1,1

0
. . .

...

. . .

0 . . . 0 σk−1,k−(m+1) σk−1,k−m . . . σk−1,k

0 . . . 0 0 σk,k−m . . . σkk




.

(2.1)

For simplicity the upper index (m) will be omitted in the cases when it is clear
from the context. We also define Mji

(k) as the matrix obtained where the jth
row and ith column have been removed from Σ(k).

Moreover, we will often partition the matrix Σ(m)
(k) as

Σ(m)
(k) =

(
Σ(m)

(k−1) σ1k

σ′k1 σkk

)
,
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where

σ′k1 = (0, . . . , 0, σk,k−m, . . . , σk,k−1) .

The likelihood function of the parameters µ and Σ equals

c|Σ|−n/2etr
{
−1

2
Σ−1

(
X− µ1′n

) ()′}
,

where c is a normalizing constant and
(
X− µ1′n

) ()′ = (
X− µ1′n

) (
X− µ1′n

)′
.

If we partition X, µ and Σ as

X =
(

X1

X2

)
∼ Np,n

((
µ1

µ2

)
1′n,

(
Σ11 Σ12

Σ21 Σ22

)
, In

)

we obtain the conditional distribution (see (Kollo and von Rosen, 2005))

X2|X1 ∼ Nr,n

(
Ξ2|1,Σ2|1, In

)
, (2.2)

where

Ξ2|1 = µ21
′
n + Σ21Σ−1

11

(
X1 − µ11

′
n

)
, (2.3)

Σ2|1 = Σ22 − Σ21Σ−1
11 Σ12 (2.4)

and the corresponding conditional likelihood function equals

c|Σ11|−n/2etr
{
−1

2
Σ−1

11

(
X1 − µ11

′
n

) ()′}

×|Σ2|1|−n/2etr
{
−1

2
Σ−1

2|1
(
X2 − Ξ2|1

) ()′}
. (2.5)

3 m-dependence of order one (m = 1)

In this section we present the idea of how to estimate the expectation and the
covariance matrix for a multivariate normal distribution when the covariance
matrix is banded of order one, i.e., m = 1. For the sake of completeness
and since our estimators are some kind of recursive estimators we start with
the univariate and bivariate cases. In these cases we have a non-structured
covariance matrix and the estimators are the maximum likelihood estimators
(MLE) but for the three-dimensional case and for higher dimensions there are
zeros in the covariance matrix, i.e., the covariance matrix is structured. Hence,
in the second half of this section we present our estimators. Since they are ad
hoc estimators we conclude the section by establishing some properties such
as unbiasness and consistency.
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3.1 Univariate and bivariate cases

For the univariate case when p = 1 we have the sample observation vector

x′1 ∼ N1,n(µ11′n, σ11, In).

The likelihood can be maximized with respect to the two parameters, µ1 and
σ11. The maximum likelihood estimators of these parameters are given by

µ̂1 =
1
n
x′11n,

σ̂11 =
1
n

(x1 − µ̂11n)′() =
1
n
x′1Cx1,

where

C = In − 1n(1′n1n)−11′n. (3.1)

For the bivariate case when p = 2, there are five unknown parameters, µ1, µ2,
σ11, σ12 and σ22. If we condition x′2 on x′1 we have from equation (2.2)

x′1 ∼ N1,n(µ11′n, σ11, In),
x′2|x′1 = x′2|1 ∼ N1,n(µ′2|1, σ2|1, In),

where the conditional expectation, given by (2.3), equals

µ2|1 = µ21n + σ21σ
−1
11 (x1 − µ11n)

= µ21n + β21(x1 − µ11n)
= β201n + β21x1 (3.2)

and the conditional variance, given by (2.4), equals

σ2|1 = σ22 − σ21 σ−1
11 σ12 = σ22 − β2

21 σ11, (3.3)

where

β20 = µ2 − β21µ1, (3.4)

β21 =
σ21

σ11
. (3.5)

The likelihood function based on all the observations is now given by (2.5)
and equals

cσ
−n/2
11 exp

(
−1

2
σ−1

11 (x1 − µ11n)′()
)

σ
−n/2
2|1 exp

(
−1

2
σ−1

2|1(x2 − µ2|1)
′()

)
.
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Here we see that, as usual, we have a regression

x2|1 = µ2|1 + ε = β201n + β21x1 + ε

where

ε ∼ Nn,1(0, In, σ2|1).

The maximum likelihood estimator of β2 = (β20, β21)′ can be written in matrix
form as

β̂2 =
(

β̂20

β̂21

)
= (X̂′1X̂1)−1X̂′1x2, (3.6)

where

X̂1 = (1n : x1)

and the inverse in equation (3.6) exists since the matrix X̂′1X̂1 has full rank.
An estimator of the conditional variance is given by

σ̂2|1 =
1
n

(x2 − µ̂2|1)
′(),

where

µ̂2|1 = β̂201n + β̂21x1.

We may now calculate the regression coefficients

β̂2 =
1

nx′1Cx1

(
x′1(x11′n − 1nx′1)x2

nx′1Cx2

)
,

where C is as in (3.1). Hence,

β̂20 =
x′1(x11′n − 1nx′1)x2

nx′1Cx1
, (3.7)

β̂21 =
x′1Cx2

x′1Cx1
=

(x1 − µ̂11n)′(x2 − µ̂21n)
(x1 − µ̂11n)′()

. (3.8)
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The estimators for the five initial parameters are now easily calculated

µ̂1 =
1
n
x′11n,

σ̂11 =
1
n
x′1Cx1,

µ̂2 = β̂20 + β̂21µ̂1 =
1
n
x′21n,

σ̂22 = σ̂2|1 + β̂2
21σ̂11 =

1
n
x′2Cx2,

σ̂12 = σ̂21 = β̂21σ̂11 =
1
n
x′1Cx2.

These are, of course, the usual maximum likelihood estimator since the co-
variance matrix in the bivariate case is an ordinary non-structured covariance
matrix.

Furthermore, now some calculations are presented which later will be gen-
eralized. We can easily calculate the expectations and variances for the β21

estimator:

E(β̂21|x1) = β21,

V ar(β̂21|x1) =
nσ2|1

nx′1x1 − (1′nx1)2
=

σ2|1
x′1Cx1

so

E(β̂21) = E(E(β̂21|x1)) = β21

and

V ar(β̂21) = E(V ar(β̂21|x1)) + V ar(E(β̂21|x1))

= σ2|1E
(

1
x′1Cx1

)
=

σ2|1
σ11

E

(
1

χ2
n−1

)
=

σ2|1
σ11(n− 3)

.

Since β̂21 is unbiased and the variance converges zero, as n → ∞, β̂21 is a
consistent estimator.

3.2 Three-dimensional case, p = 3

We have shown that for the univariate and bivariate cases the estimators
are the MLE since the covariance matrix in each case is non-structured. In
the three-dimensional case when the covariance matrix is banded of order
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one there are two zeros in the covariance matrix, i.e., the variables x1 and
x3 are independent. We now propose explicit estimators for the expectation
and covariance matrix in the three-dimensional case. Some properties for the
estimators will also be proven.

Proposition 3.1 Let X ∼ N3,n

(
µ31

′
n,Σ(1)

(3), In
)
. Explicit estimators are

given by

µ̂1 =
1
n
x′11n, σ̂11 =

1
n
x′1Cx1, σ̂12 =

1
n
x′1Cx2,

µ̂2 =
1
n
x′21n, σ̂22 =

1
n
x′2Cx2, σ̂23 =

1
n
x̂′2Cx3,

µ̂3 =
1
n
x′31n, σ̂33 =

1
n
x′3Cx3,

where

x̂2 = x2 − β̂21x1, β̂21 =
x′1Cx2

x′1Cx1

and C is given in (3.1).

In the next these estimators are motivated. Since X ∼ N3,n

(
µ31

′
n, Σ(1)

(3), In
)

we have from equation (2.2) that

x′1 ∼N1,n(µ11′n, σ11, In),
x′2|1 ∼N1,n(µ′2|1, σ2|1, In),

x′3|1,2 ∼N1,n(µ′3|1,2, σ3|1,2, In),

where the conditional expectation and variance, given by (2.3) and (2.4),
equals

µ′3|1,2 = µ31′n + (0, σ32) Σ−1
(2)

(
x′1 − µ11′n
x′2 − µ21′n

)
= β301′n + β32(x′2 − β21x′1),

σ3|1,2 = σ33 − (0, σ32) Σ−1
(2)

(
0

σ23

)
=
|Σ(3)|
|Σ(2)|

= σ33 − β2
32 σ2|1,

β30 = µ3 − β32β20, β32 = σ32
σ11

|Σ(2)|

and µ2|1, σ2|1, β20 and β21 are given in (3.2)-(3.5).
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The likelihood function based on all observations is given by (2.5) and thus
proportional to

σ
−n/2
11 exp

(
−1

2
σ−1

11 (x1 − µ11n)′()
)

× σ
−n/2
2|1 exp

(
−1

2
σ−1

2|1(x2 − µ2|1)
′()

)
(3.9)

× σ
−n/2
3|1,2 exp

(
−1

2
σ−1

3|1,2(x3 − µ3|1,2)
′()

)
. (3.10)

However, β21 appears in both (3.9) and (3.10) and therefore the strategy will be
to estimate β21 via (3.9) and then insert this estimator in (3.10). It means that
our estimation strategy is to maximize each part of the likelihood separately,
similarly to a REML approach in mixed linear models.

Again, we can use the matrix form of the estimators of β3 = (β30, β32)′,
i.e.,

β̂3 = (X̂′2X̂2)−1X̂′2x3,

where

X̂2 = (1n : x̂2)

and

x̂2 = x2 − β̂21x1.

Here we have inserted the estimator β̂21 which is estimated in the second part
of the likelihood function (3.9) given by (3.8). The estimator of the variance
σ3|1,2 equals

σ̂3|1,2 =
1
n

(x3 − µ̂3|1,2)
′()

and the regression coefficients are

β̂3 =
1

nx̂′2Cx̂2

(
x̂′2(x̂21′n − 1nx̂′2)x3

nx̂′2Cx3

)
.
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We can now estimate the initial parameters. The parameters µ̂1, µ̂2, σ̂11, σ̂22,
σ̂12 and σ̂21 are estimated as in the bivariate case and

µ̂3 = β̂30 + β̂32β̂20 =
1
n
x′31n,

σ̂33 = σ̂3|1,2 + β̂2
32

|Σ̂(2)|
σ̂11

= σ̂3|1,2 + β̂2
32 σ̂2|1,

σ̂32 = β̂32

|Σ̂(2)|
σ̂11

= β̂32 σ̂2|1

where β̂20 is given by (3.7) and

β̂32 =
x̂′2Cx3

x̂′2Cx̂2
.

Hence, the proposed estimators

σ̂33 =
1
n
x′3Cx3

and

σ̂23 = σ̂32 =
1
n
x̂′2Cx3,

are obtained.

¤

Although the estimators in Proposition 3.1 constitute of explicit expression
they are still ad hoc estimators and therefore it is important to establish some
basic properties.

Theorem 3.1 The estimator µ̂3 = (µ̂1, µ̂2, µ̂3)′ given in Proposition 3.1 is
unbiased and consistent, and the estimator Σ̂(1)

(3) = (σ̂ij) is consistent.

Proof The conditional expectation and variance of β̂32 are

E(β̂32|x1,x2) = β32,

V ar(β̂32|x1,x2) =
σ3|1,2

x̂′2Cx̂2
=

σ3|1,2

(x2 − β̂21x1)′C(x2 − β̂21x1)

=
σ3|1,2

(x2 − µ̂2|1)′()
=

σ3|1,2

x′2C(In − x1(x′1Cx1)−1x′1)Cx2
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and the expectation and variance are

E(β̂32) = E(E(β̂32|x1,x2)) = β32

and

V ar(β̂32) = E(V ar(β̂32|x1,x2)) + V ar(E(β̂32|x1,x2))

= σ3|1,2E

(
1

x′2C(In − x1(x′1Cx1)−1x′1)Cx2

)

= σ3|1,2E

(
E

(
1

x′2C(In − x1(x′1Cx1)−1x′1)Cx2

∣∣∣x1

))

=
σ3|1,2

σ2|1
E

(
1

χ2
n−2

)
=

σ3|1,2

σ2|1(n− 4)
,

since the matrix C(In − x1(x′1Cx1)−1x′1)C is idempotent of rank n − 2 and
therefore

x′2C(In − x1(x′1Cx1)−1x′1)Cx2

σ2|1

∣∣∣x1 ∼ χ2
n−2.

As before, the estimator β̂32, is unbiased and consistent. Furthermore, we
have

σ̂32 = β̂32

|Σ̂(2)|
σ̂11

p→ β32

|Σ(2)|
σ11

= σ32, as n →∞,

by Cramér-Slutsky’s theorem (Cramér, 1946).
Since the estimator µ̂ is mean based on independent and identically dis-

tributed observations the estimator is unbiased and consistent. The estima-
tors σ̂11, σ̂12, σ̂22 and σ̂33 are the maximum likelihood estimators for a non-
structured covariance matrix and hence consistent. ¤

3.3 General p-variate case

For higher dimensions the estimators are found in the same way as for the
three-dimensional case. Here follows the proposed estimators for the general
dimension but when the covariance matrix is banded of order one.

Proposition 3.2 Let X ∼ Np,n

(
µp1

′
n, Σ(1)

(p), In
)
. Explicit estimators are

given by

µ̂i =
1
n
x′i1n, σ̂ii =

1
n
x′iCxi, for i = 1, . . . , p,

σ̂i,i+1 =
1
n
x̂′iCxi+1, for i = 1, . . . , p− 1,
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where x̂1 = x1, x̂i = xi − β̂i,i−1x̂i−1 for i = 2, . . . , p− 1,

β̂i,i−1 =
x̂′i−1Cxi

x̂′i−1Cx̂i−1
.

and C is given in (3.1).

Here follows the motivation for Proposition 3.2. Since

X ∼ Np,n

(
µp1

′
n, Σ(1)

(p), In
)

we have from equation (2.2) that

x′1 ∼ N1,n(µ11′n, σ11, In),
x′2|1 ∼ N1,n(µ′2|1, σ2|1, In),

...
x′p|1:p−1 ∼ N1,n(µ′p|1:p−1, σp|1:p−1, In),

and the likelihood function follows from (2.5). Ignoring the normalizing con-
stant the likelihood function is given by

σ
−n/2
11 exp

(
−1

2
σ−1

11 (x1 − µ11n)′()
)

×
p∏

k=2

σ
−n/2
k|1:k−1exp

(
−1

2
σ−1

k|1:k−1(xk − µk|1:k−1)
′()

)
, (3.11)

where, for k = 2, . . . p,

µ′k|1:k−1 = µk1′n + (0, ..., 0, σk,k−1) Σ−1
(k−1)




x′1 − µ11′n
...

x′k−2 − µk−21′n
x′k−1 − µk−11′n


 .

Let

x̃k = xk − βk,k−1x̃k−1,

where

βk,k−1 = σk−1,k

|Σ(k−2)|
|Σ(k−1)|
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with

x̃1 = x1.

Then

µk|1:k−1 = βk01n + βk,k−1x̃k−1, k ≥ 2,

where

βk0 = µk − βk,k−1βk−1,0

and

β10 = µ1.

The conditional variance equals

σk|1:k−1 = σkk − (0, ..., 0, σk,k−1) Σ−1
(k−1)




0
...
0

σk−1,k




= σkk −
σk,k−1σk−1,k|Σ(k−2)|

|Σ(k−1)|
=

|Σ(k)|
|Σ(k−1)|

.

Each part of the likelihood can now be maximized with respect to the 3p− 1
parameters, µ1, βp0, βp−1,0, . . . , β20, βp,p−1, βp−1,p−2, . . . , β21, σ11, σ2|1,
. . . ,σp|1:p−1. We maximize the p parts of the likelihood function (3.11) sepa-
rately, and each time we insert the estimated parameters from previous steps.
Thus, it is just a linear regression in each step and the proposed estimator of
the regression coefficients are

β̂k =
(

β̂k0

β̂k,k−1

)
= (X̂′k−1X̂k−1)−1X̂′k−1xk,

where

X̂k−1 = (1n : x̂k−1) ,

x̂k−1 = xk−1 − β̂k−1,k−2x̂k−2

with

x̂1 = x1.

14



Hence, we have the estimators

β̂k =
1

nx̂′k−1Cx̂k−1

(
x̂′k−1(x̂k−11′n − 1nx̂′k−1)xk

nx̂′k−1Cxk

)

and the estimator of the conditional variance is given by

σ̂k|1:k−1 =
1
n

(xk − µ̂k|1:k−1)
′(),

where

µ̂k|1:k−1 = β̂k01n + β̂k,k−1x̂k−1

for k = 2, . . . , p. The estimators of the initial parameters, µ1, µ2, . . . , µp,
σ11, σ12, σ22, . . . , σp−1,p, σpp, can be recovered from here as

µ̂1 =
1
n
x′11n,

σ̂11 =
1
n
x′1Cx1

and for k = 2, . . . p

µ̂k = β̂k0 + β̂k,k−1β̂k−1,0 =
1
n
x′k1n,

σ̂kk = σ̂k|1:k−1 + β̂2
k,k−1

|Σ̂(k−1)|
|Σ̂(k−2)|

= σ̂k|1:k−1 + β̂2
k,k−1 σ̂k−1|1:k−2 =

1
n
x′kCxk,

σ̂k−1,k = β̂k,k−1

|Σ̂(k−1)|
|Σ̂(k−2)|

= β̂k,k−1 σ̂k−1|1:k−2 =
1
n
x̂′k−1Cxk

=
1
n
x′k−1Cxk − β̂k−1,1

1
n

(x̂k−2 − β̂k−2,01n)′(xk − µ̂k1n).

¤

Theorem 3.2 The estimator µ̂p = (µ̂1, . . . , µ̂p)′ given in Proposition 3.2 is

unbiased and consistent, and the estimator Σ̂(1)
(p) = (σ̂ij) is consistent.

15



Proof Again we can calculate the variance of βk1:

V ar(β̂k,k−1) = E(V ar(β̂k,k−1|X′1:k−1)) + V ar(E(β̂k,k−1|X′1:k−1))

= σk|1:k−1E

(
1

x̂′k−1Cx̂k−1

)

= σk|1:k−1E

(
1

x′k−1C(In − x̂k−2(x̂′k−2Cx̂k−2)−1x̂′k−2)Cxk−1

)

= σk|1:k−1E

(
E

(
1

x′k−1C(In − x̂k−2(x̂′k−2Cx̂k−2)−1x̂′k−2)Cxk−1

∣∣∣X′1:k−2

))

=
σk|1:k−1

σk−1|1:k−2
E

(
1

χ2
n−2

)
=

σk|1:k−1

σk−1|1:k−2(n− 4)

since

x′k−1C(In − x̂k−2(x̂′k−2Cx̂k−2)−1x̂′k−2)Cxk−1

σk−1|1:k−2
|X′1:k−2 ∼ χ2

n−2.

Thus, all estimated parameters, β̂k1, are unbiased and consistent and for k =
2, . . . , p

σ̂k,k−1 = β̂k,k−1

|Σ̂(k−1)|
|Σ̂(k−2)|

p→ βk,k−1

|Σ(k−1)|
|Σ(k−2)|

= σk,k−1, as n →∞,

by Cramér-Slutsky’s theorem.
Furthermore, the estimators µ̂i, for i = 1, . . . , p are means based on in-

dependent and identically distributed observations, hence these are unbiased
and consistent. The estimators σ̂ii, for i = 1, . . . , p are equal to the maxi-
mum likelihood estimators for a non-structured covariance matrix which are
consistent. ¤

4 m-dependence of greater order than one (m > 1)

In Section 3 m-dependence of order one was investigated. Here in this section
the same technique will be used to find estimators for the case when the order
is greater than one, i.e., when m > 1. We start with a special case, when
the order is two and the dimension is four, i.e., m = 2 and p = 4, just to see
how things work out. At the end of this section we propose estimators for the
general case when m + 1 < p < n. Furthermore, in line with previous section
some properties of the estimators are established.
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4.1 Special case; m = 2 and p = 4

Suppose that X ∼ N4,n(µ41
′
n, Σ(2)

(4), In), where we can write

Σ(2)
(4) =

(
Σ(3) σ14

σ′41 σ44

)
.

If we use a chain rule factorization of the density we have

f(X) = f(x′4|X1:3)f(X1:3),

where

x′4|X1:3 ∼ N1,n(µ′4|1:3, σ4|1:3, In)

and

X1:3 ∼ N3,n(µ31
′
n, Σ(3), In), (4.1)

where the conditional expectation, given by (2.3), equals

µ′4|1:3 = µ41′n + σ′41Σ
−1
(3)




x′1 − µ11′n
x′2 − µ21′n
x′3 − µ31′n




= µ41′n +
(

0 σ42 σ43

)



σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33







x′1 − µ11′n
x′2 − µ21′n
x′3 − µ31′n




= µ41′n + (σ42σ
21 + σ43σ

31)(x′1 − µ11′n)

+ (σ42σ
22 + σ43σ

32)(x′2 − µ21′n) + (σ42σ
23 + σ43σ

33)(x′3 − µ31′n)

= µ41′n + σ42

[
σ21(x′1 − µ11′n) + σ22(x′2 − µ21′n) + σ23(x′3 − µ31′n)

]

+ σ43

[
σ31(x′1 − µ11′n) + σ32(x′2 − µ21′n) + σ33(x′3 − µ31′n)

]
.

Moreover,

Σ−1
(3) =

(
σij

)
ij

=

(
(−1)i+j

|Mji
(3)|

|Σ(3)|

)

ij
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and we can now write

µ′4|1:3 = β401′n + σ42

(
−
|M12

(3)|
|Σ(3)|

x′1 +
|M22

(3)|
|Σ(3)|

x′2 −
|M32

(3)|
|Σ(3)|

x′3

)

+ σ43

( |M13
(3)|

|Σ(3)|
x′1 −

|M23
(3)|

|Σ(3)|
x′2 +

|M33
(3)|

|Σ(3)|
x′3

)

= β401′n + σ42

|Σ(2)|
|Σ(3)|

(
−
|M12

(3)|
|Σ(2)|

x′1 +
|M22

(3)|
|Σ(2)|

x′2 −
|M32

(3)|
|Σ(2)|

x′3

)

+ σ43

|Σ(2)|
|Σ(3)|

( |M13
(3)|

|Σ(2)|
x′1 −

|M23
(3)|

|Σ(2)|
x′2 + x′3

)

Hence,

µ4|1:3 = X̃3β4,

where the regression coefficients are

β4 = (β40, β42, β43)′,

β42 = σ42

|Σ(2)|
|Σ(3)|

, (4.2)

β43 = σ43

|Σ(2)|
|Σ(3)|

, (4.3)

β40 = µ4 − β42

(
−
|M12

(3)|
|Σ(2)|

µ1 +
|M22

(3)|
|Σ(2)|

µ2 −
|M32

(3)|
|Σ(2)|

µ3

)

− β43

( |M13
(3)|

|Σ(2)|
µ1 −

|M23
(3)|

|Σ(2)|
µ2 + µ3

)
(4.4)

and

X̃3 = (1n : x̃32 : x̃33) ,

x̃32 = −
|M12

(3)|
|Σ(2)|

x1 +
|M22

(3)|
|Σ(2)|

x2 −
|M32

(3)|
|Σ(2)|

x3,

x̃33 =
|M13

(3)|
|Σ(2)|

x1 −
|M23

(3)|
|Σ(2)|

x2 + x3.
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The conditional variance is given by (2.4) and equals

σ4|1:3 = σ44 − σ′41Σ
−1
(3)σ14 =

|Σ(4)|
|Σ(3)|

.

For estimating all parameters we start by estimating µ3 and Σ(3) using the
likelihood function for the model given in (4.1). The estimators are the usual
maximum likelihood estimators since the covariance matrix is an ordinary
non-structured covariance matrix. Furthermore, for estimating the rest of
the parameters µ4, σ42, σ43 and σ44, we use the estimators for the regression
coefficients (4.2)-(4.4) with µ̂3 and Σ̂(3) inserted, instead of µ3 and Σ(3). The
estimators are

β̂4 =




β̂40

β̂42

β̂43


 = (X̂′3X̂3)−1X̂′3x4,

µ̂4|1:3 = X̂3β̂4

and

σ̂4|1:3 =
1
n

(x4 − µ̂4|1:3)
′() =

1
n
x′4

(
In − X̂3(X̂′3X̂3)−1X̂′3

)
x4,

where

X̂3 = (1n : x̂32 : x̂33)

and

x̂32 = −
|M̂12

(3)|
|Σ̂(2)|

x1 +
|M̂22

(3)|
|Σ̂(2)|

x2 −
|M̂32

(3)|
|Σ̂(2)|

x3,

x̂33 =
|M̂13

(3)|
|Σ̂(2)|

x1 −
|M̂23

(3)|
|Σ̂(2)|

x2 + x3,

where M̂ji
(k−1) is as Mji

(k−1) but Σ(k−1) is replaced by Σ̂(k−1).
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Hence, the following estimators of the parameters are obtained

σ̂42 = β̂42

|Σ̂(3)|
|Σ̂(2)|

,

σ̂43 = β̂43

|Σ̂(3)|
|Σ̂(2)|

,

σ̂44 = σ̂4|1:3 + σ̂′41Σ̂
−1
(3)σ̂14,

µ̂4 = β̂40 + β̂42

(
−
|M̂12

(3)|
|Σ̂(2)|

µ̂1 +
|M̂22

(3)|
|Σ̂(2)|

µ̂2 −
|M̂32

(3)|
|Σ̂(2)|

µ̂3

)

− β̂43

( |M̂13
(3)|

|Σ̂(2)|
µ̂1 −

|M̂23
(3)|

|Σ̂(2)|
µ̂2 + µ̂3

)
.

In the next section we will propose estimators for arbitrary m and p. Un-
biasedness and consistency of above estimators follow from the more general
result given in that section.

4.2 Arbitrary order m and arbitrary dimension p

Using the same technique as in the previous section we can find estimators
for arbitrary band covariance matrices. Here follows the main result of this
report.

Proposition 4.1 Let X ∼ Np,n(µp1
′
n,Σ(m)

(p) , In), with arbitrary integer m and

Σ(m)
(p) defined in (2.1). The estimators of µp and Σ(m)

(p) are given by the following
two steps.

(i) Use the maximum likelihood estimator for µ1, . . . , µm+1 and Σ(m)
(m+1).

(ii) Calculate the following estimators for k = m + 2, . . . , p in increasing
order where for each k let i = k −m, . . . , k − 1:

µ̂k =
1
n
x′k1n, (4.5)

σ̂ki = β̂ki

|Σ̂(k−1)|
|Σ̂(k−2)|

, (4.6)

σ̂kk =
1
n
x′k

(
In − X̂k−1(X̂′k−1X̂k−1)−1X̂′k−1

)
xk + σ̂′k1Σ̂

−1
(k−1)σ̂1k,

(4.7)
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where

σ̂′k1 = (0, . . . , 0, σ̂k,k−m, . . . , σ̂k,k−1) ,

β̂k =
(
β̂k0, β̂k,k−m, . . . , β̂k,k−1

)′
= (X̂′k−1X̂k−1)−1X̂′k−1xk,

X̂k−1 = (1n : x̂k−1,k−m : · · · : x̂k−1,k−1)

and

x̂k−1,i =
k−1∑

j=1

(−1)i+j
|M̂ji

(k−1)|
|Σ̂(k−2)|

xj .

Motivation of Proposition 4.1. By conditioning we obtain the probability
density

f(X) = f(xp|X1:p−1) · · · f(xm+2|X1:m+1)f(X1:m+1).

Hence, for k = m + 2, . . . , p partition the covariance matrix Σ(k) as

Σ(k) =
(

Σ(k−1) σ1k

σ′k1 σkk

)
,

where

σ′k1 = (0, . . . , 0, σk,k−m, . . . , σk,k−1) .

We have

x′k|X1:k−1 ∼ N1,n(µ′k|1:k−1, σk|1:k−1, In),

where the conditional variance, given by (2.4), equals

σk|1:k−1 = σkk − σ′k1Σ
−1
(k−1)σ1k

and where the conditional expectation, given by (2.3), equals

µ′k|1:k−1 = µk1′n + σ′k1Σ
−1
(k−1)




x′1 − µ11′n
...

x′k−1 − µk−11′n




= βk01′n +
k−1∑

i=k−m

σki

k−1∑

j=1

σij
(k−1)x

′
j . (4.8)
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Here σij are the elements of the inverse matrix

Σ−1
(k−1) =

(
σij

(k−1)

)
i,j

=

(
(−1)i+j

|Mji
(k−1)|

|Σ(k−1)|

)

i,j

and the first regression coefficient equals

βk0 = µk −
k−1∑

i=k−m

σki

k−1∑

j=1

σij
(k−1)µj

= µk −
k−1∑

i=k−m

σki

k−1∑

j=1

(−1)i+j
|Mji

(k−1)|
|Σ(k−1)|

µj .

We may rewrite equation (4.8) as

µk|1:k−1 = βk01n +
k−1∑

i=k−m

σki

k−1∑

j=1

σij
(k−1)xj

= βk01n +
k−1∑

i=k−m

σki

|Σ(k−1)|
k−1∑

j=1

(−1)i+j |Mji
(k−1)|xj

= βk01n +
k−1∑

i=k−m

σki

|Σ(k−2)|
|Σ(k−1)|

k−1∑

j=1

(−1)i+j
|Mji

(k−1)|
|Σ(k−2)|

xj

= βk01n +
k−1∑

i=k−m

βki

k−1∑

j=1

(−1)i+j
|Mji

(k−1)|
|Σ(k−2)|

xj

= βk01n +
k−1∑

i=k−m

βkix̃k−1,i = X̃k−1βk,

where

βk = (βk0, βk,k−m, . . . , βk,k−1)
′ ,

X̃k−1 = (1n : x̃k−1,k−m : · · · : x̃k−1,k−1) ,

βki = σki

|Σ(k−2)|
|Σ(k−1)|

, for i = k −m, . . . , k − 1

and

x̃k−1,i =
k−1∑

j=1

(−1)i+j
|Mji

(k−1)|
|Σ(k−2)|

xj , for i = k −m, . . . , k − 1.
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The proposed estimators for the regression coefficients in the kth step are

β̂k =
(
β̂k0, β̂k,k−m, . . . , β̂k,k−1

)′
= (X̂′k−1X̂k−1)−1X̂′k−1xk,

where

X̂k−1 = (1n : x̂k−1,k−m : · · · : x̂k−1,k−1)

and

x̂k−1,i =
k−1∑

j=1

(−1)i+j
|M̂ji

(k−1)|
|Σ̂(k−2)|

xj .

Here the estimators from the previous steps (1, . . . , k−1) are inserted in x̂k−1,i

for all i = k−m, . . . , k−1. The estimator for the conditional variance is given
by

σ̂k|1:k−1 =
1
n

(xk − µ̂k|1:k−1)
′() =

1
n
x′k

(
I − X̂k−1(X̂′k−1X̂k−1)−1X̂′k−1

)
xk.

The estimators for the original parameters can be calculated as

σ̂ki = β̂ki

|Σ̂(k−1)|
|Σ̂(k−2)|

, for i = k −m, . . . , k − 1,

µ̂k = β̂k0 +
k−1∑

i=k−m

σ̂ki

k−1∑

j=1

(−1)i+j
|M̂ji

(k−1)|
|Σ̂(k−1)|

µ̂j

and

σ̂kk =
1
n
x′k

(
In − X̂k−1(X̂′k−1X̂k−1)−1X̂′k−1

)
xk + σ̂′k1Σ̂

−1
(k−1)σ̂1k.

To show that the estimator µ̂k is the mean of xk, i.e., µ̂k = 1
nx′k1n for all

k = 1, . . . , p, we use induction.
Base step: For k = 1, . . . ,m + 1, xk, i.e., µ̂k = 1

nx′k1n since the estimators
are the MLE for a non-structured covariance matrix.
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Inductive step: For some m + 1 < k − 1 assume that µ̂j = 1
nx′j1n, for all

j < k − 1. Then we have

µ̂k = β̂k0 +
k−1∑

i=k−m

σ̂ki

k−1∑

j=1

(−1)i+j
|M̂ji

(k−1)|
|Σ̂(k−1)|

µ̂j

= β̂k0 +
k−1∑

i=k−m

β̂ki

k−1∑

j=1

(−1)i+j
|M̂ji

(k−1)|
|Σ̂(k−2)|

1
n
x′j1n

= β̂k0 +
k−1∑

i=k−m

β̂ki
1
n
x̂′j1n =

1
n
1′nX̂k−1β̂k

=
1
n
1′nX̂k−1(X̂′k−1X̂k−1)−1X̂′k−1xk.

But X̂k−1(X̂′k−1X̂k−1)−1X̂′k−1 is the projection on a space which contains 1n

and therefore

µ̂k =
1
n
1′nX̂k−1(X̂′k−1X̂k−1)−1X̂′k−1xk =

1
n
1′nxk.

Hence, by induction all the estimators for the expectations are means, i.e.,

µ̂k =
1
n
x′k1n.

¤
Since the estimators in Proposition 4.1 are ad hoc estimators it is important to
establish some properties which are motivating them. We have the following
theorem.

Theorem 4.1 The estimator µ̂p = (µ̂1, . . . , µ̂p)′ given in Proposition 4.1 is

unbiased and consistent. Furthermore, the estimator Σ̂(m)
(p) = (σ̂ij) is consis-

tent.

Proof First, the estimators of the expectations are unbiased and consis-
tence, since these are means based on independent and identically distributed
observations. The complete proof is given by induction.

Base step: The estimator Σ̂(m+1) is consistent since it is the maximum
likelihood estimator for a non-structured covariance matrix.

Inductive step: Assume that Σ̂(k−1) is a consistent estimator of Σ(k−1).
The estimators for the regression coefficients in the kth step are

β̂k = (X̂′k−1X̂k−1)−1X̂′k−1xk =
(

1
n

X̂′k−1X̂k−1

)−1 (
1
n

X̂′k−1xk

)
, (4.9)
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where the first part in (4.9) converges in probability as follows. We have

1
n

X̂′k−1X̂k−1

=




1 1
n1′nx̂k−1,k−m · · · 1

n1′nx̂k−1,k−1
1
n x̂′k−1,k−m1n

1
n x̂′k−1,k−mx̂k−1,k−m · · · 1

n x̂′k−1,k−mx̂k−1,k−1

...
...

. . .
...

1
n x̂′k−1,k−11n

1
n x̂′k−1,k−1x̂k−1,k−m · · · 1

n x̂′k−1,k−1x̂k−1,k−1


 .

For i, l = 1, .., m

1
n
x̂′k−1,k−ix̂k−1,k−l = |Σ̂(k−2)|−2

k−1∑

j=1,q=1

(−1)j−i+q−l|M̂j,k−i
(k−1)||M̂q,k−l

(k−1)|
1
n
x′jxq

p→ |Σ(k−2)|−2
k−1∑

j=1,q=1

(−1)j−i+q−l|Mj,k−i
(k−1)||Mq,k−l

(k−1)|(σjq + µjµq) ≡ wil

and

1
n
x̂′k−1,k−i1n = |Σ̂(k−2)|−1

k−1∑

j=1

(−1)k−i+j |M̂j,k−i
(k−1)|

1
n
x′j1n

p→ |Σ(k−2)|−1
k−1∑

j=1

(−1)k−i+j |Mj,k−i
(k−1)|µj ≡ wi

since the estimators are assumed to be consistent for the (k − 1)th step, by
the weak law of large numbers and by Cramér-Slutsky’s theorem. Hence,

1
n

X̂′k−1X̂k−1
p→ W, as n →∞,

where

W =




1 wm · · · w1

wm wmm · · · wm1
...

...
. . .

...
w1 w1m · · · w11


 .

The second part in (4.9) converges also in probability. We have

1
n

X̂′k−1xk =




1
n1′nxk

1
n x̂′k−1,k−mxk

...
1
n x̂′k−1,k−1xk


 ,
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where

1
n
x̂′k−1,k−ixk = |Σ̂(k−2)|−1

k−1∑

j=1

(−1)k−i+j |M̂j,k−i
(k−1)|

1
n
x′jxk

p→ |Σ(k−2)|−1
k−1∑

j=1

(−1)k−i+j |Mj,k−i
(k−1)|(σjk + µjµk)

= |Σ(k−2)|−1




k−1∑

j=k−m

(−1)k−i+j |Mj,k−i
(k−1)|σjk

+
k−1∑

j=1

(−1)k−i+j |Mj,k−i
(k−1)|µjµk


 ≡ vi.

Hence,

1
n

X̂′k−1xk
p→ V, as n →∞,

where

V =




µk

vm
...
v1


 .

Now we show that β̂k
p→ βk, as n →∞, where

βk = (βk0, βk,k−m, ..., βk,k−1)′

=




µk − |Σ(k−1)|−1
∑k−1

i=k−m σki
∑k−1

j=1(−1)i+j |Mji
(k−1)|µj

|Σ(k−2)||Σ(k−1)|−1σk,k−m
...

|Σ(k−2)||Σ(k−1)|−1σk,k−1


 ,

by showing that Wβk = V. Hence, we must show that

(1, wm, ..., w1)βk = µk (4.10)

and

(wr, wrm, ..., wr1)βk = wrβk0 +
m∑

i=1

wriβk,k−i = vr (4.11)
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for r = 1, ...,m.
First, consider equation (4.10)

(1, wm, ..., w1)βk = βk0 +
m∑

i=1

wiβk,k−i

= µk − |Σ(k−1)|−1
k−1∑

i=k−m

σki

k−1∑

j=1

(−1)i+j |Mji
(k−1)|µj

+
m∑

i=1

|Σ(k−1)|−1σk,k−i

k−1∑

j=1

(−1)k−i+j |Mj,k−i
(k−1)|µj = µk.

Next, let us show equation (4.11) for r = m. The other cases are verified in
the same way.

wmβk0 +
m∑

i=1

wmiβk,k−i =

=


|Σ(k−2)|−1

k−1∑

j=1

(−1)k−m+j |Mj,k−m
(k−1) |µj




×

µk − |Σ(k−1)|−1

k−1∑

i=k−m

σki

k−1∑

j=1

(−1)i+j |Mji
(k−1)|µj




+
m∑

i=1

(
|Σ(k−2)|−1|Σ(k−1)|−1σk,k−i

×
k−1∑

j=1,q=1

(−1)j−m+q−i|Mj,k−m
(k−1) ||Mq,k−i

(k−1)|(σjq + µjµq)

)

= |Σ(k−2)|−1

{
k−1∑

j=1

(−1)k−m+j |Mj,k−m
(k−1) |µjµk

+ Σ(k−1)|−1

[
m∑

i=1

σk,k−i

k−1∑

j=1,q=1

(−1)j−m+q−i|Mj,k−m
(k−1) ||Mq,k−i

(k−1)|(σjq + µjµq)

−



k−1∑

j=1

(−1)k−m+j |Mj,k−m
(k−1) |µj







k−1∑

i=k−m

σki

k−1∑

j=1

(−1)i+j |Mji
(k−1)|µj




]}
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= |Σ(k−2)|−1

{
k−1∑

j=1

(−1)k−m+j |Mj,k−m
(k−1) |µjµk

+ |Σ(k−1)|−1




m∑

i=1

σk,k−i

k−1∑

j=1,q=1

(−1)j−m+q−i|Mj,k−m
(k−1) ||Mq,k−i

(k−1)|(σjq + µjµq)

−
m∑

i=1

σk,k−i

k−1∑

j=1,q=1

(−1)j−m+q−i|Mj,k−i
(k−1)||Mq,k−m

(k−1) |µjµq




}

= |Σ(k−2)|−1

{
k−1∑

j=1

(−1)k−m+j |Mj,k−m
(k−1) |µjµk

+ |Σ(k−1)|−1
m∑

i=1

σk,k−i

k−1∑

j=1

(−1)j+k−i|Mj,k−m
(k−1) |

k−1∑

q=1

(−1)k−i+q|Mq,k−i
(k−1)|σjq

︸ ︷︷ ︸
=0, when k − i 6= j

}

= |Σ(k−2)|−1

{
k−1∑

j=1

(−1)k−m+j |Mj,k−m
(k−1) |µjµk

+
m∑

i=1

(−1)m+iσk,k−i|Σ(k−1)|−1|Mk−i,k−m
(k−1) |

k−1∑

q=1

(−1)k−i+q|Mq,k−i
(k−1)|σk−i,q

︸ ︷︷ ︸
=|Σ(k−1)|

}

= |Σ(k−2)|−1




m∑

j=1

(−1)m+jσk,k−j |Mk−j,k−m
(k−1) |

+
k−1∑

j=1

(−1)k−m+j |Mj,k−m
(k−1) |µjµk


 = vm.

We have shown that β̂k
p→ βk, as n → ∞ and we are now able to show

consistency for the estimators. By Cramér-Slutsky’s theorem and since the
estimators are assumed to be consistent for the (k − 1)th step, we have

σ̂ki = β̂ki

|Σ̂(k−1)|
|Σ̂(k−2)|

p→ βki

|Σ(k−1)|
|Σ(k−2)|

= σki, for i = k −m, . . . , k − 1
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and

σ̂kk =
1
n
x′k

(
In − X̂k−1(X̂′k−1X̂k−1)−1X̂′k−1

)
xk + σ̂′k1Σ̂

−1
(k−1)σ̂1k

p→ σkk + µ2
k −V′β + σ′k1Σ

−1
(k−1)σ1k.

But

V′β = µkβk0 +
m∑

i=1

viβk,k−i

= µk


µk − |Σ(k−1)|−1

k−1∑

i=k−m

σki

k−1∑

j=1

(−1)i+j |Mji
(k−1)|µj




+
m∑

i=1

|Σ(k−1)|−1σk,k−i




k−1∑

j=k−m

(−1)k−i+j |Mj,k−i
(k−1)|σjk

+
k−1∑

j=1

(−1)k−i+j |Mj,k−i
(k−1)|µjµk




= µ2
k + |Σ(k−1)|−1

{
−

m∑

i=1

σk,k−i

k−1∑

j=1

(−1)k−i+j |Mj,k−i
(k−1)|µjµk

+
m∑

i=1

σk,k−i




m∑

j=1

(−1)i+j |Mk−j,k−i
(k−1) |σk−j,k +

k−1∑

j=1

(−1)k−i+j |Mj,k−i
(k−1)|µjµk




}

= µ2
k +

m∑

i=1

m∑

j=1

σk,k−i(−1)i+j
|Mk−j,k−i

(k−1) |
|Σ(k−1)|

σk−j,k = µ2
k + σ′k1Σ

−1
(k−1)σ1k

and hence

σ̂kk
p→ σkk.

By induction, the estimator Σ̂(m)
(pp) = (σ̂ij) is consistent. ¤

5 Simulation

The examples presented here illustrate the results obtained in the previous
sections. We will compare the explicit estimators derived in our study and the
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maximum likelihood estimators for the expectation and covariance matrix. It
should be noted however that one cannot use ordinary MLE (see, for example,
Muirhead (1982) and Srivastava (2002)) for estimation of the covariance matrix
due to the fact that covariance matrix is structured (certain covariances are
zero). Here the maximum likelihood estimators for the covariance matrix are
obtained by maximizing the likelihood function.

In each simulation a sample with n = 100 observations was randomly gen-
erated from p-variate normal distributions Np,n using Release 14 of MATLAB
Version 7.0.1 (The Mathworks Inc., Natick, MA, USA). Next, both the ex-
plicit and ML estimators were calculated in each simulation for the same set
of observations. Simulations were repeated 100 (500) times, and the average
values of estimators were calculated.

Four cases were studied, first three of them correspond to m = 1, and the
forth one describes the case with m = 2. The results of the simulation study
are presented in subsections below.

5.1 p = 3,m = 1

Here:

µ =




µ1

µ2

µ3


 , Σ =




σ11 σ12 0
σ21 σ22 σ23

0 σ32 σ33


 .

We start with the following case:

µ =




1
2
3


 , Σ =




2 1 0
1 3 2
0 2 4


 .

After 100 simulations explicit estimators (EE ) versus MLE s are given by:

µ̂EE =




0.9939
1.9956
3.0203


 , Σ̂EE =




1.9722 0.9999 0
0.9999 3.0371 1.9795

0 1.9795 3.9490


 ,

and

µ̂MLE =




0.9939
1.9956
3.0203


 , Σ̂MLE =




1.8942 1.0415 0
1.0415 7.0177 1.8341

0 1.8341 3.8635


 .
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After 500 simulations they are:

µ̂EE =




0.9896
1.9996
2.9983


 , Σ̂EE =




1.9710 0.9996 0
0.9996 2.9834 1.9804

0 1.9804 3.9884


 ,

and

µ̂MLE =




0.9896
1.9996
2.9983


 , Σ̂MLE =




2.1213 1.0821 0
1.0821 6.5308 2.3738

0 2.3738 4.2793


 .

5.2 p = 4,m = 1

Here:

µ =




µ1

µ2

µ3

µ4


 , Σ =




σ11 σ12 0 0
σ21 σ22 σ23 0
0 σ32 σ33 σ34

0 0 σ43 σ44


 .

We start with the following case:

µ =




1
2
3
4


 , Σ =




2 1 0 0
1 3 2 0
0 2 4 1
0 0 1 5


 .

After 100 simulations explicit estimators (EE ) versus MLE s are given by:

µ̂EE =




0.9841
1.9833
2.9822
4.0106


 , Σ̂EE =




2.0556 1.0065 0 0
1.0065 2.9586 2.0197 0

0 2.0197 4.0224 1.0174
0 0 1.0174 4.9714


 ,

and

µ̂MLE =




0.9841
1.9833
2.9822
4.0106


 , Σ̂MLE =




1.9541 1.0109 0 0
1.0109 3.3732 2.2100 0

0 2.2100 7.2378 0.9673
0 0 0.9673 5.3763


 .
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After 500 simulations they are:

µ̂EE =




0.9910
1.9886
2.9869
3.9884


 , Σ̂EE =




1.9779 0.9872 0 0
0.9872 2.9513 1.9405 0

0 1.9405 3.9067 0.9518
0 0 0.9518 4.9052


 ,

and

µ̂MLE =




0.9910
1.9886
2.9869
3.9884


 , Σ̂MLE =




2.0789 1.1632 0 0
1.1632 5.0500 2.4115 0

0 2.4115 6.1002 1.1951
0 0 1.1951 4.9881


 .

5.3 p = 5,m = 1

Here:

µ =




µ1

µ2

µ3

µ4

µ5




, Σ =




σ11 σ12 0 0 0
σ21 σ22 σ23 0 0
0 σ32 σ33 σ34 0
0 0 σ43 σ44 σ45

0 0 0 σ54 σ55




.

We start with the following case:

µ =




1
2
3
4
5




, Σ =




2 1 0 0 0
1 3 2 0 0
0 2 4 1 0
0 0 1 5 2
0 0 0 2 6




.

After 100 simulations explicit estimators (EE ) versus MLE s are given by:

µ̂EE =




0.9892
1.9871
2.9989
4.0428
5.0148




, Σ̂EE =




1.9833 0.9840 0 0 0
0.9840 2.9564 2.0027 0 0

0 2.0027 3.9817 0.9962 0
0 0 0.9962 4.9571 1.9668
0 0 0 1.9668 6.0371




,

and

µ̂MLE =




0.9892
1.9871
2.9989
4.0428
5.0148




, Σ̂MLE =




2.0818 0.9666 0 0 0
0.9666 3.8183 2.5715 0 0

0 2.5715 6.4569 1.5107 0
0 0 1.5107 7.4205 1.7723
0 0 0 1.7723 5.9781




.
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After 500 simulations they are:

µ̂EE =




1.0066
2.0068
2.9995
4.0036
4.9993




, Σ̂EE =




1.9648 0.9925 0 0 0
0.9925 2.9871 1.9655 0 0

0 1.9655 3.9889 0.9833 0
0 0 0.9833 4.9279 1.9691
0 0 0 1.9691 5.9461




,

and

µ̂MLE =




1.0066
2.0068
2.9995
4.0036
4.9993




, Σ̂MLE =




2.1918 1.0661 0 0 0
1.0661 7.7813 2.7181 0 0

0 2.7181 6.3799 1.4754 0
0 0 1.4754 10.3522 2.3042
0 0 0 2.3042 6.2207




.

5.4 p = 4,m = 2

Here:

µ =




µ1

µ2

µ3

µ4


 , Σ =




σ11 σ12 σ13 0
σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

0 σ42 σ43 σ44


 .

We start with the following case:

µ =




1
2
3
4


 , Σ =




2 1 1 0
1 3 2 1
1 2 4 1
0 1 1 5


 .

After 100 simulations explicit estimators (EE ) versus MLE s are given by:

µ̂EE =




1.0255
2.0238
3.0220
4.0134


 , Σ̂EE =




2.0221 1.0143 1.0251 0
1.0143 3.0350 2.0227 1.0755
1.0251 2.0227 4.0505 1.0827

0 1.0755 1.0827 5.0561


 ,

and

µ̂MLE =




1.0255
2.0238
3.0220
4.0134


 , Σ̂MLE =




2.1071 0.9380 0.8142 0
0.9380 4.6819 2.6835 1.6190
0.8142 2.6835 4.9478 0.8905

0 1.6190 0.8905 6.3692


 .
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After 500 simulations they are:

µ̂EE =




1.0013
2.0015
3.0005
4.0073


 , Σ̂EE =




1.9875 0.9996 0.9923 0
0.9996 3.0049 1.9953 0.9741
0.9923 1.9953 4.0031 1.0021

0 0.9741 1.0021 4.9911


 ,

and

µ̂MLE =




1.0013
2.0015
3.0005
4.0073


 , Σ̂MLE =




2.2747 1.1883 1.3723 0
1.1883 8.0570 5.4203 1.3056
1.3723 5.4203 8.5184 0.7398

0 1.3056 0.7398 5.8338


 .

5.5 Discussion

Numerical examples presented above have shown that our explicit estimators
for the covariance matrix describe the covariance structure better than the
MLEs. Even the averages of 100 simulations resemble the initial covariance
matrix. However, in general, results after 500 observations are a bit better.

6 Conclusion

In this report, we have proposed explicit estimators for the expectations and
for a banded covariance matrix in a multivariate normal distribution. Since
the covariance matrix is banded the covariances outside a diagonally bordered
band are equal to zero. In many applications, e.g., in image analysis, compu-
tations are heavy and explicit expressions of estimators are more useful than
iterative algorithms obtained for MLEs or restricted MLEs. Furthermore, our
proposed explicit estimators are shown to be consistent and through a small
simulation study they seem to be at least as good as the maximum likelihood
estimators.
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