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1 Introduction

Recent years have seen a remarkable development in the area of Bayesian
nonparametric inference. One of key points to this area is to establish con-
sistency of posterior distributions with respect to a suitable metric, usually
the Hellinger metric. Early works on consistency of posterior distributions
were concerned with weak consistency. Freedman (1963) and Diaconis and
Freedman (1986) have demonstrated that a prior having positive mass on all
weak neighborhoods of the true density is not necessarily weakly consistent.
A sufficient condition for weak consistency was suggested by Schwartz (1965).
Schwartz (1965) proved that, if the true density is in the Kullback-Leibler
support of the prior distribution, then the sequence of posterior distributions
accumulates in all weak neighborhoods of the true density. Schwartz’s theo-
rem provides a powerful tool in establishing weak posterior consistency, see,
for example, Barron (1999). However, it seems not to be useful for establishing
strong posterior consistency. In many applications like density estimation it
is natural to ask for strong consistency of Bayesian procedures. Recent atten-
tion has switched to studying strong posterior consistency. It is known that
the condition of the true density being in the Kullback-Leibler support cannot
guarantee F∞

0 -almost sure consistency of posterior distributions with respect
to the Hellinger distance, where F∞

0 stands for the infinite product distribution
of the probability distribution F0 associated with the true density f0. Some
additional restrictions must be added to obtain the strong Hellinger consis-
tency of posterior distributions. Barron et al. (1999), Ghosal et al. (1999) and
Walker (2004) have obtained important results in this direction. In the present
paper we give a sufficient condition of the strong Hellinger consistency of pos-
terior distributions. As an application we give a new proof of the sufficient
condition of Barron et al. (1999) by means of the upper bracketing metric en-
tropy. Since the existing sufficient conditions of the strong Hellinger posterior
consistency seem to be quite difficult to be verified, Walker and Hjort (2001)
introduced one kind of pseudoposterior distributions based on the likelihood
ratio with power α. Under the unique condition of the true density belong-
ing to the Kullback-Leibler support of the prior distribution, they obtained a
strong consistency theorem for the pseudoposterior distributions with respect
to a related metric Hα(f, g) =

(
1−∫

gαf1−α
)1/2, which agrees nicely with the

Hellinger metric only in the case of α = 1/2. Another main aim of this paper
is to prove strong consistency of pseudoposterior distributions with respect to
the Hellinger metric for all 0 < α < 1.

We consider a family of probability measures dominated by a σ-finite
measure µ in a Polish space X endowed with a σ-algebra X . Assume that
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(X1, X2, . . . , Xn) is an independent identically distributed sample of random
variables, taking values in X and having a common probability density func-
tion f0 with respect to µ. For two density functions f and g we denote the
Hellinger distance

H(f, g) =
(∫

X

(√
f(x)−

√
g(x)

)2
µ(dx)

)1/2

and the Kullback-Leibler divergence

K(f, g) =
∫

X
f(x) log

f(x)
g(x)

µ(dx).

Assume that the space F of density functions is separable with respect to
the Hellinger metric and assume that F is the Borel σ-algebra of F. Denote
Aε =

{
f : H(f0, f) ≥ ε

}
and Nδ =

{
f : K(f0, f) < δ

}
. The density function

f0 is said to be in the Kullback-Leibler support of Π if Π
(
Nδ

)
> 0 for all δ > 0.

Let Π be a prior distribution on F. It is known that the posterior distribution
Πn given X1, X2, . . . , Xn has the following expression

Πn(A) =

∫
A

n∏
i=1

f(Xi)Π(df)

∫
F

n∏
i=1

f(Xi)Π(df)
=

∫
A Rn(f)Π(df)∫
FRn(f)Π(df)

for all measurable subsets A in F, where Rn(f) =
n∏

i=1

{
f(Xi)/f0(Xi)

}
stands

for the likelihood ratio.
The posterior consistency relies on how the likelihood ratio behaves as the

sample size increases to infinity. It seems that the size of likelihood ratio plays
a crucial role in determining Bayesian consistency. In this paper we use the
quantity Rn(f)α, the likelihood ratio with power α, to study strong consis-
tency of posterior distributions. Different approaches are used to deal with
the likelihood ratio of power α > 1 and α < 1, respectively. In the case α > 1
we establish a sufficient condition of the strong posterior consistency, whereas
for α < 1 we discuss strong consistency of pseudoposterior distributions in-
troduced by Walker and Hjort (2001). For any α in (0, 1) we prove strong
Hellinger consistency of the pseudoposterior distributions. This extends a
result of Walker and Hjort (2001).

2 Strong posterior consistency

The main work of this section is to establish a sufficient condition of Bayesian
consistency by means of Rn(f)α with α > 1.
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Theorem 1. Let ε > 0. Suppose that the true density function f0 is in the
Kullback-Leibler support of Π and suppose that there exist positive constants
α, c1, c2, c3, c4 and a sequence {Fn}∞n=1 of subsets of F such that α > 1,
c1 < 1− 1

α and for all large n,

(i) E
(∫

Aε∩Fn
Rn(f)α Π(df)

) 1
α≤ c2 en c1 ε2

, where E stands for the expecta-
tion with respect to the distribution of X1, X2, . . . , Xn;

(ii) Π
(
Aε \ Fn

)
< c4 e−n c3.

Then Πn(Aε) tends to zero almost surely as n →∞.

Note that Theorem 1 fails when α ≤ 1, since Jensen’s inequality yields
that for α ≤ 1 the left-hand side of the inequality of condition (i) does not
exceed one.

Proof. Write Πn(Aε) = Πn(Aε∩Fn)+Πn(Aε\Fn). From Lemma 5 of Barron et
al. (1999) and condition (ii) it turns out that the second term Πn(Aε\Fn) → 0
almost surely as n →∞. It suffices to prove that the first term also tends to
zero almost surely.

We first give an estimation of the numerator of Πn(Aε ∩ Fn). Let q =
2α− 1 > 1 and p = (2α− 1)/2(α− 1) > 1. Then 1/p + 1/q = 1 and hence by
Hölder’s inequality we get that for any given ε > 0,

∫

Aε∩Fn

Rn(f)Π(df)

=
∫

Aε∩Fn

Rn(f)
1
2p Rn(f)1−

1
2p Π(df)

≤
(∫

Aε∩Fn

Rn(f)
1
2 Π(df)

) 1
p

(∫

Aε∩Fn

Rn(f)q(1− 1
2p

) Π(df)
) 1

q

=
(∫

Aε∩Fn

Rn(f)
1
2 Π(df)

) 1
p

(∫

Aε∩Fn

Rn(f)α Π(df)
) 1

q

Since c1 < 1 − 1
α the inequality 1

2p > c1 α
q holds. Take a constant b with

0 < b < 1
2p − c1 α

q . It follows then from Hölder’s inequality and Fubini’s
theorem that for all n large enough,

F∞
0

{∫

Aε∩Fn

Rn(f)Π(df) ≥ e−n b ε2
}

= F∞
0

{
e

n b ε2

α

(∫

Aε∩Fn

Rn(f)Π(df)
) 1

α ≥ 1
}
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≤ e
n b ε2

α E
(∫

Aε∩Fn

Rn(f)Π(df)
) 1

α

≤ e
n b ε2

α

(
E

(∫

Aε∩Fn

Rn(f)
1
2 Π(df)

) 1
α

) 1
p

(
E

(∫

Aε∩Fn

Rn(f)α Π(df)
) 1

α

) 1
q

≤ e
n b ε2

α

(
E

∫

Aε∩Fn

Rn(f)
1
2 Π(df)

) 1
p α

(
E

(∫

Aε∩Fn

Rn(f)α Π(df)
) 1

α

) 1
q

≤ c
1
q

2 e
n b ε2

α
+

n c1 ε2

q

(
E

∫

Aε

Rn(f)
1
2 Π(df)

) 1
p α

= c
1
q

2 e
n b ε2

α
+

n c1 ε2

q

(∫

Aε

(∫ √
f(x)f0(x) µ(dx)

)n
Π(df)

) 1
p α

= c
1
q

2 e
n b ε2

α
+

n c1 ε2

q

(∫

Aε

(
1− 1

2
H(f0, f)2

)n Π(df)
) 1

p α

≤ c
1
q

2 e
n b ε2

α
+

n c1 ε2

q (1− ε2

2
)

n
p α

= c
1
q

2 e
n b ε2

α
+

n c1 ε2

q e
n

p α
log (1− ε2

2
) ≤ c

1
q

2 e
n ε2 ( b

α
+

c1
q
− 1

2p α
)
.

From b
α + c1

q − 1
2p α < 0 it turns out that

∞∑
n=1

e
n ε2 ( b

α
+

c1
q
− 1

2p α
)

< ∞. By the

first Borel-Cantelli Lemma, the inequality
∫

Aε∩Fn

Rn(f) Π(df) ≤ e−n b ε2

holds almost surely for all n large enough.
To estimate the denominator of Πn(Aε ∩ Fn) it is enough to apply the

known result that for each given δ > 0 the denominator is bounded below by
e−n δ almost surely for large n, see Lemma 4 of Barron et al. (1999). Choosing
δ = b ε2/2 and applying the above estimations for both the numerator and the
denominator, we obtain that

Πn(Aε ∩ Fn) ≤ e−n b ε2+n δ = e−
n b ε2

2

almost surely for all sufficiently large n and the proof of Theorem 1 is
complete. 2

Sometimes it is convenient to find a suitable covering of F in order to obtain
consistent posteriors. Here we present a result in this direction. Given ε > 0,
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we consider a partition of Aε defined by

Anj =
{
f ∈ Aε : en aj−1 ≤ Rn(f) < en aj

}
for j = 1, . . . ,

where a0 = −∞ and {aj}∞1 is a sequence increasing to ∞.

Corollary 1. Suppose that f0 is in the Kullback-Leibler support of Π and
suppose that there exist constants α > 1, c < 1 − 1

α and a positive series∑∞
j=1 dj < ∞ such that

Π(Anj)
1
α ≤ dj e−n(aj−cε2)

for all j and all but finitely many n. Then Πn(Aε) → 0 almost surely as
n →∞.

Proof. It is no restriction to assume that c > 0. From the inequality (x+y)
1
α ≤

x
1
α + y

1
α for all x, y ≥ 0 it turns out that

E

(∫

Aε

Rn(f)α Π(df)
) 1

α

≤ E
∞∑

j=1

(∫

Anj

Rn(f)α Π(df)
) 1

α

=
∞∑

j=1

E

(∫

Anj

Rn(f)α Π(df)
) 1

α

≤
∞∑

j=1

en aj Π(Anj)
1
α ≤ encε2

∞∑

j=1

dj ,

which by Theorem 1 concludes the proof. 2

Corollary 1 is an analogue of Theorem 3 in Walker et al. (2005).

3 Log strong pseudoposterior consistency

In this section we study one class of pseudoposterior distributions introduced
by Walker and Hjort (2001). We extend their result on the strong consistency
of pseudoposterior distributions. We also use a slight modification of the pseu-
doposteriors of Walker and Hjort to deal with strong consistency of posterior
distributions.

Wasserman (2000) introduced a psuedolikelihood function-data-dependent
prior to obtain asymptotic properties for mixture models. Later, Walker and
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Hjort (2001) used a different psuedolikelihood function to establish a strong
consistency theorem. Given 0 ≤ α ≤ 1, they defined the pseudoposterior
distribution Qα

n based on Π by

Qα
n(df) =

Rn(f)α Π(df)∫
FRn(f)α Π(df)

,

which can be considered as we are using the data-dependent prior

Π(df)
/ n∏

i=1
f1−α(xi). Clearly, Q0

n = Π and Q1
n = Πn. So for α = 1 the

condition of the true density f0 being in the Kullback-Leibler support can-
not guarantee strong Hellinger consistency of Qα

n. However, when 0 < α < 1,
under this unique condition Walker and Hjort (2001) proved the strong con-
sistency of pseudoposteriors with respect to the metric defined by Hα(f, f0) =(
1− ∫

fα
0 f1−α

)1/2 which, in the particular case of α = 1/2, agrees nicely with
the Hellinger distance. Hence, for α = 1/2, they obtained strong Hellinger
consistent pseudoposteriors. Now for all 0 < α < 1 we prove the strong
Hellinger consistency of the pseudoposteriors.

Theorem 2. Let 0 < α < 1. If f0 is in the Kullback-Leibler support of Π then
for each ε > 0 we have that Qα

n(Aε) → 0 almost surely as n →∞.

Proof. Given ε > 0 and b > 0, we have

F∞
0

{∫

Aε

Rn(f)α Π(df) ≥ e−n b ε2
}
≤ en b ε2

E

∫

Aε

Rn(f)α Π(df).

From Hölder’s inequality and Fubini’s theorem it turns out that

E

∫

Aε

Rn(f)α Π(df)

= E

∫

Aε

Rn(f)
α
2 Rn(f)

α
2 Π(df)

≤ E

((∫

Aε

Rn(f)
α
2
· 2
2−α Π(df)

) 2−α
2

(∫

Aε

Rn(f)
α
2
· 2
α Π(df)

)α
2

)

≤
(

E

∫

Aε

Rn(f)
α

2−α Π(df)
) 2−α

2
(

E

∫

Aε

Rn(f)Π(df)
)α

2

=
(

E

∫

Aε

Rn(f)
α

2−α Π(df)
) 2−α

2
(∫

Aε

E
(
Rn(f)

)
Π(df)

)α
2

≤
(

E

∫

Aε

Rn(f)
α

2−α Π(df)
) 2−α

2

.

6



Take the smallest non-negative integer m satisfying α
2m(1−α)+α ≤ 1

2 , i.e. α
1−α ≤

2m < 2α
1−α . Repeating the above procedure m− 1 more times we obtain

E

∫

Aε

Rn(f)α Π(df) ≤
(

E

∫

Aε

Rn(f)
α

2m(1−α)+α Π(df)
) 2m(1−α)+α

2m

,

which by Hölder’s inequality does not exceed
(

E

∫

Aε

Rn(f)
1
2 Π(df)

)α 21−m

=
(∫

Aε

(∫ √
f(x)f0(x) µ(dx)

)n
Π(df)

)α 21−m

≤ (1− ε2

2
)n α 21−m ≤ e−nε2α 2−m

.

Hence we have obtained

F∞
0

{∫

Aε

Rn(f)α Π(df) ≥ e−n b ε2
}
≤ en ε2(b−α 2−m) for all n.

For any positive constant b < 1−α
2 we have that b−α 2−m < 0. It then follows

from the first Borel-Cantelli Lemma that∫

Aε

Rn(f)α Π(df) ≤ e−n b ε2

holds almost surely for all n large enough.
On the other hand, using the same argument as the proof of Lemma 4 of

Barron et al. (1999), we get that for each given δ > 0,
∫

F
Rn(f)α Π(df) ≥ e−n α δ

almost surely for all n large enough. Taking b = 1−α
4 and δ = (1−α) ε2

5 α , we get
that

Qα
n(Aε) ≤ e−n b ε2+n α δ = e−n (1−α) ε2/20

almost surely for large n. The proof of Theorem 2 is complete. 2

We will finish this section by presenting a simple fact on a modification of
Qα

n. Denote

Q̃α
n(df) =

Rn(f)α Π(df)(∫
FRn(f) Π(df)

)α for 0 < α < 1.

By the proof of Theorem 2 we get
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Theorem 3. Let 0 < α < 1. If f0 is in the Kullback-Leibler support of Π then
for each ε > 0 we have that Q̃α

n(Aε) → 0 almost surely as n →∞.

The pseudoposteriors Q̃α
n can be used to characterize the Hellinger consis-

tency of the posterior distributions Πn.

Theorem 4. Let 0 < α0 < 1 and ε > 0. Suppose that f0 is in the Kullback-
Leibler support of Π. Then Πn(Aε) → 0 almost surely as n →∞ if and only
if max

α0≤α≤1
Q̃α

n(Aε) → 0 almost surely, that is,

F∞
0

{ ∞⋂

l=1

∞⋃

k=1

∞⋂

n=k

{
sup

α0≤α≤1
Q̃α

n(Aε) ≤ 1
l

}}
= 1.

Proof. The ”if ” part is trivial. The ”only if ” part follows from Hölder’s
inequality, as shown in the following

Q̃α
n(Aε) =

∫
Aε

Rn(f)α Π(df)(∫
FRn(f)Π(df)

)α ≤

(∫
Aε

Rn(f)Π(df)
)α (

Π(Aε)
)1−α

(∫
FRn(f)Π(df)

)α

≤ Πn(Aε)α ≤ Πn(Aε)α0

for all α0 ≤ α ≤ 1. The proof of Theorem 4 is complete. 2

4 Applications

In this section we discuss some applications of our theorems.

4.1 Upper bracketing metric entropy

Barron et al. (1999) provided a very useful general theorem on strong Hellinger
consistency, in which they used the upper bracketing metric entropy. Let Lµ

be the space of all nonnegative integrable functions with respect to a measure
µ on X. Given a subset G of F and δ > 0, the upper bracketing metric entropy
H(δ,G) is defined as the logarithm of the minimum of all numbers N such that
there exist f1, f2, . . . , fN in Lµ with the properties: (a)

∫
X fj(x) µ(dx) ≤ 1 + δ

for all j; (b) For each f ∈ G there exists some fj with f ≤ fj . Now as an
application of Theorem 1, we give a new proof of the following result of Barron
et al. (1999, Theorem 1).
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Proposition 1. Let ε > 0. Suppose that the true density function f0 is in the
Kullback-Leibler support of Π and suppose that there exist 0 < δ ≤ ε2

2 , c1, c2 >

0, 0 < c3 < ε2

2 , and Fn ⊂ F such that for all large n,

(i) H(δ,Fn) < n c3;

(ii) Π
(
F \ Fn

)
< c2 e−n c1.

Then Πn(Aε) tends to zero almost surely as n →∞.

Proof. We only need verify condition (i) of Theorem 1. Take a large α with
α > 1 and 1 − 1

α > c3
ε2 + 1

2 . For each Fn, we take functions f1, f2, . . . , fNn in
Lµ such that Nn < en c3 ,

∫
X fj(x) µ(dx) ≤ 1+ ε for all j and each f ∈ Fn does

not exceed some fj . We can then make a partition Aε ∩ Fn = ∪Nn
j=1Bj such

that f ≤ fj for all f ∈ Bj . Hence we have

E
(∫

Aε∩Fn

Rn(f)α Π(df)
) 1

α

=
∫

Xn

(∫

Aε∩Fn

n∏

i=1

f(xi)α Π(df)
) 1

α
µ(dx1) . . . µ(dxn)

=
∫

Xn

( Nn∑

j=1

∫

Bj

n∏

i=1

f(xi)α Π(df)
) 1

α
µ(dx1) . . . µ(dxn)

≤
Nn∑

j=1

∫

Xn

(∫

Bj

n∏

i=1

f(xi)α Π(df)
) 1

α
µ(dx1) . . . µ(dxn)

≤
Nn∑

j=1

∫

Xn

(∫

Bj

n∏

i=1

fj(xi)α Π(df)
) 1

α
µ(dx1) . . . µ(dxn)

≤
Nn∑

j=1

∫

Xn

n∏

i=1

fj(xi) µ(dx1) . . . µ(dxn)

≤ Nn (1 +
ε2

2
)n ≤ en (

c3
ε2

+ 1
2
) ε2

.

Thus we have obtained condition (i) of Theorem 1 and the proof of Proposition
1 is complete. 2

Proposition 1 has been widely applied in many statistical models, we refer
to Barron et al. (1999) for the details.
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4.2 Pseudo-Bayes estimator

Convergence of the pseudoposteriors Qα
n implies the existence of pseudo-Bayes

estimators. A useful pseudo-Bayes estimator based on the Qα
n is given by

fα
n (x) =

∫

F
f(x) Qα

n(df).

Given ε > 0, from convexity of the squared Hellinger distance and Jensen’s
inequality it turns out that

H2(fα
n , f0) ≤

∫

F
H2(f, f0) Qα

n(df)

≤
∫

Aε

2Qα
n(df) +

∫

F\Aε

ε2 Qα
n(df)

≤ 2Qα
n(Aε) + ε2,

where, by Theorem 2, the first term in the last sum tends to zero almost surely
as n →∞. This yields almost sure convergence of the pseudo-Bayes estimator
fα

n to the true density f0 with respect to the Hellinger distance.

4.3 Parametric family

Let F =
{
fθ(x) : θ ∈ Θ

}
be a class of density functions with respect a

dominating σ-finite measure µ on X. Consider a sample X1, X2 . . . , Xn of i.i.d.
observations from fθ0(x) with θ0 ∈ Θ. The maximum likelihood estimator
(MLE) θ̂n is defined by

θ̂n = arg maxθ∈Θ Ln(θ),

where Ln(θ) =
n∏

i=1
fθ(Xi) is the likelihood function. We assume that such a θ̂n

exists (not necessary uniquely). Let Π be a prior distribution on Θ. Denote

Rn(θ) =
n∏

i=1
fθ(Xi)

/
fθ0(Xi). Walker and Hjort (2001, Theorem 3) gave the

following estimation of posterior distributions: if Π
(
Nδ

)
> 0 for all δ > 0 then

Πn(Aε) ≤ e−nc Rn(θ̂n)
1
2 almost surely for large n for any ε > 0 and c < 1

2 ε2.
Hence the strong consistency of Πn(Aε) is guaranteed if Rn(θ̂n) = o(en2c)
almost surely as n → ∞. Now we prove that the estimation of Walker and
Hjort (2001, Theorem 3) is still true if the square root is replaced by any
exponent α with 0 < α < 1.
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Theorem 5. Let 0 < α < 1. If f0 is in the Kullback-Leibler support of Π then

Πn(Aε) ≤ e−nc Rn(θ̂n)α

almost surely for large n for any ε > 0 and c < α ε2

2 . Therefore, if furthermore
Rn(θ̂n) = o

(
e

n c
α

)
then Πn(Aε) → 0 almost surely as n →∞.

Proof. It follows from the definition of θ̂n that

Πn(Aε) =

∫
Aε

Rn(θ)Π(dθ)∫
Θ Rn(θ)Π(dθ)

≤ Rn(θ̂n)α

∫
Aε

Rn(θ)1−α Π(dθ)∫
Θ Rn(θ)Π(dθ)

.

In the proof of Theorem 2 we have obtained that for any c < α ε2

2 , the inequality
∫

Aε

Rn(f)1−α Π(df) ≤ e−n c

holds almost surely for all n large enough. On the other hand, by Lemma 4
of Barron et al. (1999) we have that, for any given δ > 0,

∫
Θ Rn(θ)Π(dθ) is

bounded below by e−n δ almost surely for large n. Therefore, we have

Πn(Aε) ≤ en (δ− c) Rn(θ̂n)α

almost surely for large n. By the arbitrariness of δ > 0 and c < α ε2

2 we
have obtained the required inequality for all n large enough, and the proof of
Theorem 5 is complete. 2

An application of Theorem 1 yields an analogue of Theorem 5 by means
of the likelihood functions.

Theorem 6. Let ε > 0. Suppose that µ is a finite measure on X and that there
exists a constant b such that b + log µ(X) < ε2. If f0 is in the Kullback-Leibler
support of Π and Ln(θ̂n) = O

(
en b

)
for all large n, then Πn(Aε) → 0 almost

surely as n →∞.

Proof. Take two positive constants c and α such that b + log µ(X) < c ε2 < ε2

and c < 1− 1
α . Hence we have

E
(∫

Aε

Rn(θ)α Π(dθ)
) 1

α =
∫

Xn

(∫

Aε

Ln(θ)α Π(dθ)
) 1

α
µ(dx1) . . . µ(dxn)

= O
(
en b µ(X)n

)
= O

(
en b+n log µ(X)

)

= O
(
en c ε2)

as n →∞,

which together with Theorem 1 concludes the proof of Theorem 6. 2
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5 Discussion

We have used power functions like Rα, where the base R is the likelihood
ratio and the exponent α is a fixed constant, to deal with consistency of
posterior distributions. Since the size of the likelihood ratio plays a crucial
role in determining Bayesian consistency, it is important to find out asymptotic
properties of the likelihood ratio as the sample size increases to infinity. The
power function is just a special one which is used to describe the size of the
likelihood ratio. A natural extension is to use some suitable functions g(R)
increasing to infinity instead of Rα.

The uniform convergence of the Q̃α
n as n →∞ is equivalent to convergence

of the posterior distributions Πn. Hence, it is worth to understand how well
the Q̃α

n can approximate Πn as α increases to one.
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