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Abstract

We introduce the Hausdorff α-entropy to study the strong Hellinger con-
sistency of posterior distributions. We obtain general Bayesian consis-
tency theorems which extend the well-known results of Barron, Schervish
and Wasserman (1999), Ghosal, Ghosh and Ramamoorthi (1999) and
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1 Introduction

Let X be a Polish space endowed with a σ-algebra X . We consider a fam-
ily of probability measures dominated by a σ-finite measure µ in X. Let
X1, X2, . . . , Xn stand for an independent identically distributed (i.i.d.) sam-
ple of n random variables, taking values in X and having a common probability
density function f0 with respect to the dominating measure µ. For two prob-
ability density functions f and g we denote the Hellinger distance

H(f, g) =
(∫

X

(√
f(x)−

√
g(x)

)2
µ(dx)

) 1
2

and the Kullback-Leibler divergence

K(f, g) =
∫

X
f(x) log

f(x)
g(x)

µ(dx).

Assume that the space F of probability density functions is separable with
respect to the Hellinger metric and that F is the Borel σ-algebra of F. Denote

Aε =
{
f : H(f0, f) ≥ ε

}
,

Nδ =
{
f : K(f0, f) < δ

}
.

Let Π be a prior distribution on F. It is known that the posterior distribution
Πn of the Π given X1, X2, . . . , Xn coincides with

Πn(A) =

∫
A

n∏
i=1

f(Xi)Π(df)

∫
F

n∏
i=1

f(Xi)Π(df)
for all measurable subsets A ⊂ F.

A more useful expression of the posterior distribution is the following

Πn(A) =

∫
A Rn(f)Π(df)∫
FRn(f) Π(df)

,

where Rn(f) =
n∏

i=1

{
f(Xi)/f0(Xi)

}
stands for the likelihood ratio.

A key point to the area of Bayesian nonparametric inference is to establish
consistency of posterior distributions with respect to some metric, typically
the Hellinger metric. Early works on consistency of posterior distributions
were concerned with weak consistency. Freedman (1963) and Diaconis and
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Freedman (1986) had demonstrated that a prior distribution having positive
mass on all weak neighborhoods of the true density function f0 is not nec-
essarily weakly consistent. A sufficient condition for weak consistency was
suggested by Schwartz (1965). Recall that f0 is said to be in the Kullback-
Leibler support of the prior distribution Π if Π(Nδ) > 0 for all δ > 0. Schwartz
(1965) proved that, if f0 is in the Kullback-Leibler support of Π, then the se-
quence of posterior distributions accumulates in all weak neighborhoods of f0.
Schwartz’s theorem provides a powerful tool in establishing posterior consis-
tency, see, for example, Barron (1999). However, it seems not to be useful for
establishing strong consistency. In many applications like density estimation
it is natural to ask for strong consistency of Bayesian procedures. Recent at-
tention has switched to studying the strong consistency. It is known that the
condition of f0 being in the Kullback-Leibler support is not enough to guar-
antee F∞

0 -almost sure consistency of posterior distributions with respect to
the Hellinger distance, where F∞

0 stands for the infinite product distribution
of the probability distribution F0 associated with f0. Some additional restric-
tions must be needed to obtain that, for any given ε > 0, Πn(Aε) tends to
zero F∞

0 -almost surely as n →∞. Barron et al. (1999), Ghosal et al. (1999)
and Walker (2004) have made important contributions in this direction. The
results of Barron et al. (1999) and Ghosal et al. (1999) rely upon construction
of suitable sieves and computation of metric entropies, which measures the size
of the density space F. The sieve approach was discussed in great detail in
the monograph by Ghosh and Ramamoorthi (2003), see also the nice review
of Wasserman (1998). Walker’s approach relies upon summability of prior
probability of suitable coverings. In this paper, in order to deal with Bayesian
consistency we introduce the Hausdorff α-entropy which is less than the met-
ric entropies provided by Barron et al. (1999) and Ghosal et al. (1999). The
Hausdorff α-entropy includes some information on the prior distribution. One
of main advantages to use the Hausdorff α-entropy is that in many important
cases the Hausdorff α-entropy of the whole density space is finite, whereas the
corresponding metric entropies usually take infinite value. We present a more
general sufficient condition for strong Hellinger consistency. This extends re-
sults given in Barron et al. (1999) and Ghosal et al. (1999). Furthermore, our
result also implies Walker’s theorem (2004).

The following elementary equality plays an important role in our estimation
of the numerator of Πn(A)

∫

A
Rn(f)Π(df) = Π(A)

n−1∏

k=0

∫
A Rk+1(f)Π(df)∫

A Rk(f)Π(df)
,
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where we assume that R0(f) = 1 and all denominators on the right hand side
do not equal zero. By Lemma 1 of Barron et al. (1999) we know that, if f0

is in the Kullback-Leibler support of Π, the last product is almost surely well
defined. Following Walker (2004) we shall use the function

fk A(x) =

∫
A f(x)

k∏
i=1

f(Xi) Π(df)

∫
A

k∏
i=1

f(Xi)Π(df)
=

∫
A f(x) Rk(f)Π(df)∫

A Rk(f)Π(df)

for each measurable set A of F with the non-zero denominator. The func-
tion fk A can be considered as the predictive density of f with a normalized
posterior distribution, restricted on the set A. Now we can write

∫

A
Rn(f) Π(df) = Π(A)

n−1∏

k=0

fk A(Xk+1)
f0(Xk+1)

.

Our purpose is to apply the Hausdorff α-entropy to deal with the estimation of
the last product. We develop Walker’s approach (2004). For the denominator
of Πn(Aε) we apply the known result that the denominator is bounded below
by e−n c for any given constant c > 0 if f0 is in the Kullback-Leibler support
of Π, see Lemma 4 of Barron et al. (1999).

The paper is organized as follows. In Section 2 we first introduce the
Hausdorff α-entropy and discuss properties on it. Then general Bayesian con-
sistency theorems are presented. In Section 3 we apply our results to several
examples. Our theorems lead to some improvements of known results in these
examples. Some other closing remarks are included in Section 4. The final
section is a technical appendix.

2 Consistency of posteriors

Barron et al.(1999) provide an elegant general result on strong Hellinger consis-
tency that uses the upper bracketing Lµ-entropy with the following definition.
Let Lµ be the space of all nonnegative integrable functions with respect to a
measure µ and ||f || = ∫ ∣∣f(x)

∣∣ µ(dx) be the standard norm in Lµ. For G ⊂ F
and δ > 0, the upper bracketing Lµ-entropy J1(δ,G) is defined as the loga-
rithm of the minimum of all numbers N such that there exist f1, f2, . . . , fN

in Lµ with the properties: (a)
∫

fj(x) µ(dx) ≤ 1 + δ for all j; (b) For each
f ∈ G there exists some fj with f ≤ fj . Motivated by this definition, Ghosal
et al.(1999) introduce the Lµ-metric entropy J2(δ,G) which is the logarithm
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of the minimum of all numbers N such that there exist f1, f2, . . . , fN in Lµ

satisfying G ⊂ ⋃N
i=1

{
f ∈ Lµ : ||f−fi|| < δ

}
, see also Definition 4.4.5 in Ghosh

et al. (2003). They obtained the following result.

Theorem A. (Ghosal et al., 1999) Suppose that the true density function f0

is in the Kullback-Leibler support of Π and suppose that for any ε > 0 there
exist 0 < δ < ε, c1, c2 > 0, 0 < β < ε2

2 , and Gn ⊂ F such that for all large n,

(i) Π
(Gc

n

)
< c1 e−n c2 ;

(ii) J2(δ,Gn) < nβ.

Then for any ε > 0, Πn(Aε) tends to zero almost surely as n →∞.

Since the inequality J2(2 δ,Gn) ≤ J1(δ,Gn) holds for any δ > 0, Theorem
A is essentially stronger than the convergence result of Barron et al.(1999).
Later, Walker (2004) used a different condition to give a strong Hellinger
consistency result for posterior distributions.

Theorem B. (Walker, 2004) Suppose that the true density f0 is in the
Kullback-Leibler support of Π and suppose that for any ε > 0 there exist a cov-
ering {A1, A2, . . . , Aj . . . } of Aε and 0 < δ < ε such that

∑∞
j=1

√
Π(Aj) < ∞

and each Aj ⊂ {f : H(fj , f) < δ} for some density function fj satisfying
H(fj , f0) > ε. Then for any ε > 0, Πn(Aε) tends to zero almost surely as
n →∞.

Walker, Lijoi and Prunster (2005) state that the square root of Theorem B
can be replaced by any 0 < α < 1. Theorem A and Theorem B both have been
shown to be extremely useful in the theory of Bayesian consistency. In this
section we introduce the Hausdorff α-entropy in studying Hellinger consistency
of posterior distributions. Using the Hausdorff α-entropy as a tool we prove
a Bayesian consistency theorem which essentially implies both Theorem A
and Theorem B (up to a constant multiple). Our result relaxes the entropy
condition of Theorem A and finiteness of the series with the square roots of
Theorem B. For convenience of computation, it is worth pointing out that
our result also implies an analogue of Theorem B, in which we take away the
restriction that the centers of Hellinger balls locate in the set {f : H(f, f0) >
ε} (of course, we need to shrink a little the common radius of Hellinger balls).
Denote log 0 = −∞. Now we define
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Definition. Let α ≥ 0 and G ⊂ F. For δ > 0 we define the Hausdorff
α-entropy J(δ,G, α) with respect to Π as

J(δ,G, α) = log inf
N∑

j=1

Π(Aj)α,

where the infimum is taken over all coverings {A1, A2, . . . , AN} of G, where
N may be ∞, such that each Aj is contained in {f : H(fj , f) < δ} for some
fj ∈ Lµ.

Note that f1, f2, . . . , fN in the definition are not necessarily density func-
tions, however, it is no problem to define the Hellinger distance of functions in
Lµ. The definition of Hausdorff α-entropy J(δ,G, α) is motivated by that of
the standard Hausdorff α-measure. Clearly, J(δ,G, α) ≤ J(δ,G, 0) = J3(δ,G)
for all α ≥ 0, where J3(δ,G) stands for the logarithm of the minimum of
all numbers N = N(δ,G) such that there exist functions f1, f2, . . . , fN in Lµ

satisfying G ⊂ ⋃N
i=1

{
f : H(fi, f) < δ

}
. Moreover, we have

Lemma 1. The following statements are true.

(i) The inequality

α log Π(G) ≤ J(δ,G, α) ≤ α log Π(G) + (1− α)J3(δ,G)

holds for all 0 ≤ α ≤ 1 and G ⊂ F.
(ii) If G ⊂ ∪m

k=1Gk with 1 ≤ m ≤ ∞, then

eJ(δ,G,α) ≤
m∑

k=1

eJ(δ,Gk,α).

(iii) If 0 ≤ α1 ≤ α2 ≤ 1 then

J3(δ,G) = J(δ,G, 0) ≥ J(δ,G, α1) ≥ J(δ,G, α2) ≥ J(δ,G, 1) = log Π(G).

Since log Π(G) ≤ 0, assertion (i) of Lemma 1 implies that if α is close
to one then the Hausdorff α-entropy J(δ,G, α) is much smaller than J3(δ,G).
Assertion (ii) states in fact that J(δ,G, α) is an increasing subadditive function
of G. Now we present the main results of this paper.
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Theorem 1. Let ε > 0. Suppose that the true density function f0 is in the
Kullback-Leibler support of Π and suppose that there exist 0 ≤ α < 1, 0 < δ <
ε(1− α)/7, c1, c2 > 0, 0 < β < ε2/4, and Gn ⊂ F such that for all large n,

(i) Π
(
Aε \ Gn

)
< c1 e−n c2 ;

(ii) J(δ,Gn, α) < nβ.

Then Πn(Aε) tends to zero almost surely as n →∞.

Theorem 1 fails for α ≥ 1 as shown in the following: assume that α ≥ 1 and
that we do not have Bayesian consistency for some prior Π. Since F is separable
with respect to the Hellinger distance, there exist at most countable subsets
E1, E2, . . . , which form a covering of F and have Hellinger diameters less than
any given positive constant 2δ. Denote A1 = E1 and Aj = Ej\(A1∪· · ·∪Aj−1)
for j = 2, 3, . . . . Then all sets Aj are disjoint, ∪jAj = F and the Hellinger
diameter of each Aj does not exceed 2δ. Hence eJ(δ,F,α) ≤ ∑

j Π(Aj)α ≤∑
j Π(Aj) = Π(F) = 1, which yields that conditions (i) and (ii) of Theorem 1

are fulfilled for the α ≥ 1.
Let N(δ,Gnj) be the minimal number of Hellinger balls of radius δ needed

to cover G, that is, N(δ,Gnj) = eJ3(δ,G). An application of Theorem 1 and
Lemma 1 yields the following extension of Theorem A and Theorem B.

Theorem 2. Let ε > 0. Suppose that the true density function f0 is in the
Kullback-Leibler support of Π and suppose that there exist 0 ≤ α < 1, 0 < δ <
ε(1 − α)/7, c1, c2 > 0, 0 < β < ε2/4, and a sequence {Gn}∞n=1 of subsets on
F such that each Gn is contained in ∪∞j=1Gnj. If

(i) Π
(
Aε \ Gn

)
< c1 e−n c2 ;

(ii)
∞∑

j=1
N(δ,Gnj)1−α Π(Gnj)α < en β ,

then Πn(Aε) tends to zero almost surely as n →∞.

Proof. From conditions (i) and (ii) of Lemma 1 it turns out that

eJ(δ,Gn,α) ≤
∞∑

j=1

eJ(δ,Gnj ,α) ≤
∞∑

j=1

N(εn,Gnj)1−α Π(Gnj)α.

Then Theorem 2 follows directly from Theorem 1. 2

As a direct application we have
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Corollary 1. Suppose that f0 is in the Kullback-Leibler support of Π
and suppose that for any ε > 0 there exist 0 < α < 1 and a covering
{A1, A2, . . . , Aj . . . } of Aε such that

(i)
∞∑

j=1
Π(Aj)α < ∞;

(ii) each Aj ⊂ Lµ is included in some Hellinger ball with radius ε (1−α)
8 .

Then for any ε > 0, Πn(Aε) tends to zero almost surely as n →∞.

Proof. Given ε > 0, take Gn = F ∩ Aε and Gnj = Aj ∩ Aε. Then it is clear to
check conditions (i) and (ii) of Theorem 2 for δ = ε (1−α)

8 , which concludes the
proof. 2

As another consequence of Theorem 2 (for α = 0) we obtain the strong
Hellinger consistency by means of the entropy J3(δ,G).

Corollary 2. Suppose that the true density function f0 is in the Kullback-
Leibler support of Π and suppose that for any ε > 0 there exist 0 < δ <
ε/7, c1, c2 > 0, 0 < β < ε2/4, and Gn ⊂ F such that for all large n,

(i) Π
(Gc

n

)
< c1 e−n c2 ;

(ii) J3(δ,Gn) < nβ.

Then for any ε > 0, Πn(Aε) tends to zero almost surely as n →∞.

Remark. By the inequality H(f, g)2 ≤ ||f − g|| for all 0 ≤ f, g ∈ Lµ we have
J3(
√

δ,Gn) ≤ J2(δ,Gn). On the other hand, the inverse inequality ||f − g|| ≤
2H(f, g) holds for all f, g in F, which together with the triangle inequality
yields that J2 (4 δ,Gn) ≤ J3(δ,Gn). Therefore, Corollary 2 is in fact an analogue
of Theorem A. Walker (2003) has given a nice proof of Corollary 2.

3 Illustrations

In this section we present several examples illustrating our theorems. In par-
ticular, we consider two types of mixture models and the infinite-dimensional
exponential family. Our theorems lead to some improvements of known results
on these examples.
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3.1 Normal mixtures for Bayesian density estimation

The normal mixture model is given by

fσ,P (x) = φσ ∗ P =
∫

φσ(x− z) P (dz),

where φσ denotes the normal density with mean 0 and variance σ2, and P is a
random probability measure on R with law Λ selecting discrete distributions
almost surely. These models consist of a prior distribution µ for σ and the
independent prior distribution Λ, which induces a prior Π = µ × Λ through
the mapping (σ, P ) 7−→ fσ,P . Normal mixture models include many impor-
tant models such as the mixture of Dirichlet process (Ferguson (1973) and Lo
(1984)) in which P is the Dirichlet process with parameter measure α, a finite
nonnull measure. See Ghosal et al. (1999) and Lijor et al. (2005) for a de-
tailed description of normal mixture models. If the aim is density estimation,
it is natural to study Bayesian strong consistency for such models. Applying
Theorem 1, we shall prove

Theorem 3. Suppose that the prior distribution µ has support in [0, M ] and
suppose that the true density function f0 is in the Kullback-Leibler support of
Π. Let β > 0. If for any δ > 0 there exist c1 > 0, c2 > 0 and two sequences
an ↗∞, σn ↘ 0 such that for all large n,

(i) Λ{P : P [−an, an] < 1− δ} ≤ e−c1n;

(ii) µ{σ < σn} ≤ e−c2n;

(iii) an/σn ≤ β n,

then for any ε > 0, Πn(Aε) tends to zero almost surely as n →∞.

Theorem 3 strengthens slightly Theorem 7 of Ghosal et al. (1999), where
they have the same conditions (i)-(ii) as ours except the last condition (iii), in
which they need an arbitrarily small coefficient β (this is essentially equivalent
to an/nσn = o(1) as n → ∞), whereas our condition (iii) is that an/nσn =
O(1) as n →∞.
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3.2 Mixtures of priors

Another type of mixture of priors is defined by

Π(·) =
∞∑

j=1

ρj ΠBj (·),

where ρj are positive constants with
∑∞

j=1 ρj = 1, and ΠBj (·) stands for a
probability measure supported on Bj ⊂ F. Petrone and Wasserman (2002)
studied these type priors by terms of Bernstein polynomials. See also Walker
(2004) for a convergency result of such priors. Now we apply Theorem 2 to get
a sufficient condition of the Bayesian Hellinger consistency. Take Gn = ∪∞j=1Bj .
Condition (i) of Theorem 2 is trivially fulfilled, since the prior distribution Π
is supported on Gn. To see (ii), choosing Gnj = Bj , it is enough to assume
that ∞∑

j=1

N(δ,Bj)1−α Π(Bj)α =
∞∑

j=1

N(δ,Bj)1−α ρα
j < ∞

for any δ > 0. So this condition implies that the posterior distribution is
Hellinger consistent at the true density function f0 if f0 is in the Kullback-
Leibler support of the prior Π.

For example, in the case that N(δ,Bj) = (c/δ)j for some fixed constant
c > 0 (just like the case of Bernstein polynomials), we need to assume that∑∞

j=1(c/δ)(1−α) j ρα
j < ∞ for each δ > 0. This holds if ρj ≤ c1e

−c2j for all
large j, where c1 and c2 are two fixed positive constants. The last inequality
strengthens the result provided by Walker (2004), who assume that ρj ≤ c1e

−cj

for all c > 0 and for all large j, where c1 is a fixed positive constant.

3.3 Infinite-dimensional exponential families

Here we consider a sequence of independent random variables Θ =
{θ1, θ2, . . . , } with θj ∼ N(0, σ2

j ). The infinite-dimensional exponential family
of density functions fΘ(x) on [0, 1] is given by

fΘ(x) = exp
( ∞∑

j=1

θj φj(x)− c(Θ)
)
,

where {φj(x)} is an orthonormal basis of uniformly bounded functions with
respect to the Lebesgue measure on [0, 1] and the constant c(Θ) is chosen
such that the integral of fΘ(x) on [0, 1] is equal to 1. Since any prior on the
family Ω = {Θ} induces naturally a prior on F = {fΘ}, it is convenient to
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work directly with Ω. This family is originally studied by Leonard (1978) and
Lenk (1988, 1991). Denote aj = sup0≤x≤1 |φj(x)|. To make fΘ(x) to be a
density function with probability 1, we assume that

∑∞
j=1 aj σj < ∞, which

implies that
∑∞

j=1 σj ≤
∑∞

j=1 aj σj < ∞ since aj = sup0≤x≤1 |φj(x)| ≥(∫ 1
0 φj(x)2

)1/2 = 1. Under the additional condition
∑∞

j=1 bj σj < ∞ with bj =
sup0≤x≤1 |φ′j(x)|, Barron et al. (1999) obtained strong Hellinger consistency
for the family Ω.

Here we construct a special covering of Ω. Given 0 < β < 1, a positive
integer s, and a sequence {δj} of positive numbers less than 1. By symmetry
of the prior we can only consider the covering of the subfamily Ω+ = {Θ :
θj ≥ 0 for all j}, which consists of all subsets of the following type

s∏

j=1

{
Θ : θj ∈ A(nj , l, δj)

}
,

where n1, n2, . . . , ns are arbitrary nonnegative integers;

A(nj , l, δj) =
{

θj : (nj + (l − 1)δ
1−β

β

j )βδβ
j ≤ θj < (nj + lδ

1−β
β

j )βδβ
j

}

for l = 1, 2, . . . , Nj ;

A(nj , Nj + 1, δj) =
{

θj : (nj + Njδ
1−β

β

j )βδβ
j ≤ θj < (nj + 1)βδβ

j

}

with Nj = [δ1−1/β
j ] for nj ≥ 1 and Nj = 0 for nj = 0. Clearly, for any

fixed s ≥ 1 the union of all these products builds a covering of Ω+. However,
in order to keep uniformly small Hellinger diameters of the covering sets, we
are most interesting in the case of s = ∞. Unfortunately, such a covering
with s = ∞ consists of uncountably many sets in which theorem 1 fails to be
applied. Hence we have to take an (large) integer s to get a suitable countable
covering. Now we check condition (ii) of Theorem 1 for such a covering. Let
2 δ be the largest Hellinger diameter of all sets in the covering. Assume that
δ is a finite number. By the definition of the Hausdorff 1/2-entropy we have

eJ(δ,Ω,1/2) ≤
∞∑

n1=0

· · ·
∞∑

ns=0

s∏

j=1

Nj+1∑

l=1

√
Pr

{
θj ∈ A(nj , l, δj)

}

≤
s∏

j=1

∞∑

n=0

Nj+1∑

l=1

√
Pr

{
θj ∈ A(n, l, δj)

}

=
s∏

j=1

(
1 +

∞∑

n=1

Nj+1∑

l=1

√
Pr

{
θj ∈ A(n, l, δj)

} )
.
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From the inequality |aβ − bβ| ≤ |a − b|β it turns out that |θ1j − θ2j | ≤ δj for
all θ1j , θ2j in A(nj , l, δj) with j = 1, 2, . . . , s, which yields

∞∑

n=1

Nj+1∑

l=1

√
Pr

{
θj ∈ A(n, l, δj)

}

≤ ( 1
2π

)1/4( δj

σj

)1/2
∞∑

n=1

Nj+1∑

l=1

exp
(
−

(
n + (l − 1)δ

1−β
β

j

)2β
δ2β
j

4σ2
j

)

≤ ( 1
2π

)1/4( δj

σj

)1/2(Nj + 1)
∞∑

n=1

exp
(
−n2βδ2β

j

4σ2
j

)

≤ ( 1
2π

)1/4( δj

σj

)1/22 δ
1−1/β
j

m!4mσ2m
j

δ2βm
j

∞∑

n=1

1
n2βm

= 2 m! 4m
( 1
2π

)1/4 σ
2m− 1

2
j

δ
2βm+ 1

β
− 3

2

j

∞∑

n=1

1
n2βm

,

where the last inequality follows from ex ≥ xm/m! for each m and x ≥ 0.
Then for m > (2β)−1 we have that d = 2 m!4m (2π)−1/4 ∑∞

n=1 n−2βm < ∞
and hence, for any s,

eJ(δ,Ω,1/2) ≤
∞∏

j=1

(
1 +

d σ
2m− 1

2
j

δ
2βm+ 1

β
− 3

2

j

)
≤ exp

(
d

∞∑

j=1

σ
2m− 1

2
j

δ
2βm+ 1

β
− 3

2

j

)

which is finite if
∞∑

j=1

σ
2m− 1

2
j

δ
2βm+ 1

β
− 3

2

j

< ∞.

Given d0 > 0, let δj = d0 σj

/∑∞
j=1 σj . Then the above condition is equivalent

to ∞∑

j=1

σ
2(1−β)m− 1

2
− 1

β
+ 3

2

j < ∞,

which holds if we choose a positive β < 1 and a sufficiently large m such that
the exponent in the last sum is bigger than 1.

Now we prove the Bayesian consistency for the family

ΩC =
{

Θ :
∞∑

j=1

cj |θj | ≤ c0

}
,
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where the positive sequence C = {c0, c1, . . . } satisfies limj→∞ cj = ∞. Since
the corresponding density functions fΘ(x) are bounded in [0, 1], it follows from
Barron et al.(1999) that the true density function is always in the Kullback-
Leibler support of the prior Π. Using the argument above we only need to
show that the largest Hellinger diameter 2 δ of the covering sets can become
arbitrarily small if d0 is small. Let Θ1 = {θ1j} and Θ2 = {θ2j} belong in
some covering set. Then |θ1j − θ2j | ≤ δβ

j = dβ
0

(
σj

/∑∞
j=1 σj

)β ≤ dβ
0 for

j = 1, 2, . . . , s. Hence we have

sup
0≤x≤1

∣∣∣
∞∑

j=1

θ1jφj(x)−
∞∑

j=1

θ2jφj(x)
∣∣∣

≤
(
s dβ

0 +
∞∑

j=s+1

(|θ1j |+ |θ2j |
))

max
j

aj

≤
(
s dβ

0 +
1

max
j≥s+1

cj

∞∑

j=s+1

(
cj |θ1j |+ cj |θ2j |

))
max

j
aj

≤
(
s dβ

0 +
2 c0

max
j≥s+1

cj

)
max

j
aj ,

which can be arbitrarily small if we first take a large s and then let d0 be small
enough. Therefore, together with

H(fΘ1 , fΘ2)
2 = 2− 2

∫ √
fΘ1 fΘ2 = 2− 2EΘ2

(fΘ1

fΘ2

) 1
2 ,

we have obtain that the Hellinger diameters of the above covering sets can be
made uniformly small. Thus, the strong consistency of posterior distributions
follows from Theorem 1.

4 Discussion

A satisfactory covering (with s = ∞) in the example of section 3.3 consists of
uncountable many sets. In fact, it is easy to see that these covering sets are not
Hellinger open sets. It is worth to construct a suitable covering only consisting
of Hellinger open subsets. Since F is separable with respect to the Hellinger
distance, any (uncountable) covering must contain a countable subcovering for
which Theorem 1 can be applied.

It is known that the Hellinger metric is essentially equivalent to the L1-
norm. So one can formulate Theorem 1 by using the Hausdorff α-entropy

12



related to the L1-norm instead of the Hellinger metric. An interesting problem
is to get Bayesian consistency by means of the Hausdorff α-entropy related to
the Kullback-Leibler divergence. Anyway, to make our result more useful, we
should further understand the Hausdorff α-entropy.

We have not discussed rates of convergence in this paper. It is no problem
to use the Hausdorff α-entropy as a tool to discuss rates of convergence of
posterior distributions.

Appendix

Proof of Lemma 1. (i) The first inequality follows from

J(δ,G, α) = log inf
N∑

j=1

Π(Aj)α ≥ log inf
( N∑

j=1

Π(Aj)
)α

≥ log inf
(

Π
( N⋃

j=1

Aj

) )α
≥ α log Π(G).

To prove the second inequality, given ε > 0, take a partition {A1, A2, . . . , AN}
of G such that each Aj has the Hellinger diameter less than 2δ and J3(δ,G)+ε >
log N . It then follows from Hölder’s inequality that

J(δ,G, α) ≤ log
N∑

j=1

Π(Aj)α ≤ log
{( N∑

j=1

Π(Aj)α· 1
α
)α ( N∑

j=1

1
)1−α

}

= log
{( N∑

j=1

Π(Aj)
)α

N1−α
}

= log
{
Π(G)α N1−α

}

≤ α log Π(G) + (1− α) J3(δ,G) + (1− α) ε,

which implies the second inequality.
(ii) For any δk > 0 there exists ∪Nk

j=1Akj ⊃ Gk such that the Hellinger
diameter of each Akj is less than 2 δ and

Nk∑

j=1

Π(Akj)α ≤ (1 + δk) eJ(δ,Gk,α),

which yields that

eJ(δ,G,α) ≤
m∑

k=1

Nk∑

j=1

Π(Akj)α ≤
m∑

k=1

eJ(δ,Gk,α) +
m∑

k=1

δk eJ(δ,Gk,α).

13



By the arbitrariness of δk > 0 we have obtained the required inequality.
(iii) The first equality is trivial and all the inequalities follows directly from

the definition of Hausdorff α-entropy. To see the last quality, for any covering
of G with the Hellinger diameters less than 2δ > 0 there exists a finer covering
A?

1, A?
2, . . . of G containing at most countable many disjoint subsets of G, since

the space F is separable with respect to the Hellinger metric. This implies that

J(δ,G, 1) = log inf
∑

j

Π(A?
j ) = log Π(G).

The proof of Lemma 1 is complete. 2

Proof of Theorem 1. Given ε > 0, we have

Πn(Aε) ≤ Πn

(Gn ∩Aε

)
+ Πn

(
Aε \ Gn

)
.

By Lemma 5 of Barron et al. (1999), assumption (i) implies that the second
term Πn

(
Aε\Gn

)
tends to zero almost surely as n →∞. From assumption (ii)

it follows that there exist functions f1, f2, . . . , fN in Lµ such that Gn ∩ Aε ⊂⋃N
i=1 Aj , where Aj = Gn ∩ Aε ∩ {f : H(fj , f) < δ} and

∑N
j=1 Π(Aj)α < en β .

Shrinking Aj if necessary, we assume that all sets Aj are disjoint. Assume also
that Aj 6= ∅ for all j, otherwise we take away Aj in the covering. Taking f?

j ∈
Aj and applying the triangle inequality, we get that H(fj , f0) ≥ H(f?

j , f0) −
H(f?

j , fj) ≥ ε− δ for all j. Furthermore, by Jensen’s inequality we have that

H2(fk Aj , fj) ≤
∫
Aj

H2(f, fj) Rk(f)Π(df)∫
Aj

Rk(f)Π(df)
≤ δ2,

which, together with the triangle inequality, yields that

H(fk Aj , f0) ≥ H(fj , f0)−H(fj , fk Aj ) ≥ ε− 2 δ := γ > 0.

On the other hand, for any subset A ⊂ F the equality

∫

A

Rn(f)Π(df) = Π(A)
n−1∏

k=0

fk A(Xk+1)
f0(Xk+1)

holds where R0(f) = 1 and Rk(f) =
k∏

i=1

{
f(Xi)

/
f0(Xi)

}
for k ≥ 1. By (iii) of
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Lemma 1 it is no restriction to assume 0 < α < 1. Then we have

Πn

(Gn ∩Aε

) ≤ (
Πn(Gn ∩Aε)

)α ≤ ( N∑

j=1

Πn(Aj)
)α

≤
N∑

j=1

Πn(Aj)α =

N∑
j=1

Π(Aj)α
n−1∏
k=0

fk Aj
(Xk+1)

α

f0(Xk+1)α

(∫
FRn(f)Π(df)

)α .

We estimate the last numerator and denominator separately. For the numer-
ator, given b > 0 we get

F∞
0

{ N∑

j=1

Π(Aj)α
n−1∏

k=0

fk Aj (Xk+1)α

f0(Xk+1)α
≥ e−n b ε2

}

≤ en b ε2
E

N∑

j=1

Π(Aj)α
n−1∏

k=0

fk Aj (Xk+1)α

f0(Xk+1)α

= en b ε2
N∑

j=1

Π(Aj)α E

( n−1∏

k=0

fk Aj (Xk+1)α

f0(Xk+1)α

)
.

Let Fk = σ{X1, X2, . . . , Xk}. Then we have

E

( n−1∏

k=0

fk Aj (Xk+1)α

f0(Xk+1)α

)
= E

(
E

( n−1∏

k=0

fk Aj (Xk+1)α

f0(Xk+1)α

∣∣∣∣ Fn−1

))

= E

(
n−2∏

k=0

fk Aj (Xk+1)α

f0(Xk+1)α
E

(
fn−1 Aj (Xn)α

f0(Xn)α

∣∣∣∣ Fn−1

))
,

where by the conditional Hölder’s inequality we get that with probability one,

E

(
fn−1 Aj (Xn)α

f0(Xn)α

∣∣∣∣ Fn−1

)
= E

(
fn−1 Aj (Xn)

α
2

f0(Xn)
α
2

fn−1 Aj (Xn)
α
2

f0(Xn)
α
2

∣∣∣∣ Fn−1

)

≤ E

(
fn−1 Aj (Xn)

α
2
· 2
2−α

f0(Xn)
α
2
· 2
2−α

∣∣∣∣ Fn−1

) 2−α
2

E

(
fn−1 Aj (Xn)

α
2
· 2
α

f0(Xn)
α
2
· 2
α

∣∣∣∣ Fn−1

)α
2

= E

(
fn−1 Aj (Xn)

α
2−α

f0(Xn)
α

2−α

∣∣∣∣ Fn−1

) 2−α
2

.
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Take the smallest non-negative integer m satisfying α
2m(1−α)+α ≤ 1

2 , i.e. α
1−α ≤

2m < 2α
1−α . Repeating the above procedure m − 1 more times we obtain that

with probability one,

E

(
fn−1 Aj (Xn)α

f0(Xn)α

∣∣∣∣ Fn−1

)
≤ E

(
fn−1 Aj (Xn)

α
2m(1−α)+α

f0(Xn)
α

2m(1−α)+α

∣∣∣∣ Fn−1

) 2m(1−α)+α
2m

,

which by the conditional Hölder’s inequality is less than

E

(
fn−1 Aj (Xn)

1
2

f0(Xn)
1
2

∣∣∣∣ Fn−1

) α
2m−1

=
( ∫ √

fn−1 Aj (Xn) f0(Xn) µ(dXn)
) α

2m−1

≤ (1− γ2

2
)2

1−m α ≤ e−2−m γ2 α.

Hence, with probability one, we have

E

( n−1∏

k=0

fk Aj (Xk+1)α

f0(Xk+1)α

)
≤ e−2−m γ2 α E

(
n−2∏

k=0

fk Aj (Xk+1)α

f0(Xk+1)α

)
.

Repeat the same argument n− 1 times and we get

E

( n−1∏

k=0

fk Aj (Xk+1)α

f0(Xk+1)α

)
≤ e−n 2−m γ2 α.

Thus we have obtained that for all n,

F∞
0

{ N∑

j=1

Π(Aj)α
n−1∏

k=0

fk Aj (Xk+1)α

f0(Xk+1)α
≥ e−n b ε2

}

≤ en (b ε2−2−m γ2 α)
N∑

j=1

Π(Aj)α

≤ en (β+b ε2−2−m γ2 α),

where m is an integer with α
1−α ≤ 2m < 2α

1−α . By δ < ε (1− α)/7 and β < ε2/4
we get β < 2−m γ2 α. Therefore, for any 0 < b < (2−m γ2 α − β)/ε2 we have

that
∞∑

n=1
en (β+b ε2−2−m γ2 α) < ∞. Thus, the first Borel-Cantelli Lemma yields

that
N∑

j=1

Π(Aj)α
n−1∏

k=0

fk Aj (Xk+1)α

f0(Xk+1)α
≤ e−n b ε2
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holds almost surely for all n large enough.
The estimation of the denominator follows from Lemma 4 of Barron et al.

(1999). They obtained that for any η > 0 the inequality

(∫

F
Rn(f)Π(df)

)α
≥ e−n η α

holds almost surely for all n large enough.
Finally, applying the above estimations for both numerator and denomi-

nator and choosing η = b ε2

2 α , we obtain that

Πn(Gn ∩Aε) ≤ e−n b ε2+n η α ≤ e−
n b ε2

2

almost surely for all sufficiently large n and the proof of Theorem 1 is complete.
2

Proof of Theorem 3. We need to construct sieves Gn satisfying conditions (i)
and (ii) of Theorem 1. Given δ > 0, following Ghosal et al. (1999) we choose

Gn =
⋃

σn<σ<M

{
φσ ∗ P : P [−an, an] > 1− δ

}
.

Then conditions (i) and (ii) implies that Gn fulfill condition (i) of Theorem 1.
On the other hand, by the inequality H(f, g)2 ≤ ||f − g|| and Theorem 6 of
Ghosal et al. (1999) we obtain that J3(

√
δ,Gn) ≤ J2(δ,Gn) ≤ K an/σn ≤ Kβn

for all n, where the last inequality follows from condition (ii) and K is some
constant depending only on δ and M . It then turns out from Lemma 1 that

J(
√

δ,Gn, α) ≤ α log Π(Gn) + (1− α)Kβn ≤ n
( α

n
+ (1− α)Kβ

)
.

Taking α sufficiently close to one and then letting n be large enough one can
make α

n +(1−α)Kβ arbitrarily small, which implies condition (ii) of Theorem
1 and hence we have obtained strong consistency of the prior distributions Πn.
The proof of Theorem 3 is complete. 2
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