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Abstract

In this paper, we discuss the efficiency of noise reduction for curve fit-
ting in growth curve models. We use singular spectrum analysis as a
nonlinear–nonparametric denoising method. A set of longitudinal mea-
surements is used in considering the performance of the method. The
results show that noise reduction is important for curve fitting in growth
curve model and also, that the singular spectrum analysis technique can
be used as a powerful tool for noise reduction in longitudinal measure-
ments.
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1 Introduction

Growth is a fundamental property of biological systems, occurring at the pop-
ulations level, as well as within organisms. Much research has been devoted to
modeling growth processes, and there are many ways of doing this, including:
mechanistic models, time series, stochastic differential equations etc. Some-
times we simply wish to summarize growth observations in terms of a few
parameters, perhaps in order to compare individuals or groups.

The growth curve model is used for the analysis of longitudinal data, in
which measurements are repeatedly taken on a response variable at a number
of time points. This method enables us to investigate an overall pattern of
change in the response variable over time. It also allows us to examine the
effects of time-invariant explanatory variables on the temporal pattern of the
response variable. Let t be the age at examination and yt be the measurement
at the age t. We assume a statistical model such as yt = H(t) + εt (t =
1, . . . , T ), where the random variable εt has mean 0 and variance σ2

t . H(t) is
called the growth curve.

Analysis of growth data sets is associated with numerous sources of error
that affect its results and reduce its usefulness. It is well known that errors
can seriously limit the performance of the methods and techniques. Effective
methods for dealing with noisy data, especially noisy time series are currently
still lacking.

There are two main approaches for fitting a model to a noisy time series.
According to the first one, ignoring the presence of noise, we fit a model
directly from noisy data. According to the second approach, which is often
more effective that the first one, we start by filtering the noisy time series in
order to reduce the noise level and then fit a model to noise-reduced data.

In the case of the former approach, we fit the function H on the noisy
data. In this sense the curve fitting must be bad if the noise level is relatively
high, especially for the growth curve model whose variance is a function of
time t. Assume the noise-reduced time series has been obtained by some
noise reduction method, e.g., a singular spectrum analysis technique (SSA)
and denote it by ZT = (z1, . . . , zT ) and yt = zt + ωt (t = 1, . . . , T ), where the
term ωt is the noise which was removed by the noise reduction method. The
ideal result of noise reduction is zt = H(t) or ωt = εt for each t. Then we fit a
growth curve model on the noise-reduced time series. In fact, the fitted model
on the noise-reduced time series should be optimal, because we remove the
noise term ωt from original series. If the noise has been significantly reduced
in the noisy time series, then the latter approach is expected to give much
better results than the former approach.
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The problem of filtering time series to obtain noiseless series with mini-
mum loss of information has been widely studied. There are several nonlinear
noise reduction methods such as a local projective method, digital butterworth
filters, splines, filters based on spectral analysis, singular value decomposition
(SVD) and simple nonlinear filtering. It is currently accepted that SVD-based
methods are more effective than the others for noise reduction in deterministic
time series (Soofi and Cao, 2002). SSA naturally incorporates the filtering of
the series and the SVD. Recent research shows that SSA can be used as an
alternative to traditional digital filtering methods. For example, Alonsoa et al.
(2004) showed the superiority of the SSA technique over traditional methods
used in biomechanical analysis for filtering data.

The paper, besides this Introduction, contains five sections and is organized
as follows. In section 2, we provide necessary theoretical background and
concisely describe the growth curve model used here. In Section 3, we present
the SSA technique as a non-parametric nonlinear noise reduction method. In
Section 4, we discuss data and parameter estimation. The results are presented
in Section 5. Finally some conclusions are given in Section 6.

2 Growth curve model

The growth curve model (GCM) was introduced by Potthoff and Roy (1964)
and subsequently studied among others by Rao (1965). The first research con-
sidering growth curves was presented by Wishart (1938) and discrimination
between growth curves was discussed by Burnaby (1966). Wishart (1938) rec-
ommended that a general regression model should be fitted to each curve and
that the effects of the experimental treatments should be evaluated by analyz-
ing the coefficients in the model. Since then different aspects of the model has
been considered by many authors including Khatri (1966), Krishnaiah (1969),
Gleser and Olkin (1970), Srivastava and Khatri (1979), von Rosen (1989). See
also von Rosen (1991) and Kollo and von Rosen (2005) for the review of the
models. The growth curve model is defined as:

YT×n = DT×mBm×rZr×n + εT×n (1)

where D and Z are known design matrices of rank m < r and r < n, re-
spectively, and the regression coefficients B are unknown. Furthermore, the
columns of the error matrix ε are independent p-variate normal with mean zero
and common unknown covariance matrix

∑
, that is Y ∼ NT×n(DBZ,

∑
, In).

Usually, T is the number of time series points observed on each of n cases,
m − 1 is the degree of polynomial in time, and r is the number of treatment
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groups. Here we use a univariate growth curve model (for more information
about multivariate and extended GCM see von Rosen (1989)). It should be
noted that, although historically growth curve models refer to fitting individ-
ual curves, these have been widely accepted as those using in mixed models
(for more information, see for example, Demidenko (2004)).

The idea of using principal components to summarize the major sources
of variation in a set of growth curves dates back to Rao (1958), and several
examples in Ramsay and Silverman (1997) are of this type. Analysis of GCM is
often concerned with predicting future growth, and one way of doing this is to
use principal components as predictors (Jolliffe, 2002). A form of generalized
principal component regression was developed for this purpose by Rao (1987).
Growth curve can be considered as a special case of longitudinal data. Berkey
et al. (1991) used principal components to model longitudinal data, the model
they used is called a longitudinal principal component model.

We consider three models for analysis of our data sets as used by Hassani
et al. (2003). Jenss and Bayley (1937) proposed the following growth curve:

yt = A + Bt− exp (C −Dt). (2)

Here we use a special case of (2) in the following form:

yt = α1 + β1t− γ1 exp (1− δ1t). (3)

The von Bertalanffy model (von Bertalanffy, 1957) sometimes called the
Borody-Bertallanffy model, was the first growth model especially designed
to describe individual growth:

yt = A− (1− exp (B − Ct)). (4)

Here we use the following version of (4):

yt = α2 − β2 exp (1− γ2t). (5)

Count (1943) proposed a growth pattern of the human physique as A + Bt +
C ln (t). Here we use the following modification of Count’s model (Shohoji
and Sasaki, 1987):

yt = α3 + β3t + γ3 log (1 + δ3t). (6)

3 Singular spectrum analysis

The Singular Spectrum Analysis (SSA) technique is a powerful technique of
time series analysis incorporating the elements of classical time series analysis,
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multivariate statistics, multivariate geometry, dynamical systems and signal
processing. The main purpose of SSA is to decompose the original series into
a sum of a small number of time series, so that each subseries can be identified
as either a trend, periodic or quasi-periodic component (perhaps, amplitude-
modulated), or noise. This is followed by a reconstruction of the original
series.

The SSA technique consists of two complementary stages: decomposition
and reconstruction. At the first stage we decompose the time series and at the
second stage we reconstruct the original time series and use the reconstructed
time series for forecasting. Here we provide a brief discussion on the method-
ology of the basic SSA method; see Golyandina et al. (2001) and Hassani
(2007) for more information and many variations of the basic SSA.

Short description of the basic SSA

The main idea of the basic SSA is as follows. Consider the real-valued nonzero
time series YT = (y1, . . . , yT ) of sufficient length T . Let K = T −L+1, where
L is some integer called the window length (we can assume L ≤ T/2). Define
the so-called ‘trajectory matrix’ X:

X = (xij)
L,K
i,j=1 =




y1 y2 y3 . . . yK

y2 y3 y4 . . . yK+1
...

...
...

. . .
...

yL yL+1 yL+2 . . . yT


 (7)

Obviously xij = yi+j−1 so that the matrix X has equal elements on the di-
agonals i + j =const. We then consider X as a multivariate data with L
characteristics and K = T − L + 1 observations. The columns Xj of X, con-
sidered as vectors, lie in an L-dimensional space RL. Define the matrix XXT .
Singular value decomposition (SVD) of XXT provides us with the collections
of L eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λL ≥ 0 and the corresponding eigenvectors
U1, U2, . . . , UL, where Ui is the normalised eigenvector corresponding to the
eigenvalue λi (i = 1, . . . , L).

The SVD of the trajectory matrix can be written as:

X = E1 + · · ·+ Ed, (8)

where Ei =
√

λiUiVi
T (i = 1, . . . , d), d is the number of non-zero eigenvalues of

XXT , and V1, . . . , Vd are the principal components defined as Vi = XT Ui/
√

λi.
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The collection (
√

λi, Ui, Vi) is referred to as the i-the eigentriple of the matrix
X.

A group of r (with 1 ≤ r ≤ d) eigenvectors determines an r-dimensional
hyperplane in the L-dimensional space RL of vectors Xj . The L2-distance be-
tween vectors Xj ∈ RL and this r-dimensional hyperplane is equal to

∑
j /∈I λj

and can be rather small which would mean that X̃, the projection of X into
this hyperplane, approximates well the original matrix X. Subsequent averag-
ing over the diagonals of X̃ allows us to obtain a series that can be considered
as an approximation to the original series.

Selection of parameters

Here we consider a version of SSA where we split the set if indicies {1, 2, . . . , d}
into two groups only: I = {1, . . . , r} and Ī = {r + 1, . . . , d}. We associate the
group I (and the related matrix EI = E1 + . . .+Er) with signal and the group
Ī with noise. The SSA method requires then the selection of two parameters,
the window length L and the number of elementary matrices r. There are
specific rules for selecting these parameters; their choice depends on structure
of the data and the analysis we want to perform. Detailed description of
parameter selection procedures is given in Golyandina et al. (2001). Here we
summarize a few general rules.

The window length L is the single parameter that should be selected at
the decomposition stage. Selection of the proper window length depends on
the problem in hand, and on preliminary information about the time series.
For the series with a complex structure, too large window length L can pro-
duce an undesirable decomposition of the series components of interest, which
may lead, in particular, to their mixing with other series component. Let us
consider the problem of trend extraction in GCM. Since trend is a relatively
smooth curve, its separability from noise requires small values of L.

The first elementary matrix E1 with the norm
√

λ1 has the highest con-
tribution to the norm of X in (8) and the last elementary matrix Ed with
the norm

√
λd has the lowest contribution to the norm of X. The plot of

the eigenvalues λ1, · · · , λd gives an overall view concerning the values of the
eigenvalues and is essential in deciding where to truncate the summation of
(8) in order to build a good approximation of the original matrix. A slowly
decreasing sequence of eigenvalues typically indicate the presence of noise in
the series.

A group of r (with 1 ≤ r < L) eigenvectors determine an r-dimensional
hyperplane in the L-dimensional space RL of vectors Xj . The distance be-
tween vectors Xj (j = 1, . . . , K) and this r-dimensional hyperplane can be
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rather small (it is controlled by the choice of the eigenvalues) meaning that
the projection of X into this hyperplane is a good approximation of the origi-
nal matrix X. If we choose the first r eigenvectors P1, . . . , Pr, then the squared
L2-distance between this projection and X is equal to

∑L
j=r+1 λj . According

to the Basic SSA algorithm, the L-dimensional data is projected onto this r-
dimensional subspace and the subsequent averaging over the diagonals allows
us to obtain an approximation to the original series.

4 Parameter estimation and data

The number of measurements and the age at examination, in the longitudinal
human growth study, are usually very different from subject to subject. It is
difficult to identify individual growth and to compare growth patterns directly
by the original measurement. We can reduce the dimensionality by estimating
the growth parameters with minimum loss of information on measurement. We
use 120 males’ and 108 females’ longitudinal measurement records of height
from birth to age 3, which accumulated in different clinics in Tehran. They
were born from 1994 to 1998 and all have a record of height at birth. Their
height was measured occasionally at a clinic center but the age intervals be-
tween successive measurements are different in each subject.

The Marquart method was applied for estimating the growth parameter
by the least squares method. We used convergent criteria so that no estimates
violated any boundary condition of the growth parameters and that the rel-
ative amount of correction of successive estimates of each growth parameter
was less than 0.00001, simultaneously.

As the number of unknown parameters may be different for each model, it is
difficult to compare directly the goodness of fit, among (linear and non-linear)
growth models. The Akaike Information Criterion (AIC) (Akaike, 1973), or
Schwarz Information Criterion (SIC) for comparing the goodness of fit point
of view are:

AIC = −2M + 2k, SIC = −2M + 2k ln (N) (9)

where M is the maximum log-likelihood, k is the number of free parameters
in the model and N is the number of observations. AIC and SIC are based on
two items, the average log-likelihood function and the penalty function. These
criteria consider the penalty for the number of free parameter in a model. The
growth model minimizing AIC or SIC is chosen as the best model among the
others.
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5 Results

As we are interested in the extraction of the general tendency of the series, a
small value of the window length is sufficient. Here we select L = 3. So, based
on the window length L = 3 and on the SVD of the trajectory matrix, we have
3 eigentriples, ordered by their contributions (shares) into the decomposition.
The leading eigentriple describes the general tendency of the series. Since in
most cases the eigentriples with small shares are related to the noise component
of the series, we need to identify the set of leading eigentriples. Let us consider
the result of the SVD step. Figure 1 represents principal components related
to the first 3 eigentriples, which are ordered by their contribution (shares)
in the decompositions. The next challenge is the selection of the grouping
parameter r.

Trend is the slowly varying component of a time series which does not
contain oscillatory components. Assume that the time series itself is such a
component alone. Practice shows that in this case, one or more of the leading
eigenvectors will be slowly varying as well. We know that eigenvectors have
(in general) the same form as the corresponding components of the initial time
series. Thus we should find slowly varying eigenvectors. It can be done by
considering one-dimensional plots of the eigenvectors. From the practical point
of view, a natural way of noise extraction is the grouping of the eigentriples,
which do not seemingly contain elements of trend or oscillation. Irregular
behavior of eigenvectors can indicate that they are part of noise.

Based on the above information and also Figure 1, we have decided that
the eigentriples 2 and 3 correspond to the noise. Therefore, we choose the
first eigentriple to reconstruct the noise free series and eigentriples 2 and 3 as
the noise or residual series. It should be noted that, residuals and influential
observations in the growth curve models have been studied extensively pro-
ducing a huge amount of literature, See, for example, Liski (1991), Pan and
Fang (1996), and von Rosen (1995). von Rosen (1995) has shown that residu-
als in the growth curve models are symmetrically distributed around zero and,
has obtained a couple of moment relations for three types of residuals. Hamid
and von Rosen (2006) have considered residuals in extended GCM.

We apply the previously mentioned models in Section 2 and the SSA tech-
nique with indicated parameters for noise reduction for fitting to the height of
228 Iranian children. Tables 1 and 2 present the fundamental statistics of the
growth parameters along with the mean AIC and mean SIC. The first column
of Tables 1 and 2 present the model used here, the second column shows the
estimated parameters for each model, and columns 3–7 represent fundamental
statistics of growth parameters for each model. We also provide the mean AIC
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Figure 1: Principal components related to the first 3 eigentriples.

and SIC for each model. The values in brackets are related to noise-reduced
time series. As it appears from Tables 1 and 2, the values of AIC, SIC and
SD (standard deviation) for noise free series are smaller than the values for
noisy series for all models, confirming that noise reduction does help to obtain
a better model for fitting used series.

To acquire a better understanding of the efficiency of noise reduction on
parameter estimation, we examine the distribution of the estimated parame-
ters for both noisy and noise–free series. Note that under certain regularity
conditions, the estimated growth parameters are asymptotically normally dis-
tributed and the estimators of the growth parameters are consistent estimators
for individual longitudinal data (Shohoji et al., 1991).

Figure 2 shows the Normal distribution of estimated growth parameters
α1, β1, γ1 and δ1 which are obtained by fitting (3) on longitudinal measure-
ments for 120 boys. The same results are obtained for the girls but are not
provided here2. Confirming the existing results in growth curve model liter-
ature, the distribution of the estimated parameters using both noise free and
noisy longitudinal measurements are Normal. However, the noise–free lon-
gitudinal measurements have a distribution with standard deviation smaller
than the noisy one. Figure 3 shows the Normal distribution of the estimated
parameters α2, β2 and γ2 and Figure 4 shows Normal distribution of esti-
mated parameters α3, β3, γ3 and δ3 which are obtained by fitting (5) and (6)
on longitudinal measurements for boys, respectively. These Figures confirm
that, without any exception, curve fitting on the noise–free series gives a set
of growth parameters with less deviation.

6 Conclusion

A set of longitudinal measurements used to answer the question of whether
noise reduction matters for curve fitting in growth curve models. The singular

2Details of the results for girls are available from authors upon request.
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Figure 2: Distribution of estimated parameters of α1, β1, γ1 and δ1 (left to
right) for noisy time series (dashed line) and noise-reduced time series (thick
line).

Figure 3: Distribution of estimated parameters of α2, β2 and γ2 (left to right)
for noisy time series (dashed line) and noise-reduced time series (thick line).

Figure 4: Distribution of estimated parameters of α3, β3, γ3 and δ3 (left to
right) for noisy time series (dashed line) and noise-reduced time series (thick
line).

spectrum analysis technique was applied to remove noise from noisy longitu-
dinal series.

The results of this paper show that noise reduction is important for curve
fitting in growth curve models (see the values of AIC and SIC in Tables 1
and 2). The results also show that using noise free series gives estimated
parameters of growth curve models with smaller standard deviations than
the noisy series (see Figures 2–4). Finally, we conclude that the singular
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spectrum analysis technique can be used as a powerful tool for noise reduction
in longitudinal measurements.
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