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Abstract

We study the rate of Bayesian consistency for hierarchical priors con-
sisting of prior weights on a model index set and a prior on a density
model for each choice of model index. Ghosal, Lember and van der
Vaart (2008) have obtained general in-probability theorems on the rate
of convergence of the resulting posterior distributions. We extend their
results to almost sure assertions. As an application we study log spline
densities with a finite number of models and obtain that the Bayes pro-
cedure achieves the optimal minimax rate n−γ/(2γ+1) of convergence if
the true density of the observations belongs to the Hölder space Cγ [0, 1].
This disconfirms the conjecture given by Ghosal, Lember and van der
Vaart (2003). We also study consistency of posterior distributions of the
model index and give conditions ensuring that the posterior distributions
concentrate their masses near the index of the best model.
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1 Introduction

Selection of models plays a key role in theory of density estimation. Given
a collection of models, from the Bayesian point of view it is natural to put
a prior on model index and let the resulting posteriors determine a correct
model. A rate-adaptive posterior achieves the rate of convergence provided by
the best single model from the collection. This paper handles adaptation for
density estimation within the Bayesian framework. Suppose that we observe
a random sample X1, X2, . . . , Xn generated from a probability distribution P0

with a density function f0 with respect to some dominated σ-finite measure on
a measurable space X. Let In denote an at most countable index set for each
positive integer n. For γ ∈ In, Pn,γ stands for a subset of the density space
F equipped with a σ-field such that the mapping (x, f) 7→ f(x) is measurable
relative to the product σ-field on X×Pn,γ . Let Πn,γ be a probability measure
on Pn,γ and let {λn,γ : γ ∈ In} be a discrete probability measure on In. One
can therefore define an overall prior Πn with support on ∪γ∈InPn,γ ⊂ F by

Πn =
∑

γ∈In

λn,γ Πn,γ .

The corresponding posterior distribution Πn

(· ∣∣X1, X2, . . . , Xn

)
is a random

probability measure with the expression

Πn

(
A

∣∣X1, X2, . . . , Xn

)
=

∫
A

n∏
i=1

f(Xi) Πn(df)

∫
F

n∏
i=1

f(Xi)Πn(df)
=

∫
A Rn(f)Πn(df)∫
FRn(f) Πn(df)

=

∑
γ∈In

λn,γ

∫
Pn,γ∩A Rn(f) Πn,γ(df)

∑
γ∈In

λn,γ

∫
Pn,γ

Rn(f)Πn,γ(df)

for all measurable subsets A ⊂ F, where Rn(f) =
n∏

i=1

{
f(Xi)/f0(Xi)

}
denotes

the likelihood ratio. The posterior distribution Πn

(· ∣∣X1, X2, . . . , Xn

)
is said

to be consistent almost surely (or in probability) at a rate at least εn if there
exists a constant r > 0 such that Πn

(
f : d(f, f0) ≥ rεn

∣∣X1, X2, . . . , Xn

) −→ 0
almost surely (or in probability) as n →∞, where d is a distance on the density
space F. Throughout this paper, we assume that d is bounded above by the
Hellinger distance and d(f, f0)s is a convex function of f for some positive
constant s. Almost sure convergence and convergence in probability should
be understood as to be with respect to the infinite product distribution P∞

0

of the true distribution P0.
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The purpose is to deal with the following problem: assume that for a given
density f0 there exists a best model Pn,βn equipped with a prior Πn,βn such
that the optimal posterior rate is εn,βn . Find conditions ensuring that the
posterior distributions of the hierarchical prior Πn achieve the same rate of
convergence as we only use the best single model Πn,βn for this f0. Ghosal
et al. (2003, 2008) have studied adaptation to general models and obtained
in-probability results on convergence rate. See also Huang (2004) and Lember
and van der Vaart (2007) for related work on Bayesian adaptation. When
applying to log spline density models, Theorem 2.1 of Ghosal et al. (2008)
leads to adaptation up to a logarithmic factor. It was shown in Ghosal et al.
(2008) that the additional logarithmic factor in the convergence rate can be
removed by choosing special prior weights λn,γ when In are finite sets or the
priors Πn,γ are discrete.

Our main goal in present paper is to extend work of Ghosal et al. (2008)
and establish the corresponding almost sure assertions. With an application
of our theorems to log spline densities with finite many models, we successfully
take away the logarithmic factor without any additional assumption on prior
weights λn,γ and hence for a true density in Cγ [0, 1] the posteriors attain the
optimal rate of convergence in the minimax sense, which is well known to
be n−γ/(2γ+1). This strengthens Theorem 5.2 in Ghosal et al. (2008) and
disconfirms the conjecture given in Ghosal et al. (2003), in which it was
conjectured that to remove the logarithmic factor altogether it is necessary to
use more involved priors. A related problem is model selection, for which we
establish an almost sure result on consistency of posterior distributions of the
model index.

2 Notations

We shall use the Hellinger distance H(f, g) = ||√f−√g||2 and its modification

H∗(f, g) =
∣∣∣∣(√f −√g)

(
2
3

√
f
g + 1

3

)1/2∣∣∣∣
2
, where ||f ||p =

( ∫
X |f(x)|p µ(dx)

)1/p.
Observe that H∗(f, g) 6= H∗(g, f), see Xing (2008) for properties of H∗(f, g).
Denote

Wn,γ(ε) =
{
f ∈ Pn,γ : H∗(f0, f) ≤ ε

}
,

An,γ(ε) =
{
f ∈ Pn,γ : d(f0, f) ≤ ε

}
.

Let Lµ be the space of all nonnegative integrable functions with the norm
||f ||1. Write log 0 = −∞ and 0/0 = 0. In order to measure complexity
of models, we shall adopt the Hausdorff α-entropy introduced by Xing and
Ranneby (2008).
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Definition. Let α ≥ 0 and G ⊂ F. For δ > 0, the Hausdorff α-entropy
J(δ,G, α,Π, d) of the set G relative to the prior distribution Π and the distance
d is defined as

J(δ,G, α,Π, d) = log inf
N∑

j=1

Π(Bj)α,

where the infimum is taken over all coverings {B1, B2, . . . , BN} of G, where
N may take the value ∞, such that each Bj is contained in some ball {f :
d(f, fj) < δ} of radius δ and center at fj ∈ Lµ.

Let N(δ,G, d
)

be the minimal number of balls of radius δ relative to the
distance d needed to cover G ⊂ F. For any 0 ≤ α ≤ 1 and G ⊂ F, it was proved
in Xing and Ranneby (2008) that

eJ(δ,G,α,Π,d) ≤ Π(G)α N(δ,G, d)1−α ≤ N(δ,G, d).

The notation a . b means that a ≤ Cb for some positive constant C which
is universal or fixed in the proof. Write a ≈ b if a . b and b . a. For a
measure P and an integrable function f on X, we write Pf for the integral of
f on X with respect to P .

3 Adaptation and model selection

Denote by εn,γ the usual optimal convergence rate of posteriors by using the
single model Pn,γ with the prior Πn,γ . We shall use a partition In = I1

n + I2
n

with

I1
n = {γ ∈ In : εn,γ ≤

√
Hεn,βn} and I2

n = {γ ∈ In : εn,γ >
√

Hεn,βn},

where H is a fixed constant ≥ 1.

Theorem 1. Suppose that there exist positive constants H ≥ 1, Eγ , µn,γ ,
G, J, L, C and 0 < α < 1 such that 1 − α > 18αL, nε2

n,βn
≥ (1 + 1

C ) log n,

supγ∈I1
n

Eγε2
n,γ ≤ Gε2

n,βn
, supγ∈I2

n
Eγ ≤ G and

∑
γ∈In

µα
n,γ = O(eJnε2

n,βn ). Let

r be a constant with r ≥ 18(C+J+G+3α+2αC)
1−α−18αL +

√
H + 1 such that

(1) N
(

ε
3 , An,γ(2ε), d

) ≤ eEγnε2
n,γ for all γ ∈ In and ε ≥ εn,γ ,

(2)
λn,γ Πn,γ

(
An,γ(jεn,γ)

)

λn,βn Πn,βn

(
Wn,βn (εn,βn)

) ≤ µn,γ eLj2nε2
n,γ for all γ ∈ I2

n and j ≥ r,
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(3)
λn,γ Πn,γ

(
An,γ(jεn,βn)

)

λn,βn Πn,βn

(
Wn,βn (εn,βn)

) ≤ µn,γ eLj2nε2
n,βn for all γ ∈ I1

n and j ≥ r,

(4)
∞∑

n=1

∑
γ∈I2

n

λn,γ Πn,γ

(
An,γ(rεn,γ)

)
e
(3+2C)nε2n,βn

λn,βn Πn,βn

(
Wn,βn(εn,βn )

) < ∞.

Then
Πn

(
f : d(f, f0) ≥ rεn,βn

∣∣ X1, X2, . . . , Xn

) −→ 0

almost surely as n →∞.

Clearly, it is enough to assume that all inequalities in Theorem 1 hold
for all sufficiently large n. Note also that, together with Fatou Lemma, the
assertion of the almost sure convergence of Theorem 1 implies that

lim sup
n→∞

P∞
0 Πn

(
f : d(f, f0) ≥ rεn,βn

∣∣X1, X2, . . . , Xn

)

≤ P∞
0 lim sup

n→∞
Πn

(
f : d(f, f0) ≥ rεn,βn

∣∣X1, X2, . . . , Xn

)
= 0,

which yields that P∞
0 Πn

(
f : d(f, f0) ≥ rεn,βn

∣∣X1, X2, . . . , Xn

) −→ 0, or
equivalently, Πn

(
f : d(f, f0) ≥ rεn,βn

∣∣ X1, X2, . . . , Xn

) → 0 in probability.
This result was proved in Ghosal et al. (2008).

As a direct consequence of Theorem 1, we have

Corollary 1. Suppose that there exist positive constants H ≥ 1, Eγ , µn,γ ,
G, J, L, C, F and 0 < α < 1 such that 1 − α > 18αL, nε2

n,βn
≥ (1 + 1

C ) log n,

supγ∈I1
n

Eγε2
n,γ ≤ Gε2

n,βn
, supγ∈I2

n
Eγ ≤ G and

∑
γ∈In

µα
n,γ = O(eJnε2

n,βn ). Let

r be a constant such that r ≥ 18(C+J+G+3α+2αC)
1−α−18αL +

√
H + 1 and

(1) N( ε
3 , An,γ(2ε), d) ≤ eEγnε2

n,γ for all γ ∈ In and ε ≥ εn,γ ,

(2) λn,γ

λn,βn
≤ µn,γ e(L−F )n(ε2

n,γ∨ε2
n,βn

) for all γ ∈ In,

(3)
∑

γ∈I2
n

λn,γ

λn,βn
Πn,γ

(
An,γ(rεn,γ)

)
= O

(
e−(3+3C+F )nε2

n,βn

)
,

(4) Πn,βn

(
Wn,βn(εn,βn)

) ≥ e−Fnε2
n,βn .

Then
Πn

(
f : d(f, f0) ≥ rεn,βn

∣∣ X1, X2, . . . , Xn

) −→ 0

almost surely as n →∞.
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Condition (3) of Theorem 1 leads adaptation up to a logarithmic factor
for log spline density models, see Ghosal et al. (2008) for the correspond-
ing in-probability assertion. The following theorem is useful to remove the
logarithmic factor in some cases.

Theorem 2. Theorem 1 holds for r ≥ 18(C+J+G+3αK+2αCK)
1−α−18αL +

√
H + 1 if

the condition (3) of Theorem 1 is replaced by the condition that there exists a
constant K ≥ 1 independent of n, γ, j such that

(3′)
Πn,γ

(
An,γ(jεn,βn )

)

Πn,γ

(
Wn,γ(Kεn,βn )

) ≤ µn,γ eLj2nε2
n,βn for all γ ∈ I1

n and j ≥ r.

Now we consider the rate of convergence of posterior distributions of the
index parameter γ. Given a subset I of In, Ghosal et al. (2008) introduced
the posteriors

Πn

(
I

∣∣ X1, X2, . . . , Xn

)
=

∑
γ∈I λn,γ

∫
Pn,γ

Rn(f)Πn,γ(df)
∑

γ∈In
λn,γ

∫
Pn,γ

Rn(f)Πn,γ(df)
.

Clearly, the result of Theorem 1 implies that

Πn

(
γ ∈ In : d(f0,Pn,γ) ≥ rεn,βn

∣∣X1, X2, . . . , Xn

) −→ 0

almost surely as n →∞. Moreover, we have

Theorem 3. Under the same assumptions of Theorem 1, we have that

Πn

(
I2
n

∣∣ X1, X2, . . . , Xn

) −→ 0

almost surely as n → ∞. If furthermore for I3
n = {γ ∈ In :

√
Hεn,γ < εn,βn}

we have that

∞∑

n=1

∑

γ∈I3
n

λn,γ Πn,γ

(
An,γ(rεn,βn)

)
e(3+2C)nε2

n,βn

λn,βn Πn,βn

(
Wn,βn(εn,βn)

) < ∞,

then

Πn

(
γ ∈ In :

1√
H

εn,βn ≤ εn,γ ≤
√

Hεn,βn

∣∣X1, X2, . . . , Xn

) −→ 1

almost surely as n →∞.

5



Since H is an arbitrarily given constant bigger than 1, Theorem 3 states
that the posterior distributions of model index concentrate their masses on
the indices of those models which have approximately the same convergence
rate as the correct rate εn,βn . This implies that the posteriors automatically
choose the right model. In this sense Theorem 3 can be considered as a general
convergence theorem on posterior distributions of model index.

In the situation that there are only two models, one can use the Bayes
factor to describe behavior of the posterior of the model index, see Ghosal et
al. (2008). Denote by BFn the Bayes factor, that is,

FBn :=
λn,2

∫
Pn,2

Rn(f)Πn,2(df)

λn,1

∫
Pn,1

Rn(f)Πn,1(df)
=

Πn

({2} ∣∣X1, X2, . . . , Xn

)

Πn

({1} ∣∣X1, X2, . . . , Xn

) .

Corollary 2. Suppose that condition (1) of Theorem 1 holds and that εn,1 >
εn,2 ≥

√
(1 + 1/C)(log n)/n for all n and some C > 0. Let r > 700(2C + G +

2).

(i) If Πn,2

(
Wn,2(εn,2)

) ≥ e−nε2
n,2, λn,1

λn,2
Πn,1

(
An,1(rεn,1)

)
= O

(
e−(4+3C)nε2

n,2
)

and λn,1

λn,2
≤ enε2

n,1, then BFn →∞ almost surely.

(ii) If Πn,1

(
Wn,1(εn,1)

) ≥ e−nε2
n,1, λn,2

λn,1
Πn,2

(
An,2(rεn,1)

)
= O

(
e−(4+3C)nε2

n,1
)

and λn,2

λn,1
≤ enε2

n,1, then BFn → 0 almost surely.

Proof. Take H = J = F = 1, L = 2 and α = 1/38. Then 1− α > 18αL.

(i) Let βn = 2. Then I1
n = {2} and I2

n = {1}. It follows then from the
first assertion of Theorem 3 that the denominator of the Bayes factor
BFn tends to zero almost surely as n →∞ and hence BFn →∞ almost
surely.

(ii) Let βn = 1. Then I1
n = {1, 2}, I2

n = ∅ and I3
n = {2}. It follows then

from the second assertion of Theorem 3 that the numerator of the Bayes
factor BFn tends to zero almost surely as n → ∞ and hence BFn → 0
almost surely. The proof of Corollary 2 is complete.

2
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4 Log spline density models

Log spline density models were introduced by Stone (1990) in his study of
sieved maximum likelihood estimators, and were developed by Ghosal et al.
(2000) to Bayesian estimators. Assume that

[
(k − 1)/Kn, k/Kn

)
with k =

1, 2, . . . , Kn is a given partition of the half open interval [0, 1). The space
of splines of order q relative to this partition is the set of all functions f :
[0, 1] 7→ R such that f is q − 2 times continuously differentiable on [0, 1) and
the restriction of f on each

[
(k − 1)/Kn, k/Kn

)
is a polynomial of degree

strictly less then q. Given γ > 0, denote Jn,γ = q + Kn − 1 where q is a fixed
constant ≥ γ. The space of splines is a Jn,γ-dimensional vector space with
a basis B1(x), B2(x), . . . , BJn,γ (x) of B-splines, which is a uniformly bounded
nonnegative function supported on some interval of length q/Kn, see Ghosal
et al. (2000) for the details of such a B-spline basis.

Assume throughout that the true density f0(x) := fθ0(x) is bounded away
from zero and infinity in [0, 1]. We consider the Jn,γ-dimensional exponential
subfamily of Cγ [0, 1] of the form

fθ(x) = exp
( Jn,γ∑

j=1

θjBj(x)− c(θ)
)
,

where θ = (θ1, θ2, . . . , θJn,γ ) ∈ Θ0 = {(θ1, θ2, . . . , θJn,γ ) ∈ RJn,γ :
∑Jn,γ

j=1 θj = 0}
and the constant c(θ) is chosen such that fθ(x) is a density in [0, 1]. Each
prior Πn,γ on Θ0 induces naturally a prior Πn,γ on the density set Pn,γ :=
{fθ(x) : θ ∈ Θ0}. Assume that Jn,γ ≈ Kn ≈ n1/(2γ+1) and assume that the
prior Πn,γ for Θ0 is supported on [−M, M ]Jn,γ for some M ≥ 1 and has a
density function with respect to the Lebesgue measure, which is bounded on
[−M,M ]Jn,γ below by dJn,γ and above by DJn,γ for two fixed constants d and
D with 0 < d ≤ D < ∞. Write ||θ||p =

( ∑Jn,γ

j=1 |θj |p
)1/p and ||fθ(x)||p =( ∫

fθ(x)pdx
)1/p for 1 ≤ p ≤ ∞. Take constants C1 ≥ C1 > 0 such that

C1 ||θ||∞ ≤ || log fθ(x)||∞ ≤ C1 ||θ||∞ for all θ ∈ Θ0, see Lemma 7.3 in Ghosal
et al. (2008) for existence of C1 and C1. Hence e−C1M ≤ fθ(x) ≤ eC1M

for all θ ∈ Θ0 with ||θ||∞ ≤ M . Ghosal et al. (2000, Theorem 4.5) proved
that, if f0 ∈ Cγ [0, 1] with q ≥ γ ≥ 1/2 and || log f0(x)||∞ ≤ C1 M/2, the
posteriors are consistent in probability at the rate n−γ/(2γ+1). This result
has been strengthened by Xing (2008) to the almost sure consistency of the
posteriors.

For given priors Πn,γ on densities and a discrete prior {λn,γ} on regularity
parameters γ, we get an overall prior Πn on densities as before. Under mild
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conditions, Ghosal et al. (2008) obtained an in-probability theorem on adapta-
tion up to a logarithmic factor for the posteriors. They also showed in Ghosal
et al. (2003, 2008) that the logarithmic factor can be removed by choosing
special prior weights λn,γ either when In are finite sets or when all the priors
Πn,γ are discrete. Now, for finite index sets In, we can now take away the
logarithmic factor without any additional assumption on prior weights λn,γ

and our result moreover is an almost sure statement.
Following Ghosal et al. (2008), we consider prior weights λn,γ = λγ > 0

for all n and γ ∈ In := {γ ∈ Q+ : γ ≥ γ1}, where γ1 is a known positive
constant strictly bigger than 1/2. Now we prove

Theorem 4. Let In = {γ1, γ2, . . . , γN} and εn,γ = n−γ/(2γ+1) for all γ ∈ In.
If f0 ∈ Cβ[0, 1] with some β ∈ In and || log f0(x)||∞ ≤ C1 M, then for all large
constants r,

Πn

{
fθ : ||fθ − f0||2 ≥ rεn,β

∣∣X1, . . . , Xn

} −→ 0

almost surely as n →∞.

Proof. We shall apply Theorem 2 for the Hellinger distance to the proof.
Observe first that nε2

n,β = n1/(2β+1) ≥ (1 + 1/C) log n when n is large enough
and C = 1. Take µn,γ = λγ/λβ. Conditions (1) of Theorem 2 has been verified
in Ghosal et al. (2008). Denote

Θ0,M =
{
θ ∈ Θ0 : ||θ||∞ ≤ M

}
,

CJn,γ (ε) =
{
fθ : H(fθ, f0) ≤ ε and θ ∈ Θ0,M

}
,

WJn,γ (ε) =
{
fθ : H∗(fθ, f0) ≤ ε and θ ∈ Θ0,M

}
.

Since f0/fθ are uniformly bounded above by e(C1+C1)M and below by
e−(C1+C1)M for all θ ∈ Θ0,M , we have

WJn,γ (ε/B) ⊂ CJn,γ (ε) ⊂ WJn,γ (Bε)

for B = e(C1+C1)M/2. Hence, applying Lemma 7.6 and Lemma 7.8 in Ghosal
et al. (2008), one can find four positive constants A1, A2, A1 and A2 such
that for all large n and all ε > 0,

Πn,γ

(
CJn,γ (ε)

) ≤ Πn,γ

(
θ ∈ Θ0,M : ||θ − θJn,γ ||2 ≤ A1

√
Jn,γ ε

)

.
(
A2

√
Jn,γ ε

)Jn,γ

8



and

Πn,β

(
WJn,β

(εn,β)
) ≥ Πn,β

(
θ ∈ Θ0,M : ||θ − θJn,β

||2 ≤ A1

√
Jn,β εn,β

)

&
(
A2

√
Jn,β εn,β

)Jn,β ,

where Πn,γ is the corresponding prior of Πn,γ and θJn,γ minimizes the map
θ 7→ H(fθ, f0) over Θ0,M . In fact, Lemma 7.6 of Ghosal et al. (2008) yields
the first inequality for 0 < ε < 1/A1. However, since ||θ||∞ ≤ M for θ ∈ Θ0,M

and Jn,γ →∞ as n →∞, the inequality holds even for all ε ≥ 1/A1 and large
n. It then follows from

√
Jn,γ εn,γ ≈ n1/2(2γ+1) n−γ/(2γ+1) = n(1−2γ)/2(2γ+1)

for all γ ∈ In and hence for γ = β that

Πn,γ

(
CJn,γ (jεn,γ)

)

Πn,β

(
WJn,β

(εn,β)
) .

(
A2 j n

1−2γ
2(2γ+1)

)Jn,γ

(
A2 n

1−2β
2(2β+1)

)Jn,β
=

exp
(( (1−2γ)Jn,γ

2(2γ+1) + (2β−1)Jn,β

2(2β+1)

)
log n + Jn,γ log A2 − Jn,β log A2 + Jn,γ log j

)
.

Now, for γ ∈ I2
n we have that εn,γ >

√
Hεn,β > εn,β which implies γ < β

and Jn,γ & H Jn,β. Therefore, using 1−2γ
4(2γ+1) ≤ 1−2γ1

4(2γ1+1) < 0 for γ ≥ γ1 > 1/2,
we get that for large n the exponent in the right hand side of the last equality
does not exceed a constant multiple of the following sum

Jn,γ log n
( 1− 2γ

4(2γ + 1)
+

2β − 1
(2β + 1)

1
H

)
+ Jn,γ log j

≤ Jn,γ log n
( 1− 2γ

4(2γ + 1)
+

1
H

)
+ Jn,γ log j

≤ Jn,γ log n
1− 2γ1

5(2γ1 + 1)
+ Jn,γ log j ≤ Jn,γ log j ≤ Lj2nε2

n,γ ,

where L is any given positive constant, the second inequality holds for a large
constant H depending only on γ1, and the last inequality follows from Jn,γ ≈
nε2

n,γ and j ≥ r with a large r. Hence we have verified condition (2).
Similarly, since nε2

n,γ/H > nε2
n,β for γ ∈ I2

n, we have that for some M1 > 0
and large H, M2 > 0,
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∞∑

n=M2

∑

γ∈I2
n

λn,γ Πn,γ

(
CJn,γ (rεn,γ)

)
e(3+2)nε2

n,β

λn,β Πn,β

(
WJn,β

(εn,β)
)

.
∞∑

n=M2

∑

γ∈I2
n

λγ

λβ
e
Jn,γ log n

(
1−2γ1

5(2γ1+1)
+ log r

log n

)
+ 5

H
nε2

n,γ

≤
∞∑

n=M2

∑

γ∈I2
n

λγ

λβ
e
nε2

n,γ log n M1
1−2γ1

6(2γ1+1)
+ 5

H
nε2

n,γ

≤
∞∑

n=M2

∑

γ∈I2
n

λγ

λβ
e
nε2

n,γ log n M1
1−2γ1

7(2γ1+1)

≤
∞∑

n=M2

∑

γ∈In

λγ

λβ
e−2 log n =

∞∑

n=M2

1
λβ

1
n2

< ∞,

which yields condition (4) for C = 1. Finally, observe that εn,γ ≤
√

Hεn,βn

for all γ ∈ I1
n. Since I1

n contains at most finitely many indices and εn,γ is the
convergence rate of the model Pn,γ for f0, there exists a constant K1 ≥ 1 such
that Πn,γ

(
CJn,γ (K1εn,β)

)
> 0 for all γ ∈ I1

n and all large n. It then follows
from WJn,γ (ε/B) ⊂ CJn,γ (ε) ⊂ WJn,γ (Bε) and Lemma 7.6 in Ghosal et al.
(2008) that for a large K > K1, A3 and A3,

Πn,γ

(
CJn,γ (jεn,β)

)

Πn,γ

(
WJn,γ (Kεn,β)

) .
(
A3 j

√
Jn,γ εn,β

)Jn,γ

(
A3 K

√
Jn,γ εn,β

)Jn,γ
≤ e

Jn,γ log
A3j

A3 ≤ eLj2nε2
n,γ

for all large j and any given L > 0 which yields condition (3′), and therefore by
Theorem 2 we obtain the required convergence with respect to the Hellinger
metric, which in our case is stronger than the convergence with respect to the
metric || · ||2, since densities fθ are uniformly bounded for all θ ∈ Θ0,M . The
proof of Theorem 4 is complete. 2

For general countable index sets In, Theorem 1 yields adaptation up to a
logarithmic factor.

Theorem 5. Assume that
∑

γ∈In
λα

γ < ∞ for some 0 < α < 1. Let εn,γ =
n−γ/(2γ+1)

√
log n for all γ ∈ In. If f0 ∈ Cβ[0, 1] with some β ∈ In and

|| log f0(x)||∞ ≤ C1 M, then for all large constants r,

Πn

{
fθ : ||fθ − f0||2 ≥ rεn,β

∣∣X1, . . . , Xn

} −→ 0

almost surely as n →∞.

10



Proof. Completely repeating the proof of Theorem 4, we obtain the con-
ditions (1), (2) and (4) of Theorem 1. To see condition (3), note that
εn,γ ≤ √

H εn,β for γ ∈ I1
n and hence Jn,γ log n . nε2

n,γ ≤ Hnε2
n,β. Since

√
Jn,γ εn,β ≈ n

1
2(2γ+1)

− β
2β+1 for all γ, the proof of Theorem 4 yields that for

some sufficiently large H and all large n,

Πn,γ

(
CJn,γ (jεn,β)

)

Πn,β

(
WJn,β

(εn,β)
) .

(
A2 j

√
Jn,γ εn,β

)Jn,γ

(
A2

√
Jn,β εn,β

)Jn,β
≤ (

j n
1

2(2γ+1)
)Jn,γ

(
n

β
2β+1

)Jn,β

≤ (j n)Jn,γnJn,β = eJn,γ log j+(Jn,γ+Jn,β) log n ≤ eLj2nε2
n,β

for all large j and any given L > 0 which yields condition (3), and hence by
Theorem 1 we conclude the proof of Theorem 5. 2

5 Appendix

We need a lemma which is essentially given in the proof of Theorem 1 of Xing
(2008).

Lemma 1. Let 0 < α ≤ 1, G ⊂ F and Drε = {f ∈ G : d(f, f0) ≥ rε} with
r > 2 and ε > 0. Then we have

E
(∫

Drε

Rn(f)Π(df)
)α

≤ eJ(ε,Drε,α,Π,d)+α−1
2

(r−2)2nε2
.

Proof of Lemma 1. Since E
∫
Drε

Rn(f) Π(df) = Π
(
Drε

) ≤ 1, it suffices to
prove the lemma for 0 < α < 1. Given a constant φ > 1, by the defini-
tion of J(ε,Drε, α, Π, d) there exist functions f1, f2, . . . , fN in Lµ such that
Drε ⊂

⋃N
j=1 Bj , where Bj = Drε ∩ {f : d(fj , f) < ε} and

∑N
j=1 Π(Bj)α ≤

φ eJ(ε,Drε,α,Π,d). By shrinking Bj if necessary, we may assume that all the
sets Bj are disjoint and nonempty. Taking some gj ∈ Bj we get that
d(fj , f0) ≥ d(gj , f0)− d(gj , fj) ≥ (r − 1) ε. Write

∫

Bj

Rn(f)Πn(df) = Πn(Bj)
n−1∏

k=0

fkBj (Xk+1)
f0(Xk+1)

,

where fkBj (x) =
∫
Bj

f(x) Rk(f)Πn(df)
/ ∫

Bj
Rk(f)Πn(df) and R0(f) = 1.

The function fkBj was introduced by Walker (2004) and can be considered as

11



the predictive density of f with a normalized posterior distribution, restricted
on the set Bj . So we have

E
(∫

Drε

Rn(f)Π(df)
)α

≤
N∑

j=1

Π(Bj)α E

( n−1∏

k=0

fkBj (Xk+1)α

f0(Xk+1)α

)

≤ φ eJ(ε,Drε,α,Π,d) max
1≤j≤N

E

( n−1∏

k=0

fkBj (Xk+1)α

f0(Xk+1)α

)
.

Since d(f, fj)s is a convex function of f and d(f, fj) ≤ ε, Jensen’s inequality
implies have d(fkBj , fj) ≤ ε for all k and hence d(fkBj , f0) ≥ d(fj , f0) −
d(fj , fkBj ) ≥ (r−2) ε. Using d(fkBj , f0) ≤ H(fkBj , f0) and following the same
lines as the proof of Theorem 1 in Xing (2008), one can get that

E
(∫

Drε

Rn(f)Π(df)
)α

≤ φ eJ(ε,Drε,α,Π,d)+α−1
2

(r−2)2nε2
,

which by the arbitrariness of φ > 1 concludes the proof of Lemma 1. 2

Proof of Theorem 1. Denote D(ε) = {f : d(f, f0) ≥ ε}. Write
∫

D(rεn,βn )
Rn(f)Πn(df) =

∑

γ∈In

λn,γ

∫

Pn,γ∩D(rεn,βn )
Rn(f)Πn,γ(df)

=
∑

γ∈I1
n

λn,γ

∫

Pn,γ∩D(rεn,βn)
Rn(f)Πn,γ(df)

+
∑

γ∈I2
n

λn,γ

∫

Pn,γ∩D( r√
H

εn,γ)
Rn(f)Πn,γ(df)

+
∑

γ∈I2
n

λn,γ

∫

Pn,γ∩{f : rεn,βn≤d(f,f0)< r√
H

εn,γ}
Rn(f)Πn,γ(df).

Since 0 < α < 1, it follows from the inequalities x ≤ xα for 0 ≤ x ≤ 1 and
(x + y)α ≤ xα + yα for x, y ≥ 0 that

Πn

(
D(rεn,βn)

∣∣X1, X2, . . . , Xn

)
=

∫
D(rεn,βn ) Rn(f) Πn(df)

∫
FRn(f)Πn(df)

12



≤
( ∑

γ∈I1
n

λn,γ

∫
Pn,γ∩D(rεn,βn) Rn(f)Πn,γ(df)

∫
FRn(f)Πn(df)

)α

+
( ∑

γ∈I2
n

λn,γ

∫
Pn,γ∩D( r√

H
εn,γ) Rn(f)Πn,γ(df)

∫
FRn(f) Πn(df)

)α

+
∑

γ∈I2
n

λn,γ

∫
Pn,γ∩{f : rεn,βn≤d(f,f0)< r√

H
εn,γ}Rn(f)Πn,γ(df)

∫
FRn(f)Πn(df)

≤
∑

γ∈I1
n

λα
n,γ

( ∫
Pn,γ∩D(rεn,βn) Rn(f)Πn,γ(df)

)α

λα
n,βn

( ∫
Pn,βn

Rn(f)Πn,βn(df)
)α

+
∑

γ∈I2
n

λα
n,γ

( ∫
Pn,γ∩D( r√

H
εn,γ) Rn(f)Πn,γ(df)

)α

λα
n,βn

( ∫
Pn,βn

Rn(f)Πn,βn(df)
)α

+
∑

γ∈I2
n

λn,γ

∫
Pn,γ∩{f : rεn,βn≤d(f,f0)< r√

H
εn,γ}Rn(f)Πn,γ(df)

λn,βn

∫
Pn,βn

Rn(f)Πn,βn(df)
.

From nε2
n,βn

≥ (1 + 1
C ) log n it turns out that

∑∞
n=1 e−Cnε2

n,βn ≤∑∞
n=1 1/n1+C < ∞. Hence, by Lemma 1 of Xing (2008) and the first Borel-

Cantelli Lemma, we have that
∫

Pn,βn

Rn(f)Πn,βn(df) ≥ Πn,βn

(
Wn,βn(εn,βn)

)
e−(3+2C)nε2

n,βn

almost surely for all large n. Thus, we obtain that

Πn

(
D(rεn,βn)

∣∣X1, X2, . . . , Xn

)

≤
∑

γ∈I1
n

λα
n,γ e(3+2C)αnε2

n,βn

( ∫
Pn,γ∩D(rεn,βn) Rn(f)Πn,γ(df)

)α

λα
n,βn

Πn,βn

(
Wn,βn(εn,βn)

)α

+
∑

γ∈I2
n

λα
n,γ e(3+2C)αnε2

n,βn

( ∫
Pn,γ∩D( r√

H
εn,γ) Rn(f)Πn,γ(df)

)α

λα
n,βn

Πn,βn

(
Wn,βn(εn,βn)

)α

+
∑

γ∈I2
n

λn,γ e(3+2C)nε2
n,βn

∫
Pn,γ∩{f : rεn,βn≤d(f,f0)< r√

H
εn,γ}Rn(f)Πn,γ(df)

λn,βn Πn,βn

(
Wn,βn(εn,βn)

)

:= an + bn + cn
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almost surely for all large n. Given δ > 0, we have

P∞
0

{
Πn

(
D(rεn,βn)

∣∣ X1, X2, . . . , Xn

) ≥ δ
}

≤ P∞
0

{
an + bn + cn ≥ δ

}

≤ P∞
0

{
an ≥ δ/3

}
+ P∞

0

{
bn ≥ δ/3

}
+ P∞

0

{
cn ≥ δ/3

}

≤ 3
δ

Ean +
3
δ

Ebn +
3
δ

Ecn.

It turns out from Fubini’s theorem and condition (4) that

∞∑

n=1

Ecn

=
∞∑

n=1

∑

γ∈I2
n

λn,γ e(3+2C)nε2
n,βn Πn,γ

(Pn,γ ∩ {f : rεn,βn ≤ d(f, f0) < r√
H

εn,γ}
)

λn,βn Πn,βn

(
Wn,βn(εn,βn)

)

≤
∞∑

n=1

∑

γ∈I2
n

λn,γ e(3+2C)nε2
n,βn Πn,γ

(
An,γ(rεn,γ)

)

λn,βn Πn,βn

(
Wn,βn(εn,βn)

) < ∞.

On the other hand, let [r] be the largest integer less than or equal to r and
let Dn,γ,j = {f ∈ Pn,γ : jεn,βn ≤ d(f, f0) < 2jεn,βn}. Then for any γ ∈ I1

n we
have

Pn,γ ∩D(rεn,βn) ⊂ Pn,γ ∩D([r]εn,βn) =
∞⋃

j=[r]

Dn,γ,j

and hence

Ean ≤
∑

γ∈I1
n

∞∑

j=[r]

λα
n,γ e(3+2C)αnε2

n,βn E
( ∫

Dn,γ,j
Rn(f)Πn,γ(df)

)α

λα
n,βn

Πn,βn

(
Wn,βn(εn,βn)

)α .

Since r ≥ √
H +1, we have that jεn,βn ≥ [r]εn,γ/

√
H ≥ εn,γ for all γ ∈ I1

n and
j ≥ [r]. It then follows from Lemma 1, Lemma 1 of Xing and Ranneby (2008)
and condition (1) that

E
(∫

Dn,γ,j

Rn(f)Πn,γ(df)
)α

≤ eJ
(

jεn,βn
3

,An,γ(2jεn,βn),α,Πn,γ ,d
)
+α−1

18
j2nε2

n,βn

≤ Πn,γ

(
An,γ(2jεn,βn)

)α
N(

ε

3
, An,γ(2ε), d)1−α e

α−1
18

j2nε2
n,βn

≤ Πn,γ

(
An,γ(2jεn,βn)

)α
eEγnε2

n,γ+α−1
18

j2nε2
n,βn .
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Thus, by the assumption that Eγε2
n,γ ≤ Gε2

n,βn
for γ ∈ I1

n, we have

Ean ≤
∑

γ∈I1
n

∞∑

j=[r]

λα
n,γ Πn,γ

(
An,γ(2jεn,βn)

)α
e(3α+2αC+G+α−1

18
j2)nε2

n,βn

λα
n,βn

Πn,βn

(
Wn,βn(εn,βn)

)α ,

which by condition (3) does not exceed

∑

γ∈I1
n

∞∑

j=[r]

µα
n,γ e(3α+2αC+G+αLj2+α−1

18
j2)nε2

n,βn

= O
( ∞∑

j=[r]

e(J+G+3α+2αC+αLj2+α−1
18

j2)nε2
n,βn

)

= O
(
e(J+G+3α+2αC)nε2

n,βn

∞∑

j=[r]

e(αL+α−1
18

)jnε2
n,βn

)

= O
(
e(J+G+3α+2αC)nε2

n,βn
e(αL+α−1

18
)[r]nε2

n,βn

1− e(αL+α−1
18

)nε2
n,βn

)

= O
(
e(J+G+3α+2αC+αL[r]+α−1

18
[r])nε2

n,βn

)

= O
(
e−Cnε2

n,βn

)
= O

( 1
n1+C

)
,

where the first equality follows from
∑

γ∈In
µα

n,γ = O(eJnε2
n,βn ), the third one

from 1−α > 18αL, the next last one from r ≥ 18(C+J+G+3α+2αC)
1−α−18αL +1 and the

last one from nε2
n,βn

≥ (1+ 1
C ) log n. Therefore, we have that

∑∞
n=1 Ean < ∞.

On the other hand, observe that εn,γ >
√

Hεn,βn ≥ εn,βn for γ ∈ I2
n. So, using

the same argument as the above, one can get that

Ebn ≤
∑

γ∈I2
n

∞∑

j=[r]

µα
n,γ e(3α+2Cα+G)nε2

n,βn
+(αLj2+α−1

18
j2)nε2

n,γ

= O
( ∞∑

j=[r]

e(J+G+3α+2Cα+αLj2+α−1
18

j2)nε2
n,βn

)
= O

( 1
n1+C

)
,

which yields that
∑∞

n=1 Ebn < ∞. Thus, we have proved that

∞∑

n=1

P∞
0

{
Πn

(
f : d(f, f0) ≥ rεn,βn

∣∣ X1, X2, . . . , Xn

) ≥ δ
}

< ∞,
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and then by the first Borel-Cantelli Lemma we get that

Πn

(
f : d(f, f0) ≥ rεn,βn

∣∣ X1, X2, . . . , Xn

)
< δ

almost surely for all large n. The proof of Theorem 1 is complete. 2

Proof of Theorem 2. The proof of Theorem 2 is in fact a slight modification
of the proof of Theorem 1. We only need to repeat the proof of Theorem 1
except that we shall apply the following inequalities

( ∑

γ∈I1
n

λn,γ

∫
Pn,γ∩D(rεn,βn ) Rn(f)Πn,γ(df)

∫
FRn(f) Πn(df)

)α

≤
∑

γ∈I1
n

(∫
Pn,γ∩D(rεn,βn ) Rn(f)Πn,γ(df)

∫
Pn,γ

Rn(f)Πn,γ(df)

)α

and ∫

Pn,γ

Rn(f)Πn,γ(df) ≥ Πn,γ

(
Wn,γ(Kεn,βn)

)
e−(3+2C)Knε2

n,βn .

The details of the proof of Theorem 2 are therefore omitted. 2

Proof of Theorem 3. The first assertion of Theorem 3 follows from the proof of
Theorem 1. The second assertion follows similarly by applying the partition

Pn,γ =
⋃

γ∈I1
n\I3

n

Pn,γ ∪
⋃

γ∈I3
n

{f ∈ Pn,γ : d(f, f0) < rεn,βn}

∪
⋃

γ∈I3
n

{f ∈ Pn,γ : d(f, f0) ≥ rεn,βn} ∪
⋃

γ∈I2
n

{f ∈ Pn,γ : d(f, f0) <
r√
H

εn,γ}

∪
⋃

γ∈I2
n

{f ∈ Pn,γ : d(f, f0) ≥ r√
H

εn,γ}.

So we omit the details of the proof of Theorem 3. 2
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