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Löwner partial ordering

Yongge Tian 1

School of Economics, Shanghai University of Finance and Economics,
Shanghai, China

Dietrich von Rosen
Centre of Biostochastics, Swedish University of Agricultural Sciences

P.O. Box 7032, SE-750 07 Uppsala, Sweden

Abstract

A pair of square matrices A and B of the same size are said to satisfy
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1 Introduction

Throughout this paper, C denotes the field of complex numbers; the symbols
A∗, r(A) and R(A) stand for the conjugate transpose, the rank and the range
(column space) of a matrix A ∈ Cm×n, respectively; [A, B ] denotes a row
block matrix consisting of A and B. For a pair of square matrices of the
same size, the expression A ≥ B(A > B) means that A− B is a nonnegative
definite (positive definite) matrix. In such a case, the pair of matrices are said
to satisfy an inequality in Löwner partial ordering. A nonnegative definite
matrix A of order m is said to a contraction if all its eigenvalues are less then
or equal to 1, i.e., 0 ≤ A ≤ Im, to be a strict contraction if all its eigenvalues
are less then 1, i.e., 0 ≤ A < Im.

The Moore-Penrose inverse A† of an m× n matrix A is defined to be the
unique solution X to the four Penrose equations

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA.

For convenience, the symbols EA and FA stand for the two orthogonal projec-
tors EA = Im −AA† and FA = In −A†A.

The Löwner partial ordering is one of the most basic concepts in matrix
theory. This concept is widely used to characterize relation between Hermitian
(symmetric) matrices. Numerous results on Löwner partial ordering and its
applications can be found in the literature. Motivated by the work on solving
inequalities in elementary mathematics, it is reasonable to propose a general
research topic on solving matrix inequalities in Löwner partial ordering. For
instance, suppose f(X) is a square matrix function, where X is a variable
matrix, and suppose M is a Hermitian matrix. Then the problem is to find
Xs that satisfy the following inequalities

f(X) ≥ M or f(X) ≤ M.

In fact, finding solutions with definiteness to matrix equations can be re-
garded a special cases of solving matrix equalities in Löwner partial ordering.
As an introductory work, we study in this paper the following four simple
matrix inequalities

(I) AX + (AX)∗ ≥ B for B = B∗.

(II) AXA∗ ≥ B for B = B∗.

(III) AXB ≥ C for C = C∗.

(IV) AXB + (AXB)∗ ≥ C for C = C∗.
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Speaking clearly, we shall consider the following problems on the four inequal-
ities:

(a) Necessary and sufficient conditions for the inequalities to be consistent.

(b) General expressions of X that satisfies the inequalities when the inequal-
ities are consistent.

(c) General solutions to the inequalities when B and C on the right-hands
are nonnegative definite, negative definite, and null.

(d) Properties of solutions to the inequalities.

Most of the results obtained in the paper are new and valuable for demon-
strating relations of matrices in Löwner partial ordering.

2 Preliminaries

In this section, we give some known results on Löwner partial ordering, general
solutions to matrix equations, and rank formulas for partitioned matrices and
linear matrix pencils. We shall use these results in Sections 3–6 for solving
the inequalities in Section 1.

Lemma 2.1 If both A ≥ B ≥ 0, then R(B) ⊆ R(A).

Lemma 2.2 Let A ∈ Cm×m and B ∈ Cm×n.

(a) If A ≥ 0, then A† ≥ 0 and B∗AB ≥ 0.

(b) If Im −A ≥ 0, then Im −BB†ABB† ≥ 0.

(c) If Im −A > 0, then Im −BB†ABB† > 0.

Lemma 2.3 Let 0 ≤ A ∈ Cm×m, 0 ≤ C ∈ Cp×p and B ∈ Cm×p. Then,

(a)
[

A B
B∗ C

]
≥ 0 ⇔ R(B) ⊆ R(A) and C ≥ B∗A†B ⇔ R(B∗) ⊆ R(C)

and A ≥ BC†B∗.

(b)
[

A B
B∗ C

]
> 0 ⇔ r(A) = m and C > B∗A−1B ⇔ r(C) = p and A >

BC−1B∗.
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Lemma 2.4 (Tian and Liu, 2006) Let A ∈ Cm×n and B = B∗ ∈ Cm×m

be given. Then,

(a) The matrix equation
AX + (AX)∗ = B (2.1)

has a solution if and only if EABEA = 0. In this case, the general
solution to the equation is

X =
1
2
A†B( 2Im −AA† ) + V A∗ + FAW, (2.2)

where both V = −V ∗ ∈ Cn×n and W ∈ Cn×m are arbitrary.

(b) The matrix equation
AX + (AX)∗ = BB∗ (2.3)

has a solution if and only if R(B) ⊆ R(A). In this case, the general
solution to the equation is

X =
1
2
A†BB∗ + V A∗ + FAW, (2.4)

where both V = −V ∗ ∈ Cn×n and W ∈ Cn×m are arbitrary.

Lemma 2.5 (Khatri and Mitra, 1976) Let A,B ∈ Cm×n be given. Then,

(a) The matrix equation
AX = B (2.5)

has a Hermitian solution if and only if R(B) ⊆ R(A) and AB∗ = BA∗.
In this case, the general Hermitian solution to (2.5) is

X = A†B + (A†B)∗ −A†BA†A + FAWFA, (2.6)

where W = W ∗ ∈ Cn×n is arbitrary.

(b) The matrix equation
AXX∗ = B (2.7)

has a solution if and only if R(B) ⊆ R(A), BA∗ ≥ 0, and r(BA∗) =
r(B). In this case, the general solution to (2.7) is

XX∗ = B∗(BA∗)†B + FAWW ∗FA, (2.8)

where W ∈ Cn×n is arbitrary.
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Lemma 2.6 (Baksalary 1984, Gross 2000, Khatri and Mitra 1976)
Let A ∈ Cm×n and B ∈ Cm×m be given. Then,

(a) The matrix equation
AXA∗ = B (2.9)

has a solution if and only if R(B) ⊆ R(A) and R(B∗) ⊆ R(A), or
equivalently EAB = BEA = 0. In this case, the general solution to (2.9)
is

X = A†B(A†)∗ + W −A†AWA†A, (2.10)

where W ∈ Cn×n is arbitrary.

(b) The matrix equation
AXX∗A∗ = B ≥ 0 (2.11)

has a solution if and only if R(B) ⊆ R(A). In this case, the general
solution to (2.11) is

XX∗ = (A†B1/2 + FAW )( A†B1/2 + FAW )∗, (2.12)

where W ∈ Cn×n is arbitrary.

Lemma 2.7 (Penrose, 1955) Let A ∈ Cm×n, B ∈ Cp×q and C ∈ Cm×q be
given. Then the matrix equation

AXB = C (2.13)

has a solution if and only if R(C) ⊆ R(A) and R(C∗) ⊆ R(B∗), or equiv-
alently, EAC = 0 and CFB = 0. In this case, the general solution to (2.13)
is

X = A†CB† + W −A†AWBB†, (2.14)

where W ∈ Cn×p is arbitrary.

Lemma 2.8 (Marsaglia and Styan, 1974) Let A ∈ Cm×n, B ∈ Cm×k,
C ∈ Cl×n and D ∈ Cl×k. Then

r[ A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (2.15)

r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC), (2.16)

r

[
A B
C 0

]
= r(B) + r(C) + r(EBAFC), (2.17)

r

[
A B
C D

]
= r(A) + r

[
0 EAB

CFA D − CA†B

]
. (2.18)
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Lemma 2.9 (Tian 2002, Tian and Cheng 2003) Let A ∈ Cm×n, B ∈
Cm×k, and C ∈ Cl×n be given. Then the maximal and minimal ranks of
A−BXC are given by

max
X∈Ck×l

r( A−BXC ) = min
{

r[A, B ], r

[
A
C

]}
, (2.19)

min
X∈Ck×l

r( A−BXC ) = r[ A, B ] + r

[
A
C

]
− r

[
A B
C 0

]
. (2.20)

Lemma 2.10 Let 0 ≤ A ∈ Cm×m and B ∈ Cm×k be given. Then

max
0≤X∈Ck×k

r( A−BXB∗ ) = r[A, B ], (2.21)

min
0≤X∈Ck×k

r( A−BXB∗ ) = r[A, B ]− r(B), (2.22)

max
0≤X∈Ck×k

r( A + BXB∗ ) = r[A, B ], (2.23)

min
0≤X∈Ck×k

r( A + BXB∗ ) = r(A). (2.24)

Proof. Let

M =
[

A B
B∗ 0

]
, S =

[
0
In

]
, S1 = S −MM †S. (2.25)

It was shown in Tian and Liu (2006) that A − BXB∗ satisfies the following
rank equality

r( A−BXB∗ ) = 2r[ A, B ]− r(M) + r[FS1( X + S∗M †S )FS1 ], (2.26)

where the Moore-Penrose inverse of M in (2.26) can be written as

M † =
[

(EBAEB)† (B†)∗ − (EBAEB)†A(B†)∗

B† −B†A(EBAEB)† −B†A(B†)∗ + B†A(EBAEB)†A(B†)∗

]
,

see Hall (1975). Thus the rank of A−BXB∗ can be written as

r( A−BXB∗ ) = 2r[ A, B ]− r(M)
+r{FS1 [ X −B†A(B†)∗ + B†A(EBAEB)†A(B†)∗ ]FS1 }. (2.27)

It is easy to verify by Lemma 2.2(a) that under the condition A ≥ 0, both
EBAEB ≥ 0 and (EBAEB)† ≥ 0 hold. In this case, we can also derive from
Lemmas 2.2(a) and 2.3(a) that
[

(EBAEB)† (EBAEB)†A
A(EBAEB)† A

]
≥ 0 ⇒ A−A(EBAEB)†A ≥ 0

⇒ B†A(B†)∗ −B†A(EBAEB)†A(B†)∗ ≥ 0,
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that is B†A(B†)∗ − B†A(EBAEB)†A(B†)∗ in (2.27) is nonnegative definite.
Notice that there always exists a 0 ≤ U ∈ Cn×n such that

r(FS1UFS1) = r(FS1), (2.28)

say, U = FS1 ≥ 0. In this case, let

X = B†A(B†)∗ −B†A(EBAEB)†A(B†)∗ + U. (2.29)

Then we see from (2.29) that

X ≥ 0 and r{FS1 [ X −B†A(B†)∗ + B†A(EBAEB)†A(B†)∗ ]FS1 } = r(FS1).
(2.30)

and from (2.18), (2.27) and (2.30) that

r( A−BXB∗ ) = 2r[ A, B ]− r(M) + r(FS1)

= 2r[ A, B ]− r(M) + n− r(S −MM †S)
= 2r[ A, B ] + n− r[ M, S ]

= 2r[ A, B ] + n− r

[
A B 0
B∗ 0 In

]

= r[ A, B ],

establishing (2.21). Similarly, we can derive from (2.27) that the general ex-
pression of X ≥ 0 satisfying (2.22) can be written as

X = B†A(B†)∗ −B†A(EBAEB)†A(B†)∗ + S∗1V V ∗S1,

where V ∈ Cn×(m+n) is arbitrary. Eqs. (2.23) and (2.24) are obvious. 2

3 General solutions to AX + (AX)∗ ≥ B

For a pair of matrices A and B, there may or may not exist solutions to

AX + (AX)∗ ≥ B. (3.1)

For example,
AX + (AX)∗ ≥ I3 has no solution for any A with r(A) = 1;
AX + (AX)∗ ≥ −I3 always has a solution, say, X = 0;
AX + (AX)∗ = −I3 has no solution for any A with r(A) = 1.

These facts indicate that the consistency of the inequality in (3.1) and
the consistency of the matrix equation AX + (AX)∗ = B are not necessarily
equivalent, in particular, the consistency of (3.1) depends on the definiteness
of B in (3.1).

6



Theorem 3.1 Let A ∈ Cm×n and B = B∗ ∈ Cm×m be given. Then,

(a) There exists an X ∈ Cn×m that satisfies the following matrix inequality

AX + (AX)∗ ≥ B (3.2)

if and only if
EABEA ≤ 0 (3.3)

holds. In this case, the general solution to (3.2) can be written as

X =
1
2
A†[ B+(M+AU )(M+AU )∗ ]( 2Im−AA† )+V A∗+FAW, (3.4)

where M = (−EABEA)1/2, and U, W ∈ Cn×m and V = −V ∗ ∈ Cn×n

are arbitrary.

(b) There exists an X ∈ Cn×m that satisfies the following matrix inequality

AX + (AX)∗ > B (3.5)

if and only if

EABEA ≤ 0 and r(EABEA) = m− r(A) (3.6)

hold. In this case, the general solution to (3.5) can be written as (3.4),
in which U is any matrix such that r[ (−EABEA)1/2 + AU ] = m, and
W ∈ Cn×m and V = −V ∗ ∈ Cn×n are arbitrary.

(c) There exists an X ∈ Cn×m that satisfies the following matrix inequality

AX + (AX)∗ ≤ B (3.7)

if and only if
EABEA ≥ 0 (3.8)

holds. In this case, the general solution to (3.7) can be written as

X =
1
2
A†[ B−(M+AU )(M+AU )∗ ]( 2Im−AA† )+V A∗+FAW, (3.9)

where M = (EABEA)1/2, and U, W ∈ Cn×m and V = −V ∗ ∈ Cn×n are
arbitrary.
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(d) There exists an X ∈ Cn×m that satisfies the following matrix inequality

AX + (AX)∗ < B (3.10)

if and only if

EABEA ≥ 0 and r(EABEA) = m− r(A) (3.11)

hold. In this case, the general solution to (3.10) can be written as (3.9),
in which U is any matrix such that r[ (EABEA)1/2 + AU ] = m, and
W ∈ Cn×m and V = −V ∗ ∈ Cn×n are arbitrary.

Proof. Inequality (3.2) is equivalent to

AX + (AX)∗ = B + Y Y ∗ (3.12)

for some Y . From Lemma 2.4(a), the equation is solvable for X if and only if
Y Y ∗ satisfies

EAY Y ∗EA = −EABEA. (3.13)

From Lemma 2.6(b), the equation is solvable for Y if and only if (3.3) holds.
In this case, the general solution to (3.13) can be written as

Y Y ∗ = [ (−EABEA)1/2 + AU ][ (−EABEA)1/2 + AU ]∗,

where U is an arbitrary matrix. Substituting the Y Y ∗ into (3.12) gives

AX + (AX)∗ = B + [ (−EABEA)1/2 + AU ][ (−EABEA)1/2 + AU ]∗. (3.14)

From Lemma 2.4(a), the general solution to this equation can be written as

X =
1
2
A†( B + [ (−EABEA)1/2 + AU ][ (−EABEA)1/2 + AU ]∗ )( 2Im −AA† )

+V A∗ + FAW,

where U, W ∈ Cn×m, and V = −V ∗ ∈ Cn×n are arbitrary, as required for
(3.4). It can be seen from (3.14) that (3.5) holds if and only if

[ (−EABEA)1/2 + AU ][ (−EABEA)1/2 + AU ]∗ > 0,

that is, r[ (−EABEA)1/2 + AU ] = m. Applying (2.16) and (2.21) gives

max
U

r[ (−EABEA)1/2 + AU ] = r[ A, (−EABEA)1/2 ]

= r[ A, EABEA ] = r(A) + r(EABEA).

Thus (b) follows. Replacing X with −X and B with −B in (a) and (b) leads
to (c) and (d). 2

Some consequences of Theorem 3.1 are given below.
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Theorem 3.2 Let A ∈ Cm×n and B ∈ Cm×k be given. Then,

(a) The general solution X ∈ Cn×m to the following matrix inequality

AX + (AX)∗ ≥ −BB∗ (3.15)

can be written as

X =
1
2
A†( AUB∗ + BU∗A∗ + AUU∗A∗ )( 2Im −AA† ) + V A∗ + FAW,

(3.16)
where U ∈ Cn×k, V = −V ∗ ∈ Cn×n and W ∈ Cn×m are arbitrary.

(b) There exists an X ∈ Cn×m that satisfies the following matrix inequality

AX + (AX)∗ > −BB∗ (3.17)

if and only if r[ A, B ] = m holds. In this case, the general solution
to (3.17) can be written as (3.16), in which U is any matrix such that
r( B + AU ) = m, and V = −V ∗ ∈ Cn×n and W ∈ Cn×m are arbitrary.

(c) The general solution to

AX + (AX)∗ ≤ BB∗. (3.18)

can be written as

X = −1
2
A†(AUB∗ + BU∗A∗ + AUU∗A∗ )( 2Im −AA† ) + V A∗ + FAW,

(3.19)
where U ∈ Cn×k, V = −V ∗ ∈ Cn×n and W ∈ Cn×m are arbitrary.

(d) There exists an X ∈ Cn×m that satisfies the following matrix inequality

AX + (AX)∗ < BB∗ (3.20)

if and only if r[ A, B ] = m holds. In this case, the general solution
to (3.20) can be written as (3.19), in which U is any matrix such that
r( B + AU ) = m, and V = −V ∗ ∈ Cn×n and W ∈ Cn×m are arbitrary.

Corollary 3.3 Let A ∈ Cm×n and B ∈ Cm×k be given. Then,

(a) There exists an X ∈ Cn×m that satisfies the following matrix inequality

AX + (AX)∗ ≥ BB∗ (3.21)
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if and only if R(B) ⊆ R(A) holds. In this case, the general solution to
(3.21) can be written as

X =
1
2
A†BB∗ + UU∗A∗ + V A∗ + FAW, (3.22)

where U ∈ Cn×n, V = −V ∗ ∈ Cn×n and W ∈ Cn×m are arbitrary.

(b) There exists an X that satisfies the following matrix inequality

AX + (AX)∗ > BB∗ (3.23)

if and only if both R(B) ⊆ R(A) and r(A) = m hold. In this case, the
general solution to (3.23) can be written as (3.22), in which U is any
matrix with r(AU) = m, and V = −V ∗ ∈ Cn×n and W ∈ Cn×m are
arbitrary.

(c) There exists an X that satisfies the following matrix inequality

AX + (AX)∗ + BB∗ ≤ 0 (3.24)

if and only if R(B) ⊆ R(A) holds. In this case, the general solution to
(3.24) can be written as

X = −1
2
A†BB∗ − UU∗A∗ + V A∗ + FAW, (3.25)

where U ∈ Cn×n, V = −V ∗ ∈ Cn×n and W ∈ Cn×m are arbitrary.

(d) There exists an X that satisfies the following matrix inequality

AX + (AX)∗ + BB∗ < 0 (3.26)

if and only if both R(B) ⊆ R(A) and r(A) = m hold. In this case, the
general solution to (3.26) can be written as (3.25), in which U is any
matrix with r(AU) = m, and V = −V ∗ ∈ Cn×n and W ∈ Cn×m are
arbitrary.

The solution in (3.22) can also equivalently be written in other forms, for
example,

X =
1
2
A−BB∗ + UU∗A∗ + V A∗ + ( Im −A−A )W, (3.27)

where U ∈ Cn×n, V = −V ∗ ∈ Cn×n and W ∈ Cn×m are arbitrary. In par-
ticular, setting U = 0, then (3.22) is a general solution to the equality in
(3.21).
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Corollary 3.4 Let B ∈ Cm×p be given. Then,

(a) The general solution X ∈ Cm×m to the following inequality

X + X∗ ≥ BB∗ (3.28)

can be written as
X =

1
2
BB∗ + UU∗ + V, (3.29)

where U ∈ Cn×n and V = −V ∗ ∈ Cn×n are arbitrary.

(b) The general solution X ∈ Cm×m to the following inequality

X + X∗ > BB∗ (3.30)

can be written as (3.29), in which U ∈ Cn×n with r(U) = m and V =
−V ∗ ∈ Cn×n is arbitrary.

(c) The general solution X ∈ Cm×m to the following inequality

X + X∗ ≤ BB∗ (3.31)

can be written as
X =

1
2
BB∗ − UU∗ + V, (3.32)

where U ∈ Cn×n and V = −V ∗ ∈ Cn×n are arbitrary.

(d) The general solution X ∈ Cm×m to the following inequality

X + X∗ < BB∗ (3.33)

can be written as (3.32), in which U ∈ Cn×n with r(U) = m and V =
−V ∗ ∈ Cn×n is arbitrary.

Corollary 3.5 Let A ∈ Cm×n be given. Then,

(a) The general solution X ∈ Cn×m to the following inequality

AX + (AX)∗ ≥ 0 (3.34)

can be written as
X = UU∗A∗ + V A∗ + FAW, (3.35)

where U ∈ Cn×n, V = −V ∗ ∈ Cn×n and W ∈ Cn×m are arbitrary.
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(b) There exists an X ∈ Cn×m that satisfies the following matrix inequality

AX + (AX)∗ > 0 (3.36)

if and only if r(A) = m. In this case, the general solution to (3.36) can
be written as (3.35), in which U ∈ Cn×n is any matrix with r(AU) = m,
V = −V ∗ ∈ Cn×n and W ∈ Cn×m are arbitrary.

(c) The general solution X ∈ Cn×m to the following inequality

AX + (AX)∗ ≤ 0 (3.37)

can be written as

X = −UU∗A∗ + V A∗ + FAW, (3.38)

where U ∈ Cn×n, V = −V ∗ ∈ Cn×n and W ∈ Cn×m are arbitrary. In
this case,

r[AX + (AX)∗ ] = r(AU). (3.39)

(d) There exists an X ∈ Cn×m that satisfies the following matrix inequality

AX + (AX)∗ < 0 (3.40)

if and only if r(A) = m. In this case, the general solution to (3.40) can
be written as (3.38), in which U ∈ Cn×n is any matrix with r(AU) = m,
and V = −V ∗ ∈ Cn×n and W ∈ Cn×m are arbitrary. In particular, if
A is square and nonsingular, then the general solution to (3.40) can be
written as

X = −UU∗A∗ + V A∗, (3.41)

where U ∈ Cn×n is any matrix with r(AU) = m, and V = −V ∗ ∈ Cn×n

is arbitrary.

In Chan and Kwong (1985), solutions to the inequality (A+B)X+X∗(A+
B)∗ ≥ AB + BA were considered for A ≥ 0 and B ≥ 0. Applying Theorem
3.1 to this inequality gives the following result.

Corollary 3.6 Let A, B ∈ Cm×m be given with A ≥ 0 and B ≥ 0. Then,

(a) The general solution to the following matrix inequality

(A + B)X + X∗(A + B)∗ ≥ AB + BA (3.42)
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can be written as

X =
(

1
2
Im − 1

2
(A + B)† + UU∗ + V

)
(A + B) + F(A+B)W, (3.43)

where U, W ∈ Cm×m and V = −V ∗ ∈ Cm×m are arbitrary. In particular,

X =
1
2
(A + B)− 1

2
(A + B)†(A + B) + V (A + B) + F(A+B)W (3.44)

is the general solution to the equality in (3.42).

(b) There exists an X ∈ Cm×m that satisfies the following matrix inequality

(A + B)X + X∗(A + B)∗ > AB + BA (3.45)

if and only if r(A + B) = m holds. In this case, the general solution to
(3.45) can be written as

X =
1
2
(A + B)− 1

2
Im + (UU∗ + V )(A + B) (3.46)

where U ∈ Cm×m is any matrix with r(U) = m, and V = −V ∗ ∈ Cm×m

and W ∈ Cm×m are arbitrary.

(c) There always exists an XX∗ ∈ Cm×m that satisfies the following matrix
inequality

(A + B)XX∗ + XX∗(A + B)∗ ≥ AB + BA, (3.47)

and partial solutions to (3.47) can be written as

XX∗ =
1
2
(A + B) + k(A + B)†(A + B) + F(A+B)WW ∗F(A+B), (3.48)

where 0 ≤ k is any real number, and W ∈ Cm×m is arbitrary.

(d) There exists an XX∗ ∈ Cm×m that satisfies the following matrix inequal-
ity

(A + B)XX∗ + XX∗(A + B)∗ > AB + BA (3.49)

if and only if r(A + B) = m holds. In this case, the general solution to
(3.49) can be written as

X =
1
2
(A + B) + kIm, (3.50)

where 0 ≤ k is any real number.
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4 General solutions to the inequality AXA∗ ≥ B

In this section, we consider the following linear matrix inequality

AXA∗ ≥ B (4.1)

and its variations, where A ∈ Cm×n and B = B∗ ∈ Cm×m are given. The
linear matrix equation corresponding to (4.1) is AXA∗ = B given in Lemma
2.6.

It should be pointed out that for any two Hermitian matrices P and Q,
the inequality P ≥ Q does not imply that r(Q) ≤ r(P ) or R(Q) ⊆ R(P ), for

example, Let P =
[
1 1
1 1

]
and Q =

[
0 1
1 0

]
. Then P − Q = I2 > 0. Hence

(4.1) does not imply that R(B) ⊆ R(A) for a general Hermitian matrix B,
although the equality in (4.1) holds if and only if R(B) ⊆ R(A).

Theorem 4.1 Let A ∈ Cm×n and B = B∗ ∈ Cm×m be given. Then,

(a) There exists an X ∈ Cn×n such that (4.1) holds if and only if

EABEA ≤ 0 and r(EABEA) = r(EAB). (4.2)

In this case, the general solution to (4.1) can be written as

X = A†B(A†)∗ −A†BEA(EABEA)†EAB(A†)∗

+A†UU∗(A†)∗ + W −A†AWA†A, (4.3)

where U ∈ Cm×m and W ∈ Cn×n are arbitrary. In particular, if W =
W ∗, then the X in (4.3) satisfies X = X∗.

(b) There exists an X ∈ Cn×n such that

AXA∗ > B (4.4)

holds if and only if

EABEA ≤ 0 and r(EABEA) = r(EA). (4.5)

In this case, the general solution to (4.4) can be written as (4.3), in which
U is any matrix such that r[ BEA(EABEA)†EAB −AA†UU∗AA† ] = m
hold, and W ∈ Cn×n is arbitrary.
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(c) There exists an X ∈ Cn×n such that

AXA∗ + B ≤ 0 (4.6)

holds if and only if (4.2) holds. In this case, the general solution to (4.6)
can be written as

X = −A†B(A†)∗ + A†BEA(EABEA)†EAB(A†)∗ −A†UU∗(A†)∗

+W −A†AWA†A, (4.7)

where U ∈ Cm×m and W ∈ Cn×n are arbitrary.

(d) There exists an X ∈ Cn×n such that

AXA∗ + B < 0 (4.8)

holds if and only if (4.5) holds. In this case, the general solution to
(4.8) can be written as (4.7), in which U is any matrix such that
r[ BEA(EABEA)†EAB − AA†UU∗AA† ] = m holds, and W ∈ Cn×n is
arbitrary.

Proof. Inequality (4.1) is equivalent to

AXA∗ = B + Y Y ∗ (4.9)

for some Y . From Lemma 2.6(a), (4.9) is solvable for X if and only if EA(B +
Y Y ∗) = 0, that is,

EAY Y ∗ = −EAB. (4.10)

From Lemma 2.5(b), (4.10) is solvable for Y Y ∗ if and only if EABEA ≤ 0 and
r(EABEA) = r(EAB), establishing (4.2). In this case, the general solution to
(4.10) can be written as

Y Y ∗ = −BEA(EABEA)†EAB + AA†UU∗AA†,

where U is an arbitrary matrix. Substituting the Y Y ∗ into (4.9) gives

AXA∗ = B −BEA(EABEA)†EAB + AA†UU∗AA†. (4.11)

From Lemma 2.6(a), the general solution to (4.11) can be written as

X = A†B(A†)∗−A†BEA(EABEA)†EAB(A†)∗+A†UU∗(A†)∗+W−A†AWA†A,
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where U ∈ Cm×m and W ∈ Cn×n are arbitrary, as required for (4.3). It can
be seen from (4.11) that (4.4) holds if and only if

−BEA(EABEA)†EAB + AA†UU∗AA† > 0. (4.12)

Applying (2.15) and (2.23) gives

max
UU∗

r[−BEA(EABEA)†EAB + AA†UU∗AA† ]

= r[−BEA(EABEA)†EAB, AA† ]
= r[ BEA, A ]
= r(EABEA) + r(A),

so that (4.4) holds if and only if r(EABEA) + r(A) = m. Thus (b) follows.
Replacing X with −X in (a) and (b) leads to (c) and (d). 2

Some consequences of Theorem 4.1 are give below.

Theorem 4.2 Let A ∈ Cm×n and B ∈ Cm×k be given. Then,

(a) The inequality
AXA∗ ≥ −BB∗ (4.13)

always has solution, and the general solution to (4.13) can be written as

X = A†B(EAB)†(EAB)B∗(A†)∗ −A†BB∗(A†)∗ + A†UU∗(A†)∗

+W −A†AWA†A, (4.14)

where U ∈ Cm×m and W ∈ Cn×n are arbitrary.

(b) There exists an X ∈ Cn×n such that

AXA∗ > −BB∗ (4.15)

holds if and only if r[ A, B ] = m. In this case, the general solution to
(4.15) can be written as (4.14), in which U is any matrix such that

r[B(EAB)†(EAB)B∗ + AA†UU∗AA† ] = m,

and W ∈ Cn×n is arbitrary.

(c) The inequality
AXA∗ ≤ BB∗ (4.16)

always has solution, and the general solution to (4.16) can be written as

X = A†BB∗(A†)∗ −A†B(EAB)†(EAB)B∗(A†)∗ −A†UU∗(A†)∗

+W −A†AWA†A, (4.17)

where U ∈ Cm×m and W ∈ Cn×n are arbitrary.
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(d) There exists an X ∈ Cn×n such that

AXA∗ < BB∗ (4.18)

holds if and only if r[ A, B ] = m. In this case, the general solution
to (4.18) can be written as (4.17), in which U is any matrix such that
r[ B(EAB)†(EAB)B∗+AA†UU∗AA† ] = m, and W ∈ Cn×n is arbitrary.

Corollary 4.3 Let A ∈ Cm×n and B ∈ Cm×p be given. Then,

(a) There exists an X ∈ Cn×n such that

AXA∗ ≥ BB∗ (4.19)

holds if and only if R(B) ⊆ R(A). In this case, the general solution to
(4.1) can be written as

X = A†BB∗(A†)∗ + UU∗ + W −A†AWA†A, (4.20)

where U, W ∈ Cn×n are arbitrary.

(b) There exists an X ∈ Cn×n such that

AXA∗ > BB∗ (4.21)

holds if and only if r(A) = m. In this case, the general solution to (4.21)
can be written as (4.20), in which U ∈ Cn×n is any matrix with r(U) =
m, and W ∈ Cn×n is arbitrary.

(c) There exists an X ∈ Cn×n such that

AXA∗ + BB∗ ≤ 0 (4.22)

holds if and only if R(B) ⊆ R(A). In this case, the general solution to
(4.1) can be written as

X = −A†BB∗(A†)∗ − UU∗ + W −A†AWA†A, (4.23)

where U, W ∈ Cn×n are arbitrary.

(d) There exists an X ∈ Cn×n such that

AXA∗ + BB∗ < 0 (4.24)

holds if and only if r(A) = m. In this case, the general solution to (4.24)
can be written as (4.23), in which U ∈ Cn×n is any matrix with r(U) =
m, and W ∈ Cn×n is arbitrary.
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Corollary 4.4 Let A ∈ Cm×n be given. Then,

(a) The general solution to the inequality AXA∗ ≥ 0 can be written as

X = UU∗ + W −A†AWA†A, (4.25)

where U, W ∈ Cn×n are arbitrary.

(b) There exists an X such that AXA∗ > 0 holds if and only if r(A) = m.
In this case, the general solution to AXA∗ > 0 can be written as (4.25),
in which U, W ∈ Cn×n are arbitrary.

(c) The general solution to the inequality AXA∗ ≤ 0 can be written as

X = −UU∗ + W −A†AWA†A, (4.26)

where U, W ∈ Cn×n are arbitrary.

(d) There exists an X such that AXA∗ < 0 holds if and only if r(A) = m.
In this case, the general solution to AXA∗ < 0 can be written as (4.26),
in which U ∈ Cn×n is any matrix with r(U) = m, and W ∈ Cn×n is
arbitrary.

The following theorem is derived from Lemma 2.6(b), and its proof is
omitted.

Theorem 4.5 Let A ∈ Cm×n and B ∈ Cm×k be given. Then,

(a) There exists an X such that

AXX∗A∗ ≥ BB∗ (4.27)

holds if and only if R(B) ⊆ R(A). In this case, the general solution to
(4.27) can be written as

XX∗ = ( A†B + EAW )(A†B + EAW )∗ + UU∗, (4.28)

where U ∈ Cn×n and W ∈ Cn×k are arbitrary.

(b) There exists an X such that

AXX∗A∗ > BB∗ (4.29)

holds if and only if r(A) = m. In this case, the general solution to (4.29)
can be written as (4.28), in which, U ∈ Cn×n is any matrix with r(U) =
m and W ∈ Cn×k is arbitrary.
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An application to partitioned matrices is given below.

Corollary 4.6 Let

M(X) =
[
AXA∗ B

B∗ CC∗

]
, (4.30)

where A ∈ Cm×n, B ∈ Cm×p and C ∈ Cp×q are given. Then,

(a) There exists an X such that M(X) ≥ 0 in (4.30) if and only if

R(B) ⊆ R(A) and R(B∗) ⊆ R(C). (4.31)

In this case, the general solution to M ≥ 0 can be written as

X = A†B(CC∗)†B∗(A†)∗ + UU∗ + W −A†AWA†A, (4.32)

where U, W ∈ Cn×n are arbitrary.

(b) There exists an X such that M > 0 in (4.30) if and only if

r(A) = m and r(C) = p. (4.33)

In this case, the general solution to M > 0 can be written as

X = A†B(CC∗)−1B∗(A†)∗ + UU∗, (4.34)

where U ∈ Cn×n is any matrix with r(U) = m and W ∈ Cn×n is
arbitrary.

Proof. It is easily seen from Lemma 2.3 that

M ≥ 0 ⇔ R(B) ⊆ R(A), R(B∗) ⊆ R(C) and AXA∗ ≥ B(CC∗)+B∗,
(4.35)

M > 0 ⇔ r(A) = m, r(C) = p and AXA∗ > B(CC∗)+B∗. (4.36)

Solving the two inequalities in (4.35) and (4.36) by Theorem 3.1 leads to (a)
and (b). 2

A challenging problem is to give the general solution to the inequality
AXX∗A∗ ≤ BB∗. It is obvious that the inequality has a trivial solution
X = 0. However, the inequality may have only zero solution in some cases.
For example, the inequality

[
x2 0
0 0

]
≤

[
1 1
1 1

]

only has a solution x = 0. The following result gives the identifying conditions
for AXX∗A∗ ≤ BB∗ to have nonzero solutions and their general expressions.

19



Theorem 4.7 Let A ∈ Cm×n and B ∈ Cm×k be given. Then,

(a) There exists a matrix X such that both AX 6= 0 and

AXX∗A∗ ≤ BB∗ (4.37)

hold if and only if
R(A) ∩R(B) 6= {0}. (4.38)

In this case, a solution to (4.37) can be written as

XX∗ = A†BFB1V FB1B
∗(A†)∗ + EAWW ∗EA, (4.39)

where B1 = EAB, V ∈ Ck×k is any matrix with 0 < V ≤ Ik, and
W ∈ Cn×n is arbitrary.

(b) There exists a matrix X such that AX 6= 0 and

AXX∗A∗ < BB∗ (4.40)

hold if and only if
A 6= 0 and r(B) = m. (4.41)

In this case, a solution to (4.40) can be written as (4.39), in which V ∈
Ck×k is any matrix with 0 < V < Ik, and W ∈ Cn×n is arbitrary.

(c) Under the condition R(B) ⊆ R(A), there always exists a matrix X such
that both AX 6= 0 and

AXX∗A∗ ≤ BB∗ (4.42)

hold, and a solution to (4.42) can be written as

XX∗ = A†BV B∗(A†)∗ + EAWW ∗EA, (4.43)

where V ∈ Ck×k is any matrix with 0 < V ≤ Ik, and W ∈ Cn×n is
arbitrary.

(d) Under the condition R(B) ⊆ R(A), there exists a matrix X such that
AX 6= 0 and

AXX∗A∗ < BB∗ (4.44)

hold if and only if r(B) = m. In this case, the general solution to (4.44)
can be written as (4.43), in which V ∈ Ck×k is any matrix with 0 < V <
Ik, and W ∈ Cn×n is arbitrary.
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Proof. It can be seen from Lemma 2.1 that if there exists an X such that
AX 6= 0 and (4.37) hold, then R(AX) ⊆ R(B) holds, which obviously implies
that (4.38) holds. On the other hand, it can be derived from EABFEAB = 0
that

AA†BFEAB = BFEAB, (4.45)

and from Lemma 2.8 that

r(BFEAB) = r

[
B

EAB

]
−r(EAB) = r(A)+r(B)−r[ A, B ] = dim[R(A)∩R(B)].

(4.46)
Hence if (4.38) holds, then BFEAB 6= 0 and R(BFEAB) = R(A) ∩R(B) by
(4.45) and (4.46). In this case,

AA†BFEABV FEABB∗(A†)∗A = BFEABV FEABB∗.

Thus we can derive from (4.39) and Lemma 2.2(a) that

BB∗−AXX∗A∗ = BB∗−BFEABV FEABB∗ = B( Ik−FEABV FEAB )B∗ ≥ 0,

that is, (4.39) is a solution to (4.37). The two conditions in (4.41) are obvious
under the condition that both AX 6= 0 and (4.40) hold. Conversely, if (4.41)
holds, we can derive from (4.40) and Lemma 2.2(b) that Ik−FEABV FEAB > 0
and

BB∗−AXX∗A∗ = BB∗−BFEABV FEABB∗ = B( Ik−FEABV FEAB )B∗ > 0.

Results (c) and (d) are direct consequences of (a) and (b). 2

5 General solutions to the inequality AXB ≥ C

Theorem 5.1 Let A ∈ Cm×p, B ∈ Cq×m and C = C∗ ∈ Cm×m be given, and
denote M = [EA, FB ]. Then,

(a) There exists an X ∈ Cp×q that satisfies the following matrix inequality

AXB ≥ C (5.1)

if and only if

M∗CM ≤ 0 and r(M∗CM) = r(CM) (5.2)

holds, or equivalently,

(2Im −AA† −B†B)C(2Im −AA† −B†B) ≤ 0 (5.3)
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and

r




C C A 0
C C 0 B∗

A∗ 0 0 0
0 B 0 0


 = r

[
C A 0
C 0 B∗

]
+ r(A) + r(B). (5.4)

In this case, the general solution to (5.1) can be written as

X = A†CB† −A†CM(M∗CM)†M∗CB† + A†EMUU∗EMB†

+W −A†AWBB†, (5.5)

where U ∈ Cm×m and W ∈ Cp×q are arbitrary.

(b) There exists an X that satisfies the following matrix inequality

AXB > C (5.6)

if and only if

M∗CM ≤ 0 and r

[
C A 0
C 0 B∗

]
= m + r[A, B∗ ]. (5.7)

In this case, the general solution to (5.6) can be written as (5.5), in
which U ∈ Cm×m is any matrix such that r[−CM(M∗CM)†M∗C +
EMUU∗EM ] = m, and W ∈ Cp×q is arbitrary.

(c) There exists an X that satisfies

AXB + C ≤ 0 (5.8)

if and only if (5.2) holds. In this case, the general solution to (5.8) can
be written as

X = −A†CB† + A†CM(M∗CM)†M∗CB† −A†EMUU∗EMB†

+W −A†AWBB†, (5.9)

where U ∈ Cm×m and W ∈ Cp×q are arbitrary.

(d) There exists an X that satisfies the following matrix inequality

AXB + C < 0 (5.10)

if and only if (5.7) holds. In this case, the general solution to
(5.10) can be written as (5.9), in which U is any matrix such that
r[−CM(M∗CM)†M∗C+EMUU∗EM ] = m, and W ∈ Cp×q is arbitrary.
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Proof. Inequality (5.1) is equivalent to

AXB = C + Y Y ∗ (5.11)

for some Y . From Lemma 2.7, the equation is solvable for X if and only if

EAY Y ∗ = −EAC and FBY Y ∗ = −FBC, (5.12)

this is, [
EA

FB

]
Y Y ∗ = −

[
EAC
FBC

]
. (5.13)

From Lemma 2.5(b), (5.13) is solvable for Y Y ∗ if and only if
[
EA

FB

]
C[ EA, FB ] ≤ 0 and r

([
EA

FB

]
C[ EA, FB ]

)
= r(C[ EA, FB ]),

establishing (5.2). The equivalence of (5.2) with (5.3) and (5.4) are derived
from Lemma 2.8. Under (5.2), the general solution to (5.11) can be written as

Y Y ∗ = −CM(M∗CM)†M∗C + EMUU∗EM ,

where U is an arbitrary matrix. Substituting the Y Y ∗ into (5.11) gives

AXB = C − CM(M∗CM)†M∗C + EMUU∗EM . (5.14)

From Lemma 2.7, the general solution to (5.14) is

X = A†CB†−A†CM(M∗CM)†M∗CB†+A†EMUU∗EMB†+W−A†AWBB†,

establishing (5.5). It can be seen from (5.13) that (5.6) holds if and only if

−CM(M∗CM)†M∗C + EMUU∗EM > 0.

Applying (2.23) gives

max
UU∗

r[−CM(M∗CM)†M∗C + EMUU∗EM ]

= r[−CM(M∗CM)†M∗C, EM ]
= r[ CM, EM ]
= r(MM †CM) + r(EM )
= r(CM) + m− r(M)

= r

[
C A 0
C 0 B∗

]
− r[A, B∗ ].

Thus (b) follows. Replacing X with −X in (a) and (b) leads to (c) and (d).
2
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Corollary 5.2 Let A ∈ Cm×p, B ∈ Cq×m and C =∈ Cm×k be given, and
denote M = [EA, FB ]. Then,

(a) The general solution to

AXB + CC∗ ≥ 0 (5.15)

can be written as

X = −A†CC∗B† + A†C(M∗C)†(M∗C)C∗B† + A†EMUU∗EMB†

+W −A†AWBB†, (5.16)

where U ∈ Cm×m and W ∈ Cp×q are arbitrary.

(b) There exists an X that satisfies the following matrix inequality

AXB + CC∗ > 0 (5.17)

if and only if r

[
C A 0
C 0 B∗

]
= m + r[ A, B∗ ] holds. In this case, the

general solution to (5.17) can be written as (5.16), in which U ∈ Cm×m

is any matrix such that r[C(M∗C)†(M∗C)C∗ + EMUU∗EM ] = m, and
W ∈ Cp×q is arbitrary.

(c) The general solution to
AXB ≤ CC∗ (5.18)

can be written as

X = A†CC∗B† −A†C(M∗C)†(M∗C)C∗B† −A†EMUU∗EMB†

+W −A†AWBB†, (5.19)

where U ∈ Cm×m and W ∈ Cp×q are arbitrary.

(d) There exists an X that satisfies the following matrix inequality

AXB < CC∗ (5.20)

if and only if r

[
C A 0
C 0 B∗

]
= m + r[ A, B∗ ] holds. In this case, the

general solution to (5.20) can be written as (5.19), in which U is any
matrix such that r[C(M∗C)†(M∗C)C∗ + EMUU∗EM ] = m, and W ∈
Cp×q is arbitrary.
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Corollary 5.3 Let A ∈ Cm×p, B ∈ Cq×m and C ∈ Cm×k be given, and and
denote M = [EA, FB ]. Then,

(a) There exists an X ∈ Cp×q that satisfies

AXB ≥ CC∗ (5.21)

if and only if

R(C) ⊆ R(A) and R(C) ⊆ R(B∗). (5.22)

In this case, the general solution to (5.21) can be written as

X = A†CC∗B† + A†EMUU∗EMB† + W −A†AWBB†, (5.23)

where U ∈ Cm×m and W ∈ Cp×q are arbitrary.

(b) There exists an X such that

AXB > CC∗ (5.24)

if and only if r(A) = r(B) = m. In this case, the general solution to
(5.24) can be written as (5.23), in which U ∈ Cq×q is any matrix with
r(EMU) = m, and W ∈ Cp×q is arbitrary.

(c) There exists an X ∈ Cp×q that satisfies

AXB + CC∗ ≤ 0 (5.25)

if and only if (5.22) holds. In this case, the general solution to (5.25) can
be written as

X = −A†CC∗B† −A†EMUU∗EMB† + W −A†AWBB†, (5.26)

where U ∈ Cm×m and W ∈ Cp×q are arbitrary.

(d) There exists an X ∈ Cp×q such that

AXB + CC∗ < 0 (5.27)

if and only if r(A) = r(B) = m. In this case, the general solution to
(5.27) can be written as (5.26), in which U ∈ Cq×q is any matrix with
r(EMU) = m, and W ∈ Cp×q is arbitrary.
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Corollary 5.4 Let A ∈ Cm×p, B ∈ Cq×m and C ∈ Cm×k be given, and denote
M = [EA, FB ]. Then,

(a) The general solution to
AXB ≥ 0 (5.28)

can be written as

X = A†EMUU∗EMB† + W −A†AWBB†, (5.29)

where U ∈ Cm×m and W ∈ Cp×q are arbitrary.

(b) There exists an X ∈ Cp×q such that

AXB > 0 (5.30)

if and only if r(A) = r(B) = m. In this case, the general solution to
(5.30) can be written as (5.29), in which U ∈ Cq×q is is any matrix with
r(EMU) = m, and W ∈ Cp×q is arbitrary.

6 General solutions to the inequality AXB + (AXB)∗ ≥ C

An extension of the matrix equation in (2.1) is given by

AXB + (AXB)∗ = C, (6.1)

where A ∈ Cm×p, B ∈ Cq×m and C = C∗ ∈ Cm×m are given. This equation
was recently considered by Tian and Liu (2006) and the following result was
given.

Lemma 6.1 (Tian and Liu, 2006) Let G = [A, B∗ ] and H = [B∗, A ]∗.
Then,

(a) There exists an X ∈ Cp×q such that (6.1) holds if and only if

R(C) ⊆ R[A, B∗ ], r

[
C A
A∗ 0

]
= 2r(A), r

[
C B∗

B 0

]
= 2r(B), (6.2)

or equivalently,

[ A, B∗ ][ A, B∗ ]†C = C, EACEA = 0, FBCFB = 0. (6.3)

Under (6.2), the general solution to (6.1) can be written as

X =
1
2
( Z1 + Z∗2 ), (6.4)
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where Z1 and Z2 are the general solutions of the equation AZ1B +
B∗Z2A

∗ = C. Written in an explicit form,

X = X0 + [ Ip, 0 ]FGV EH

[
Iq

0

]
− [ 0, Ip ]EHV ∗FG

[
0
Iq

]

+W −A†AWBB†, (6.5)

where X0 is a special solution to (6.1), and V ∈ C(p+q)×(p+q) and W ∈
Cp×q are arbitrary.

(b) There exists an X such that

AXB + (AXB)∗ = CC∗ (6.6)

holds if and only if

R(C) ⊆ R(A) and R(C) ⊆ R(B∗). (6.7)

Under (6.7), the general solution to (6.6) can be written as

X =
1
2
A†CC∗B† + [ Ip, 0 ]FGV EH

[
Iq

0

]
− [ 0, Ip ]EHV ∗FG

[
0
Iq

]

+W −A†AWBB†, (6.8)

where V ∈ C(p+q)×(p+q) and W ∈ Cp×q are arbitrary.

(c) There exists an X such that

AXB + (AXB)∗ = −CC∗ (6.9)

holds if and only if

R(C) ⊆ R(A) and R(C) ⊆ R(B∗). (6.10)

Under (6.10), the general solution to (6.9) can be written as

X = −1
2
A†CC∗B† + [ Ip, 0 ]FGV EH

[
Iq

0

]
− [ 0, Ip ]EHV ∗FG

[
0
Iq

]

+W −A†AWBB†, (6.11)

where V ∈ C(p+q)×(p+q) and W ∈ Cp×q are arbitrary.
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A matrix inequality corresponding to (6.1) in Löwner partial ordering is

AXB + (AXB)∗ ≥ C. (6.12)

This inequality is equivalent to

AXB + (AXB)∗ = C + Y Y ∗ (6.13)

for some Y . From Lemma 6.1(a), the equation is solvable for X if and only if

EMY Y ∗ = −EMC, EAY Y ∗EA = −EACEA, FBY Y ∗FB = −FBCFB,
(6.14)

where M = [ A, B∗ ]. However, we do not know how to solve Y Y ∗ from this
system of equations for a general Hermitian matrix C, and therefore, we do
not know how to solve X in (6.12) for a general Hermitian matrix C. In this
section, we only consider a special case of (6.12):

AXB + (AXB)∗ ≥ CC∗ (6.15)

and its variations.

Theorem 6.2 Let A ∈ Cm×p and B ∈ Cq×m be given, and denote M =
[EA, FB ], G = [ A, B∗ ] and H = [B∗, A ]∗. Then,

(a) There exists an X ∈ Cp×q that satisfies (6.15) if and only if (6.7) holds.
In this case, the general solution to (6.15) can be written as

X =
1
2
A†CC∗B† + A†EMUU∗EMB† + [ Ip, 0 ]FGV EH

[
Iq

0

]

−[ 0, Ip ]EHV ∗FG

[
0
Iq

]
+ W −A†AWBB†, (6.16)

where U ∈ Cm×m, and V ∈ C(p+q)×(p+q) and W ∈ Cp×q are arbitrary.

(b) There exists an X that satisfies the following matrix inequality

AXB + (AXB)∗ > CC∗ (6.17)

if and only if r(A) = r(B) = m. In this case, the general solution to
(6.17) can be written as

X =
1
2
A†CC∗B† + A†UU∗B† + [ Ip, 0 ]FGV EH

[
Iq

0

]

−[ 0, Ip ]EHV ∗FG

[
0
Iq

]
+ W −A†AWBB†, (6.18)

where U ∈ Cm×m is any matrix with r(U) = m, and V ∈ C(p+q)×(p+q)

and W ∈ Cp×q are arbitrary.
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(c) There exists an X that satisfies

AXB + (AXB)∗ + CC∗ ≤ 0 (6.19)

if and only if (6.7) holds. In this case, the general solution to (6.19) can
be written as

X = −1
2
A†CC∗B† −A†EMUU∗EMB† + [ Ip, 0 ]FGV EH

[
Iq

0

]

−[ 0, Ip ]EHV ∗FG

[
0
Iq

]
+ W −A†AWBB†, (6.20)

where U ∈ Cm×m, and V ∈ C(p+q)×(p+q) and W ∈ Cp×q are arbitrary.

(d) There exists an X that satisfies the following matrix inequality

AXB + (AXB)∗ + CC∗ < 0 (6.21)

if and only if r(A) = r(B) = m. In this case, the general solution to
(6.21) can be written as

X = −1
2
A†CC∗B† −A†UU∗B† + [ Ip, 0 ]FGV EH

[
Iq

0

]

−[ 0, Ip ]EHV ∗FG

[
0
Iq

]
+ W −A†AWBB†, (6.22)

where U ∈ Cm×m is any matrix with r(U) = m, and and V ∈
C(p+q)×(p+q) and W ∈ Cp×q are arbitrary.

Proof. Inequality (6.15) is equivalent to

AXB + (AXB)∗ = CC∗ + Y Y ∗ (6.23)

for some Y . From Lemma 2.5(b), the equation is solvable for X if and only if

EAY Y ∗ = −EACC∗, FBY Y ∗ = −FBCC∗, (6.24)

this is, [
EA

FB

]
Y Y ∗ = −

[
EACC∗

FBCC∗

]
. (6.25)

From Lemma 2.5(b), (6.25) is solvable for Y Y ∗ if and only if
[
EA

FB

]
CC∗[ EA, FB ] ≤ 0,
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which is obviously equivalent to EACC∗ = FBCC∗ = 0, i.e., (6.7) holds. In
this case, the general solution to (6.25) can be written as

Y Y ∗ = (Im − [EA, FB ][EA, FB ]†)UU∗(Im − [ EA, FB ][ EA, FB ]†)
= EMUU∗EM ,

where U is an arbitrary matrix. Substituting the Y Y ∗ into (6.23) gives

AXB + (AXB)∗ = CC∗ + EMUU∗EM . (6.26)

From Lemma 6.1(b), the general solution to (6.26) is

X =
1
2
A†CC∗B† +

1
2
A†EMUU∗EMB† + [ Ip, 0 ]FGV EH

[
Iq

0

]

−[ 0, Ip ]EHV ∗FG

[
0
Iq

]
+ W −A†AWBB†,

establishing (6.16). It can be seen from (6.26) that (6.17) holds if and only if
r(EMU) = m. Applying (1.15) gives

r(EMU) = m− [ EA, FB ] = m− r(EA)− r(AA†FB)

= r(A) + r(B)− r

[
AA†

B

]

= r(A) + r(B)− r[ A, B∗ ].

Hence r(EMU) = m if and only if r(A) = r(B) = m. In this case, EM = Im,
and therefore (b) follows from (a). Replacing X with −X in (a) and (b) leads
to (c) and (d). 2

Corollary 6.3 Let A ∈ Cm×n and B ∈ Cp×m be given, and denote M =
[EA, FB ], G = [ A, B∗ ] and H = [B∗, A ]∗. Then,

(a) The general solution to

AXB + (AXB)∗ ≥ 0 (6.27)

can be written as

X = A†EMUU∗EMB† + [ Ip, 0 ]FGV EH

[
Iq

0

]

−[ 0, Ip ]EHV ∗FG

[
0
Iq

]
+ W −A†AWBB†, (6.28)

where U ∈ Cm×m, and V ∈ C(p+q)×(p+q) and W ∈ Cp×q are arbitrary.
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(b) There exists an X that satisfies the following matrix inequality

AXB + (AXB)∗ > 0 (6.29)

if and only if r(A) = r(B) = m. In this case, the general solution to
(6.29) can be written as

X = A†UU∗B† + [ Ip, 0 ]FGV EH

[
Iq

0

]

−[ 0, Ip ]EHV ∗FG

[
0
Iq

]
+ W −A†AWBB†, (6.30)

where U ∈ Cm×m is any matrix with r(U) = m, and V ∈ C(p+q)×(p+q)

and W ∈ Cp×q are arbitrary.

(c) The general solution to

AXB + (AXB)∗ ≤ 0 (6.31)

can be written as

X = −A†EMUU∗EMB† + [ Ip, 0 ]FGV EH

[
Iq

0

]

−[ 0, Ip ]EHV ∗FG

[
0
Iq

]
+ W −A†AWBB†, (6.32)

where U ∈ Cm×m, V ∈ C(p+q)×(p+q) and W ∈ Cp×q are arbitrary.

(d) There exists an X that satisfies the following matrix inequality

AXB + (AXB)∗ < 0 (6.33)

if and only if r(A) = r(B) = m. In this case, the general solution to
(6.33) can be written as

X = −A†UU∗B† + [ Ip, 0 ]FGV EH

[
Iq

0

]

−[ 0, Ip ]EHV ∗FG

[
0
Iq

]
+ W −A†AWBB†, (6.34)

where U ∈ Cm×m is any matrix with r(U) = m, and V ∈ C(p+q)×(p+q)

and W ∈ Cp×q are arbitrary.
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7 Concluding remarks

We solved four types of matrix inequalities through generalized inverses of
matrices, and considered various special cases of the inequalities. The results
obtained can be used to characterize structures of unknown matrices satisfying
various matrix inequalities in Löwner partial ordering. On the other hand, we
believe the work in the paper will motivate further investigation to various
general matrix inequalities in Löwner partial ordering, such as,

(a) AX + Y B ≥ C for C = C∗.

(b) AXA∗ + BY B∗ ≥ C for C = C∗.

(c) AXA∗ ≥ B and CXC∗ ≥ D for B = B∗ and D = D∗.

(d) A : X ≥ B, where A ≥ 0, B ≥ 0 and A : X = A(A + X)†X is the
parallel sum of A and X.
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