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Abstract

A trace test for the mean parameters of the Growth Curve Model is
proposed. It is constructed using the restricted maximum likelihood
followed by an estimated likelihood ratio approach. The statistic re-
duces to the Lawley-Hotelling’s trace test for the classical multivariate
analysis of variance model. Our test statistic is, therefore, a natural
extension of the classical trace test. We show that the distribution of
the test under the null hypothesis does not depend on the unknown co-
variance matrix Σ. We also show that the distributions under the null
and alternative hypotheses can be represented as sums of weighted cen-
tral and non-central chi-square random variables, respectively. Under
the null hypothesis, the Satterthwaite approximation is used to get an
approximate critical point. A novel Satterthwaite type approximation is
proposed to obtain an approximate power. A numerical example is pro-
vided as an illustration in which the data consists of two groups where
measurements at four time points are taken from each individual.

Keywords: Estimated likelihood, growth curve model, Lawley-Hotelling
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1 Introduction

The Growth Curve Model (GCM) is a Generalized Multivariate Analysis of
Variance (GMANOVA) model which is especially useful for growth curve ap-
plications (Potthoff and Roy, 1964). It plays important roles in the study of
repeated measurements and longitudinal data. It is particularly useful when
we have short to moderate time series where one can not apply standard time
series approaches. GCM has many applications and arises in many situations.
Its principal application, among other things, is in analyzing trends or growth
curves which are extensively applied in biostatistics, epidemiology and medical
research (Pan and Fang, 2002; von Rosen, 1989). The model also arises when
we have a linearly constrained mean and hence it is a natural generalization
of the MANOVA model (Potthoff and Roy, 1964; Khatri, 1966; Kollo and von
Rosen, 2005).

Suppose, for example, that we have k groups where q repeated observations
are taken on a given experimental unit in each group. If these observations
can be associated with some continuous variable, such as time, temperature
or concentration, then they form a response curve which is assumed to be a
polynomial in time of degree p-1. The expected value of the ith group can,
therefore, be described as (Pan and Fang, 2002)

b0,i + b1,it+ ...+ bp−1,it
p−1 + ϵi, i = 1, 2, ..., k. (1)

This can formally be modeled using the following multivariate bilinear setup,
which is referred to as the GCM (Pan and Fang, 2002; Kollo and von Rosen,
2005)

X = ABC+E, (2)

where X : p × n and B : q × k are the observation and parameter matrices,
respectively; A : p × q and C : k × n are the within and between individual
design matrices, respectively. The columns of E are assumed to be indepen-
dently distributed as a p-variate normal distribution with mean zero and an
unknown positive definite covariance matrix Σ.

It is important to note here that B in (2) is an unknown parameter matrix
consisting of the coefficients of the polynomials described in (1) whereas A and
C are known design matrices. Moreover, the between individual design matrix
C is precisely the same design matrix as used in the theory of univariate and
multivariate linear models which includes univariate analysis of variance and
regression models (Kollo and von Rosen, 2005). If A=I, GCM reduces to the
ordinary MANOVA model. Note also that the mean structure in (2) is bilinear
contrary to the MANOVA model which has a linear structure. Consequently,
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the maximum likelihood estimator of its mean parameters is a non linear
random expression which causes many difficulties when considering inference
(Kollo and von Rosen, 2005).

GCM was first introduced by Potthoff and Roy (1964) although similar
growth curve situations had been considered earlier. The first paper consid-
ering growth curves appeared in Wishart (1938). Since then different aspects
of the model have been studied, among many others, by Rao (1965), Khatri
(1966), Kollo and von Rosen (2005). We refer to von Rosen (1991) and Srivas-
tava and von Rosen (1999) for general overview of the model. Kshirsagar and
Smith (1995) provided a simple introduction about the model from an applied
perspective. Statistical diagnostics about GCMs is discussed in Pan and Fang
(2002). The latter also gives an excellent background with illustrations using
several practical examples. More advanced theory about the model can be
found in Kollo and von Rosen (2005).

Hypothesis tests in the MANOVA model have been considered by many
and several test statistics have been proposed (Anderson, 2003). Among them
are Wilks Lamda, Roy’s maximum root and Lawely-Hotelling trace tests. To
our knowledge, except in special cases, there is no exact test for testing the
mean structure in the growth curve model. Approximate tests based on the
likelihood ratio are available and some authors have proposed tests applicable
under some special cases (Chi and Weerahandi, 1998; Lin and Lee, 2003).

In this paper, we propose an intuitive, simple and practical alternative to
the likelihood ratio test. The test statistics is constructed using a restricted
likelihood approach followed by an estimated likelihood. We demonstrate that
the proposed test statistics reduces to the Lawley-Hotelling trace test when
A=I (that is, for the MANOVA model). Our test can, therefore, be considered
as an extension of the Lawely-Hotelling test to GCM. Moreover, we show that
our test statistic is a function of von Rosen’s (1995) residuals, defined by tak-
ing the bilinear structure in the model into account. This desirable property
allows interpretability and easy understanding in practical situations. Resid-
uals in univariate models have been used as diagnostic tools for validating
estimated models. Their application, however, is limited in multivariate mod-
els in general and the growth curve model in particular. Diagnostics for GCM
has been considered by many (Liski, 1991; Pan and Fang, 2002; von Rosen,
1995; Hamid and von Rosen, 2006). However, there has been no studies con-
necting dispersion estimation with the residuals in the model.

We show that the distribution of our proposed statistic under the null hy-
pothesis is independent of the unknown covariance matrix Σ and provide its
expected value. We also show that the exact distributions of the test statis-

2



tic under the null and alternative hypotheses can be represented as weighted
sums of central and non-central chi-square random variables. We use a condi-
tional approach where we condition on a natural ancillary statistic to derive
an approximate distribution both under the null and alternative hypotheses.

2 A trace test for the mean in GCM

Suppose that GCM given in (2) has been fitted to data and we would like to
know if the assumed model fits the data well. In this section we formulate the
hypothesis and propose suitable statistic for testing this hypothesis. We use a
restricted maximum likelihood approach followed by an estimated likelihood to
construct test. See Searle et al. (1992) for more details about the procedure.
First we write the likelihood as a product of two terms and maximize the
second part of the likelihood to get an estimator for the covariance matrix
Σ. We the replace the unknown covariance matrix by its estimator to get the
estimated likelihood which is then maximized under Ho and Ho ∪H1, where
Ho and H1 are the null and alternative hypotheses, respectively. We discuss
why the test appears to be natural, reasonable and easy to apply in practice.
We also try to interpret the statistic in connection with the corresponding
interpretation for the residuals given in the growth curve model.

Suppose that we have fitted a GCM and we would like to test the hypothesis
that,

Ho : B = 0,

H1 : B ̸= 0.

Now consider the likelihood function for GCM which is given by

L = α|Σ|−
n
2 e−

1
2
tr{Σ−1(X−ABC)(X−ABC)′},

where α = (2π)−
1
2
np. We can rewrite the above likelihood function as a

product of two terms

L = αe−
1
2
tr{Σ−1(XC′(CC′)−C−ABC)(XC′(CC′)−C−ABC)′}|Σ|−

n
2 e−

1
2
tr{Σ−1S},

where S = X(I−C′(CC′)−C)X′ and the superscript ”-” represents the gen-
eralized inverse.

Let us proceed by taking the second part of the likelihood which is given
by

|Σ|−
n
2 e−

1
2
tr{Σ−1S}.
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Maximize the above expression to get an estimator for the covariance matrix
Σ which is given by (Srivastava and Khatri, 1979; Kollo and von Rosen, 2005)

Σ̂ =
1

n
S.

Once again, consider the likelihood function but this time use the estimator of
the covariance matrix instead of the covariance matrix itself. The likelihood
reduces to the following expression

EL = α1|S|−
n
2 e−

1
2
ntr{S−1(XC′(CC′)−C−ABC)(XC′(CC′)−C−ABC)′}, (3)

where α1 = n
n
2 (2π)−

1
2
npe−

1
2
pn and EL stands for estimated likelihood. Next

we maximize the expression in (4) under Ho and Ho ∪ H1. Under Ho, i.e.,
when B = 0, and the maximum of the estimated likelihood equals

α1|S|−
n
2 e−

1
2
ntr{S−1XC′(CC′)−CX′}. (4)

Under Ho ∪ H1, the maximum of the estimated likelihood can be obtained
by replacing the observed mean structure ABC by its estimated maximum
likelihood estimator which is given by

AB̂C = A(A′S−1A)−A′S−1XC′(CC′)−C.

The maximum of (4) under the alternative, therefore, becomes

α1|S|−
n
2 e−

1
2
ntr{S−1(XC′(CC′)−C−AB̂C)(XC′(CC′)−C−AB̂C)′}. (5)

where XC′(CC′)−C − AB̂C is von Rosen’s (1995) residual, which we will
denote by R. Note that this residual is the difference between the observed
and estimated mean structures. Now define a test statistic by taking the ratio
between (5) and (6), which can be written as

e−
1
2
ntr{S−1XC′(CC′)−CX′}

e−
1
2
ntr{S−1RR′}

, (6)

and the hypothesis is rejected for small values of the ratio. It is possible to
show that the above ratio takes values between zero and one. Equivalently,
one can use the logarithm of the ratio, which can be re-written as

tr{S−1XC′(CC′)−CX′} − tr{S−1RR′}, (7)

where the null hypothesis is now rejected for large values of (8).
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Let us now consider the residual, R, mentioned above. It can be re-written
as (Hamid and von Rosen, 2006)

R = SAo(Ao′SAo)−Ao′XC′(CC′)−C, (8)

where Ao is a matrix of full rank spanning the orthogonal complement to the
column space of A. The desired test which is given in the next proposition can
then be obtained from (8) by using the expression in (9) for R and the fact
that tr(AB)=tr(BA) for any two matrices A and B of proper sizes. Although
we focus on the hypothesis in (3) in this paper, we would like to note that
a test statistics for Ho : GB=0 can easily be obtained, where G is a known
matrix. Our method, therefore, can be used to test more general hypotheses
such as group differences.

Proposition 1. Consider the GCM given in (2). Suppose also that we are
interested in testing the hypothesis provided in (3). A test statistic is given by

ϕ(X) = tr{S−1A(A′S−1A)−A′S−1XC′(CC′)−CX′}. (9)

The null hypothesis is rejected when ϕ(X) > c, where c is calculated such that
PHo(ϕ(X) > c) = α, where α is the desired level for the test.

Observe that the test given in Proposition 1 is always greater or equal
to zero. Moreover, the test is equivalent to the ratio given in (7) where the
numerator is a function of the observed mean structure, XC′(CC′)−C, and
the denominator is a function of the residual, R, which is obtained by sub-
tracting the estimated mean structure from the observed mean. This means
our that proposed test compares the observed mean and the residuals. In
other words, the test compares the observed and estimated means and rejects
the hypothesis when they are ”close” to each other, i.e., when the residuals
are very ”small”. This characteristic of the test statistic we believe is very
desirable and what makes the test natural, since it is a well known fact that
comparing the observed and estimated values is the proper way to evaluate an
estimated model.

Recall that the classical multivariate analysis of variance model is a special
case of GCM when A=I. Our test statistic, when A=I, reduces to

tr{S−1XC′(CC′)−CX′},

which is the same as the well known Lawley-Hotelling trace test, sometimes
called the generalized Hotelling’s test. This interesting finding suggests that
our test is a natural extension of the Lawely-Hotelling trace test to GCM.
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Under the null hypothesis the distribution of (ϕ(X)) is independent of Σ
which is not obvious to see. This fact is shown in the following theorem. An
important consequence of the theorem is that under the null hypothesis one
can, without loss of generality, assume that Σ = I. As a result, the critical
point is free of any unknown parameter. On the other hand, the distribution of
the test under the alternative hypothesis depends onΣ. That means the power
of the test depends on both Σ and B. However, one can use an estimate of Σ
to get an estimate of the power of the test which could be used as a measure
of performance.

Theorem 1. Consider the hypothesis in (3). Under the null hypothesis, the
distribution of the test given in (10) is independent of the unknown covariance
matrix Σ.

Proof. Let Ao be a matrix of full rank spanning the orthogonal complement
to the space generated by the columns of A. We can write the test ϕ(X) as

ϕ(X) = tr{XC′(CC′)−CX′S−1} − tr{XC′(CC′)−CX′Ao(Ao′SAo)−1Ao′}.

The first term in the above expression is invariant under the transformation
Σ− 1

2X. It is therefore possible to replace X by Σ− 1
2X which shows that the

distribution of the first term is independent of Σ. For the second term, we
can rewrite it as

tr{C′(CC′)−CX′Ao(Ao′SAo)−1Ao′X}.

Now, let us write Ao′X as

(Ao′ΣAo)
1
2 (Ao′ΣAo)−

1
2Ao′X.

Observe that we can rewrite (Ao′ΣAo)
1
2 (Ao′SAo)−1(Ao′ΣAo)

1
2 as

((Ao′ΣAo)−
1
2Ao′X(I−C′(CC′)−C)X′Ao(Ao′ΣAo)−

1
2 )−1.

Consequently, it remains to show that the distribution of (Ao′ΣAo)−
1
2Ao′X is

independent ofΣ. However, the expression is a linear function of a multivariate
normal random variable, and as a result, it is enough to show that the mean
and dispersion matrices are independent of Σ.

Under the null hypothesis E[X] = ABC = 0 which implies

E[(Ao′ΣAo)−
1
2Ao′X] = 0.

Moreover,

D[(Ao′ΣAo)−
1
2Ao′X] = (Ao′ΣAo)−

1
2Ao′ΣAo(Ao′ΣAo)−

1
2 = I.
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The expected value of ϕ(X) is presented in the following theorem. One
can see from the theorem that the expression for the expectation consists of
two parts: one part which is independent of B, which in fact is the expected
value of the test under the null hypothesis (see Corollary 1). The other part
is an ”increasing” function of B. That means the ”more” B differs from 0,
the more likely the hypothesis is to be rejected. In other words, it suggests
that the power of the test increases as B ”increases”. The results from the
numerical example also support this argument, however, B is a matrix and it
is not easy to quantify the difference between B and 0. One way of looking at
it is through the non-centrality parameter which will be discussed in the next
section.

Theorem 2. Let ϕ(X) be as given in Proposition 1, then

E[ϕ(X)] = βρ(C)ρ(A) + 1
n−p−1 tr{ABC(ABC)′Σ−1},

where β = n−1
(n−p−1)(n−p+ρ(A)−1) and ρ(.) is the rank of a matrix.

Proof. The expression inside the trace function in (10) is the product of two
independent terms. We can therefore write the expectation as

E[ϕ]tr{E[XC′(CC′)−CX′]E[S−1A(A′S−1A)−A′S−1]}.

Observe that the first expectation on the right hand side of the above expres-
sion is the expectation of a non-central Wishart random variable. Therefore,

E[XC′(CC′)−CX′] = ρ(C)Σ+ABC(ABC)′.

For the second expectation, we write the expression in its canonical form to
get

E[S−1A(A′S−1A)−A′S−1] = ρ(A)
(n−p−1)(n−p+ρ(A)−1)Σ

−1

+ 1
n−p+ρ(A)−1Σ

−1A(A′Σ−1A)−A′Σ−1.

More on the canonical representation can be found in Hamid (2001). The
desired result follows because

tr{A(A′Σ−1A)−A′Σ−1} = ρ(A)

and
A′Σ−1A(A′Σ−1A)−A′ = A′

which completes the proof.
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Corollary 1. Consider the hypothesis given in (3). Under the null hypothesis,
the expectations in Theorem 2 reduces to

E[ϕ(X)] = βρ(C)ρ(A)

where β is as given in Theorem 2.

3 Distribution of the trace test

Unfortunately, the exact distribution for the test statistics proposed in Propo-
sition 1 is difficult to obtain. As a result, in practical situations one needs
to implement alternative approaches to calculate the critical point. For in-
stance, one can approximate the distribution using the first two moments
based on Edgeworth expansion. One can also use permutation or bootstrap-
ping approaches to obtain an empirical null distribution. In this paper, how-
ever, we use a conditional approach where we condition on a natural ancil-
lary statistic. That is, we calculate the critical point for a given S, where
S = X(I − C′(CC′)−C)X′ is an ancillary statistic for the parameter of in-
terest, i.e. B. Apart from a great simplification provided by conditioning,
conditioning like sufficiency and invariance, leads to a reduction of the data
(Lehmann, 1986). When the problem involves ancillary statistics conditioning
is appropriate since it makes the inference more relevant to the situation at
hand. For GCM, S = X(I − C′(CC′)−C) has a Wishart distribution with
parameters Σ and n− ρ(C). Its distribution, therefore, is independent of the
parameter of interest, i.e. B, although it depends on the covariance matrix
Σ. This shows that S is ancillary for B. What we shall do in this section is
to find a critical point for the proposed test by conditioning on the ancillary
statistic S. Before proceeding with the conditional approach, however, we will
first show that the exact distributions of the proposed test statistics under
the null and alternative hypotheses can be written as a linear combinations
of independent chi-square random variables. We will then use a conditional
approach that allows us to use existing approximations.

Theorem 3. Consider the test statistic provided in Proposition 1 for testing
the hypothesis given in (3). Under the null hypothesis, the distribution of the
test ϕ(X) can be represented as

ϕ(X) ≡
∑

WiiΛii, (10)

where Wii′s are independently distributed as chi-square random variables with
ρ(C) degrees of freedom and Λiis are non negative constants which are func-
tions of S. The ”≡” in equation (11) represents equivalence in distribution.
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Proof. Consider the test statistic provided in Proposition 1,

ϕ(X) = tr{XC′(CC′)−CX′S−1A(A′S−1A)−A′S−1},

and assume, without loss of generality, that Σ = I. This is possible due to the
fact that the null distributions is independent of Σ.

Therefore, under the null hypothesis, i.e., when B=0, we have

W = XC′(CC′)−CX′ ∼ W(I, ρ(C)),

where W(I, ρ(C)) represents a Wishart distribution with parameters I and
ρ(C). We may therefore rewrite ϕ(X) as

ϕ(X) = tr{WP},

where P = S−1A(A′S−1A)−A′S−1, is independent of W. P is a symmetric
positive semi-definite matrix, as a result we could decompose it as

P = ΓΛΓ′,

where Γ is an orthogonal matrix, Λ is a diagonal matrix where the diagonal
elements Λii are the ith eigenvalues of P. On the other handW can be written
as the sum of ρ(C) independent random matrices as,

W =

ρ(C)∑
i=1

wiwi′ , (11)

where wi ∼ Np(0, I) (Kollo & von Rosen (2005). Consequently,

ϕ(X) ≡ tr{WΓΛΓ′} ≡ tr{WΛ},

where the last statement was possible since tr{AB}=tr{BA} for any two
matrices, the Wishart distribution is rotation invariant and Γ is an orthogo-
nal matrix which is independent of W. Now using the property of the trace
function we get

ϕ(X) ≡
∑

WiiΛii,

where the Wii′s are the diagonal elements of W. Moreover, using the repre-
sentation in (12), it is possible to show that they are independently distributed
as a chi-square distribution with ρ(C) degrees of freedom.
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Theorem 4. Let µ =
√
nΣ− 1

2ABC. The distribution of ϕ(X) under the
alternative can be written as

ϕ(X) ≡
∑

WiiΛii; (12)

where Λii are positive constants, Wii′s are independently distributed as a non-
central chi-square random variable with ρ(C) degrees of freedom and λi =∑ρ(C)

j=1 µ2
ij is the non-centrality parameter with µij as the (i, j)th element of µ.

Proof. Once again, consider the test statistic provided in Proposition 1. It
can be rewritten as

ϕ(X) = tr{{Σ− 1
2XC′(CC′)−CX′Σ− 1

2 }{Σ
1
2S−1A(A′S−1A)−A′S−1Σ

1
2 }}.

Now consider the first part of the above expression. It is possible to show that
(see, for example, Kollo and von Rosen, 2005)

W = Σ− 1
2XC′(CC′)−CX′Σ− 1

2 ∼ Wp(I, ρ(C),∆),

where ∆ = µµ′. Let

P = Σ
1
2S−1A(A′S−1A)−A′S−1Σ

1
2 .

P is a symmetric positive semi-definite matrix. As a result we can decompose
it as

P = ΓΛΓ′,

where Γ is an orthogonal matrix and Λ is a diagonal matrix where its diagonal
elements are the eigen values of P. Under the alternative hypothesis, ϕH1(X)
can therefore be written as

ϕ(X) = tr{WP} = tr{WΛ} =
∑

WiiΛii.

However, using a representation similar to (12) for W, it is possible to show
that Wii′s are independently distributed as non-central chi-square with ρ(C)

degrees of freedom and non-centrality parameter λi =
∑ρ(C)

j=1 µ2
ij .

As shown in Theorems 3 and 4, the distribution of the proposed test statis-
tics can be represented as a weighted sum of central and non-central chi-square
random variables, respectively. However, the weights Λii′s are functions of S
and hence random. We, therefore, consider a conditional approach where the
expressions given in (11) and (13) are considered for given S (equivalently, on
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Λii). Consequently, the Λii′s are no longer random and can be considered as
constants.

A weighted sum of independent chi-square random variables arise very
frequently in practical situations, see for example Johnson & Kotz (1968),
Mathai (1982) and Moschopoulos (1985). Exact distribution for the sum has
been given as an infinite series form in Kotz et al. (1967), Mathai (1982) and
Moschopoulos (1985) where in the latter the applications in different areas such
as queue type problems and engineering were given. It was mentioned that
their representation is computationally convenient since the coefficients are
easily computed by simple recursive relations. However, the exact distribution
is too complicated to be applied in practical situations which brings a need
for a good and reasonable approximation. Several approximations have been
proposed, see for example Moschopoulos (1985), where a series representation
of the exact distribution is given and it was suggested that one can use a
truncated version of the series where the truncation error is readily obtainable.

In this paper, we use the well known Satterthwaite approximation which
will be presented briefly below. For more details about the approximation
and its extension of the approximation to linear combination of independent
Wishart random variables see Statterthwaite (1949) and Tan & Gupta (1983),
respectively. In the latter paper, some Monte Carlo results were given to
demonstrate the closeness of the approximation and the studies indicate that
the approximation in general is fairly good.

Suppose there are p experimental groups where observations in each of
the groups follow a normal distribution with mean zero and variance σ2

i , the
weighted sum of squares of observations can be represented as

Z =

p∑
i=1

aiσ
2
i χ

2
fi
,

where the χ2
f ′
i
s are independent chi-square random variables and the ai′s pos-

itive constants. The well known approximation of Z is given by (see Tan and
Gupta, 1983):

Z ∼ aχ2
f , (13)

where

a =

∑p
i=1 a

2
i fiσ

4
i∑p

i=1 aifiσ
2
i

, f =
(
∑p

i=1 aifiσ
2
i )

2∑p
i=1 a

2
i fiσ

4
i

.

The f and a in the above two equations are obtained by equating the first
two moments of both sides of equation (14). However, in practical situations
the σ2′

i s are unknown. In this case, a and f are estimated by replacing the
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σ2′
i s by their estimates. This approximation is known as the Satterthwaite

approximation (Satterthwaite, 1946).
The distribution of

∑
WiiΛii in Theorem 3 is, therefore, approximated by

aχ2
f , where χ2

f is a chi-square random variable with f degrees of freedom and
a is a positive constant. The unknown parameters a and f are then obtained
by equating the first two moments of

∑
WiiΛii and aχ2

f . We shall present
this result in the following theorem.

Theorem 5. Consider the test statistic given in Proposition 1. Its null dis-
tribution for a given S can be approximated by that of aχ2

f where χ2
f is a chi-

square random variable with f degrees of freedom and a is positive constant.
The constants a and f are given by

a =

∑p
i=1Λ

2
ii∑p

i=1Λii
, f =

ρ(C)(
∑p

i=1Λii)
2∑p

i=1Λ
2
ii

,

where Λii are the eigen values, and ρ(C) is the degrees of freedom of the chi-
square random variables in Theorem 3.

The critical point c(S) can then be calculated from

PHo(aχ
2
f > c(S)) = α.

For the distribution under the alternative hypothesis, the representation
provided in Theorem 4 enables us to use existing results for such sums. How-
ever, contrary to the distribution under the null hypothesis, under the alterna-
tive it depends on the covariance matrix Σ, which in many practical situations
is unknown. Consequently, an estimator is needed to get an estimated power.
A brief discussion about two alternative estimators is given in the next sec-
tion. Theorem 4 also shows that the distribution of the test depends on the
parameter B. It is important to note that this dependence is through µ and
hence through the non-centrality parameters λi’s.

Linear combinations of non-central chi-square random variables were con-
sidered among others by Press (1966) where they provided an expression for
exact distribution function. It was also mentioned that this kind of distribu-
tion arises in classifying an unknown vector into one of two multivariate normal
populations with unequal means and covariance matrices. However, the distri-
bution is too complicated to be used in practical applications although there
exist several algorithms to numerically solve the series, see for example Imhof
(1961). Satterthwaite’s approximation, used for sums of chi-square random
variables, can not be used directly for sums of non-central chi-square random
variables either.
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Here we propose a novel approach that can be used to extend Satterth-
waite’s approximation to weighted sums of non-central chi-square random vari-
ables. Suppose

Z =

p∑
i=1

aiχ
2
fi,λi

,

where χ2
fi,λi

is distributed as non-central chi-square with fi degrees of free-
dom and non-centrality parameter λi. Our approach involves the well-known
decomposition of a non-central chi-square random variable into two indepen-
dent components. One part which is distributed as a non-central chi-square
distribution with one degree of freedom and non-centrality parameter λ. The
second component is distributed as a central chi-square distribution with f -1
degrees of freedom.

Let xi ∼ N(µi, 1), i=1,2,...,f . Then it is well known that∑
x2i ∼ χ2

f,λ,

where λ2 =
∑

µ2
i . We can make an orthogonal transformation form

x1, x2, ..., xf to y1, y2, ..., yf such that y1, y2, ..., yf are independently normally
distributed with a unit variance and E(y1) = λ, and E(yi) = 0 for i=2,3,...,f
(Rao, 1973). As a result,

f∑
i=1

x2i =

f∑
i=1

y2i = y21 +

f∑
i=2

y2i . (14)

Observe that y21 is a non-central chi-square random variable with 1 degree of

freedom and non-centrality parameter λ. Whereas,
∑f

i=2 y
2
i is distributed as

central chi-square with f -1 degrees of freedom. Moreover, it is important to
note that the two terms in (15) are independent. We can, therefore, write χ2

f,λ

as
χ2
f,λ = χ2

1,λ + χ2
f−1.

Consequently, aχ2
f,λ and

∑p
i=1 aiχ

2
fi,λi

can be written as

aχ2
f,λ = aχ2

1,λ + aχ2
f−1,

p∑
i=1

aiχ
2
fi,λi

=

p∑
i=1

aiχ
2
1,λi

+

p∑
i=1

aiχ
2
fi−1.

An approximate distribution of Z can, therefore, be given by

Z ∼ aχ2
f,λ,

13



where a and f in are obtained by equating the first two moments of aχ2
f−1 and∑p

i=1 aiχ
2
fi−1. The non-centrality parameter λ is calculated by equating the

first moments of aχ2
1,λ and

∑p
i=1 aiχ

2
1,λi

, where a is replaced by its estimator.
The estimators for a, f and λ are presented in the following theorem.

Theorem 6. The distribution of ϕ(X|S) under the alternative hypothesis can
be approximated by aχ2

f,λ, where a, f and λ are given by

a =

∑p
i=1Λ

2
ii∑p

i=1Λii
,

f =
(ρ(C)− 1)[

∑p
i=1Λii]

2∑p
i=1Λ

2
ii

+ 1,

λ =
{
∑p

i=1Λii(1 + λi)}{
∑p

i=1Λii}∑p
i=1Λ

2
ii

− 1,

where the Λii′s and λi′s are as given in Theorem 4, and ρ(C) is the degrees
of freedom of the non-central chi-square random variables, Wii′s.

The power of the test, under the alternative hypothesis, is then calculated
as

PH1(aχ
2
f,λ > c(S)).

Observe that the test depends on B only through the non-central parameter
λ, and this non-centrality parameter increases the more B differs from zero.
We have shown this in the numerical example given in the next section. It is
also interesting to see that the power is a monotone function of λ.

4 Estimation of Σ for power calculations

Recall that the distribution of the conditional test under the alternative hy-
pothesis depends on the unknown covariance matrix Σ. As a result, the ap-
proximate distribution also depends on Σ, see Theorem 6. In practical situa-
tions, one needs to find a reasonable estimator for Σ to obtain an estimator
for the approximate power.

One possible estimator for Σ is (1/n)S. This estimator was obtained by
maximizing the part of the likelihood, and was used to get the estimated
likelihood when defining the test. Moreover, it is possible to show that S
provides sufficient information in absence of knowledge about the parameter
B. See a paper by Sprott (1975) on marginal and conditional sufficiency. One
can also use the unbiased estimator (1/(n − ρ(C)))S. Furthermore, the two

14



estimators mentioned above are functions of the ancillary statistic and are
considered as constants. However, for a completely specified alternative, S
does not provide sufficient information aboutΣ. Another estimator that might
be used is

Σ̂ =
1

n
{S+ (XC′(CC′)−C− ÂBC)(XC′(CC′)−C− ÂBC)′}. (15)

This estimator gives more information than S, provided that there is some
knowledge about B. This is particularly true when B is known. However,
using (16) as an estimator for Σ brings complications to the conditional ap-
proach which will not be discussed in this paper. Nevertheless, one can use
the estimate after the data has been obtained to get an estimate for the power.
This will be shown in the next section using a numerical example.

5 Numerical example

In this section we give a numerical example to illustrate the results presented
in the previous sections. We consider the Potthoff and Roy (1964) data. This
data was also considered by von Rosen (1995) to illustrate how one can use
the residuals in the growth curve model. The data consist of dental measure-
ments on eleven girls and sixteen boys at four ages (8, 10, 12 and 14). Each
measurement is the distance, in millimeters, from the center of pituitary to
pteryo-maxillary fissure. Suppose the growth curve model has been fitted to
the data where the mean for both the girls and boys are assumed to follow
linear growth. The design and parameter matrices are given as follows:

B =

(
b01 b02
b11 b12

)
, A =


1 8
1 10
1 12
1 14

 and C2×27 =

(
111 016

011 116

)
.

Suppose we are interested to test the following hypothesis:

Ho : B = 0

H1 : B ̸= 0.

The proposed test is given by

ϕ(X) = tr{XC′(CC′)−CX′S−1A(A′S−1A)−A′S−1},

where the hypothesis is rejected when ϕ(X|S) > c(S), where c(S) is obtained
from

PHo(aχ
2
f > c(S)) = α,
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where a and f are as given in Theorem 5. The observed value of the test
for the above data is ϕ(X|S) = 175.12. Therefore, we reject the hypothesis if
c(S) is greater than 175.12. The calculated values of a and f are 0.02 and 3,
respectively. Suppose the level of significance α = 0.05, c(S) is then obtained
from

PHo(0.02χ
2
3 > c(S)) = 0.05,

and the value of the c(S) obtained is 0.16, which is much smaller than the
observed value for the test indicating that the data gives strong evidence
towards rejecting the hypothesis that B = 0. Recall from Section 2 that
our test indicates the difference between the observed and estimated mean
values. Our result, therefore, indicates that these two values are close to each
other and hence linear growth curves seem appropriate to describe the mean
structure for both the girls and the boys. Similar statement was made by
Potthoff & Roy when they analyzed the data for the first time. von Rosen
(1995) also showed that residuals, which are obtained as a difference between
the observed and estimated means, are very small which lead to the conclusion
that the assumed linear curves seem to fit the data well.

Let us now calculate the estimated power for the above test. First, we
shall replace the unknown covariance matrix Σ by 1

nS. That is the matrices
µ and P given in Theorem 4 become

µ =
√
nS− 1

2ABC

P =
1

n
S− 1

2A(A′S−1A)−A′S− 1
2

Recall that both the exact and approximate powers depend on B. That means
we need to specify the value of B under the alternative hypothesis. Suppose
that we are testing the hypothesis that B = 0 against the alternative

B =

(
7.43 5.84
0.48 0.83

)
.

The calculated values of a and f for the data under the alternative hy-
pothesis are 0.04 and 3, respectively. Note that these values do not depend on
the value of B and and hence remain the same for all B. However, the value
of the non-centrality parameter depends on the choice of B. For our data set
and the above specified B, the value of the non-centrality parameter obtained
is λ = 10.07. Consequently, the estimated power of the test is calculated as

P = PB(0.04χ
2
3,10.07 > c(S)),

16



where c(S) = 0.16. The estimated power obtained is 0.94 which is very large.
Now consider another alternative, say

B =

(
10.71 9.32
0.91 0.87

)
.

As mentioned above the values of a and f remain the same, i.e., a = 0.04
and f = 3. However, we get λ = 21.11 which is larger than the value obtained
for the previous alternative. The estimated power for this alternative is 0.998
which, as expected, is larger than that of the previous alternative. Suppose
now that

B =

(
2.91 1.32
0.091 0.087

)
.

For this alternative, we get λ = 1.89 and the estimated power is 0.5, smaller
than the above two values. We have also tried B values very close to zero and
the power of the test becomes smaller. However, in all the alternatives we
observed that the power is larger than the level of significance which suggests
that the test might be unbiased. Further investigation is, however, required
to show that this is always the case. We would like to note here that the
above values are estimated values after Σ has been replaced by 1

nS. However
the fact that S gives all information about Σ is no longer true when B has a
specified value. Consequently, it is possible to show that the above estimator
underestimates the approximated power and perhaps it is also true for the
exact power as well. The estimator given (16) gives more information about
Σ under the alternative hypothesis. Unfortunately, this estimator is no longer
a function of only the ancillary statistic which brings complications to the
problem. However, the estimate may be used at the last stage. That is, after
conditioning has been done and after the data is observed. We have tried
to calculate the estimated power using (16) as an estimator for Σ instead of
Σ̂ = 1

nS, and we obtained a relatively large power estimates. For instance, for
the last alternative, i.e., for

B =

(
2.91 1.32
0.091 0.087

)
,

we obtained a = 5.01, f = 2 and λ = 1.02. The estimated power obtained
is 0.99 which is much larger than the previous value, which was 0.5. It is
also important to note that the estimated power now depends on B not only
through λ but also through a and f . As a result, the three parameters are
different for different B values specified in the alternative.
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6 Discussion

A trace test for the mean parameters in the Growth Curve Model is pro-
posed. The test is constructed using a restricted followed by an estimated
likelihood approaches. The covariance matrix Σ is estimated from one part of
the likelihood function, thenΣ is replaced by its estimator to get the estimated
likelihood. Our proposed test statistic reduces to the Lawley-Hotelling’s trace
test for the classical MANOVA model indicating that our test can be regarded
as the Lawley-Hotelling trace test for the GMANOVA model. Moreover, we
have demonstrated that our proposed test is equivalent to a ratio of the ob-
served and estimated growth curves. The test compares the observed and the
estimated mean growth curves and the hypothesis is rejected when the differ-
ences are large. This intuitive interpretation of our test statistic provides easy
understanding and we hope will encourage researchers to adapt our method
in practical applications.

We showed that the distributions of the test statistic under the null and
alternative hypotheses can be represented as weighted sums of central and
non-central chi-square random variables, respectively. We have also provided
appropriate methods for calculating approximate critical values as well as es-
timate the power of the test.

Results from the numerical example indicate that the performance of our
proposed statistic is fairly good. Moreover, mathematical as well as numerical
results suggest the test is unbiased and that the power of the proposed statistic
is a monotone function of the non-centrality parameter which is a function of
the mean parameter B. However, further studies including simulation studies
are required to study the power and assess the performance of our proposed
statistic. We plan to investigate this issues in the future.

We would also like to note that the hypothesis given in (3) can be formu-
lated in its general form, i.e.

Ho : GBF = 0,

H1 : GBF ̸= 0,

where G and F are any two matrices. This kind of general formulation can
for example be used if one is interested in comparing two growth curves which
could be done by choosing suitable elements for the matrices F and G. We are
also currently working on extending the test statistic to the Extended Growth
Curve Model.
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