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Abstract

This article analyzes whether the existing tests for the p× p covariance
matrix Σ of the N independent identically distributed observation vec-
tors with N ≤ p work under non-normality. We focus on three hypothe-
ses testing problems: (1) testing for sphericity, that is, the covariance
matrix Σ is proportional to an identity matrix Ip; (2) the covariance
matrix Σ is an identity matrix Ip; and (3) the covariance matrix is
a diagonal matrix. It is shown that the tests proposed by Srivastava
(2005) for the above three problems are robust under the non-normality
assumption made in this article irrespective of whether N ≤ p or N ≥ p.
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1 Introduction

Quantitative measurements of thousands of genes’ expressions are obtained
through DNA microarrays. Since these observations on the genes are on the
same subject, they are not independently distributed. Thus, if there are mea-
surements on p genes, it has a p × p covariance matrix Σ. The number of
subjects on which these measurements are obtained, say N , are often very
few, that is N ≪ p. The analysis of such data sets requires new developments
of multivariate theory, many of them have recently been obtained in the liter-
ature. The analysis is, however, simplified considerably if the p× p covariance
matrix Σ satisfies either of the following three hypotheses:

(1) H1 : Σ = λIp, λ > 0,

(2) H2 : Σ = Ip,

(3) H3 : Σ = D = diag(d1, ..., dp),

where D is a p × p diagonal matrix with diagonal elements d1, ..., dp. For
example, if either the hypothesis (1) or (2) holds, then most of the univariate
results can be used to analyze the data. If the hypothesis H3 holds, then a
standardized version of the univariate test statistics can be used. In microarray
data analysis of genes, it is invariably assumed, implicitly or explicitly that
the genes are independently distributed to carry out the analysis; that is,
the analysis is carried out under the hypothesis H3. The false discovery rate
(FDR) of the Benjamini and Hochberg (1995) procedure can be controlled at
the specified level only if the hypothesis H3 is true, or if the covariance matrix
Σ is of the intraclass correlation structure with positive correlation provided
the data is normally distributed; but so far no satisfactory test is available
for testing the intraclass correlation structure when N ≤ p. Since N ≪ p, it
is not known how to ascertain the multivariate normality of the data. Thus,
it would be desirable to have tests for which the significance levels can be
controlled with or without the assumption of normality of the data; that is,
to have robust tests.

When p is finite and N is large it may not be important or necessary
to obtain robust tests as the level of significance can be maintained at the
specified level by using the bootstrap methods of Beran and Srivastava (1985)
for the covariance matrix. For this reason, most studies considered selecting
a test that has better power among the available tests. For example, Chan
and Srivastava (1988) compared the power of the LRT with that of LBIT
defined in Section 4 for testing sphericity. Similar comparison was carried
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out by Nagao and Srivastava (1992) for the multivariate t-distribution with
k degrees of freedom and found that LBIT is better than LRT. Purkayastha
and Srivastava (1995) compared the power of LRT with a test proposal by
Rao (1948) and independently by Nagao (1973) for testing that Σ = I, for
the elliptical distribution. A robust and improved estimator of the covariance
matrix of the elliptical model has been given by Kubokawa and Srivastava
(1999).

For N ≤ p and both N and p going to infinity, bootstrap theory is not yet
available. Thus, it is desirable to obtain robust tests for this situation. Our
objective in this paper is to show that the tests proposed by Srivastava (2005)
are robust for the model described below.

We assume that the p dimensional observation vectors x1,..., xN on N
subjects are independently identically distributed (iid) with mean vector µ
and covariance matrix Σ = CC ′, where C is a p× p non-singular matrix, that
is Σ is a positive definite (pd) matrix.

We shall assume that the N iid observation vectors xi of dimension p, can
be written as

xi = µ+ Czi, (1.1)

E(zi) = 0, Cov(xi) = CC ′ = Σ > 0, i = 1, ..., N.

For testing the hypothesis H3 of diagonality of the covariance matrix Σ, we

shall, however, assume that under H3, C = diag(d
1/2
1 , ..., d

1/2
p ) = D1/2.

Instead of normality of zi = (zi1, ..., zip), i = 1, ..., N , we shall assume that
not only that zi are iid, but that zij are iid for all i and j with

E(zrij) = γr, r = 3, ..., 8, with γ4 = γ. (1.2)

Under normality, γ3 = γ5 = γ7 = 0, γ = 3, γ6 = 15, and γ8 = 105. Unbiased
estimators of µ and Σ are respectively given by

x̄ = N−1
N∑
i=1

xi, S =

[
N∑
i=1

(xi − x̄)(xi − x̄)′

]
/(N − 1). (1.3)

When N ≤ p, the sample covariance matrix S is singular and no likeli-
hood ratio test (LRT) is available for any of the three hypotheses. Thus, we
consider the following tests proposed by Srivastava (2005) for the hypotheses
H1,H2,H3. Let

δ̂1 = trS/p, δ̂2 = [trS2 −N−1(trS)2]/p, (1.4)

δ̂20 =

p∑
i=1

s2ii/p, and δ̂40 =

p∑
i=1

s4ii/p, S = (sij). (1.5)
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Then for testing the hypothesis H1, known in the literature as the ’Sphericity’
hypothesis, we consider the test statistic given by

T1 =

(
δ̂2

δ̂21

)
− 1;

for the hypothesis H2, the test statistic is given by

T2 = δ̂2 − 2δ̂1 + 1;

and for the hypothesis H3, the test statistic is given by

T3 =

(
δ̂2/δ̂20

)
− 1(

1− 1
p

(
δ̂40/δ̂220

))1/2
Let δi = p−1trΣi, i = 1, ..., 4, δ20 = p−1

∑p
i=1 σ

2
ii, δ40 = p−1

∑p
i=1 σ

4
ii.

We make the following assumption for the consistency of the statistics T1, T2,
and T3 in the general case; this assumption, however, is not needed for their
consistency or their asymptotic distributions as (N, p) → ∞, under their null
hypotheses:

Assumption A: As p → ∞, δi → δoi , 0 < δoi < ∞, i = 1, ..., 4.

Under Assumption A, it is shown that δ̂1 and δ̂2 are consistent estimators of
δ1 and δ2 as (N, p) → ∞. It may be noted that trS2/p is not a consistent
estimator of δ2 unless p/N → 0.

Next, we state the asymptotic distributions of the test statistics T1, T2, and
T3 under the null hypotheses as (N, p) → ∞. The theorems will be proved in
the subsequent sections. Let Φ(·) denote the cdf of a standard normal random
variable, N(0, 1), and P0 denotes the distribution under the null hypothesis.

Theorem 1.1. Under the model (1.1)-(1.2),

lim
(N,p)→∞

P0{(N/2)T1 ≤ t1} = Φ(t1),

where Φ(·) denotes the cdf of a standard normal random variable, N(0, 1), and
P0 denotes the distribution under the hypothesis H1.

Theorem 1.2. Under the model (1.1)-(1.2),

lim
(N,p)→∞

P0{(N/2)T2 ≤ t2} = Φ(t2).
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Theorem 1.3. Under the model (1.1)-(1.2),

lim
(N,p)→∞

P0{(N/2)T3 ≤ t3} = Φ(t3).

The asymptotic distributions for T1 ∼ T3 which are presented in Theorem
1.1, Theorem 1.2 and Theorem 1.3 are the same as those obtained under
normality assumption in Srivastava (2005). Thus the tests based on T1, T3 or
T3 are robust tests.

To obtain the distribution of the test statistic T1 and T2 we need to obtain
the joint distribution of δ̂1 and δ̂2 under the model (1.1)-(1.2). To prove
robustness, we need only obtain the joint distribution of δ̂1 and δ̂2 under the
null hypotheses H1 and H2. Since the statistic T1 is invariant under the scalar
transformation xi → cxi, c ̸= 0, we shall assume without loss of generality
that λ = 1. Thus, the results of the following theorem are applicable to both
the statistics T1 and T2.

Theorem 1.4. Let (1.1), (1.2), and Σ = Ip hold. Then the joint distribution

of δ̂1 and δ̂2, displayed in (1.4), as (N, p) → ∞ in any manner, is given by(
δ̂1
δ̂2

)
d−→ N2

[(
1
1

)
,

1

Np
Ω

]
,

where

Ω =

(
γ − 1 2(γ − 1)

2(γ − 1) 4(γ − 1) + 4 p
N

)
. (1.6)

The organization of the paper is as follows. In Section 2, we give some
preliminary results needed to prove Theorem 1.4, which is proven in Section
3. The proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3 are given in
Sections 4, 5 and 6, respectively. In particular, in Section 6 some of the notion
and ideas of Section 2 will be repeated but now it is focused on T3 instead of
T1 and T2.

2 Some preliminary results

In this section we present some preliminary results. We begin with the sample
covariance matrix S. Note that in probability S is equal to

S∗ =
1

N

N∑
i=1

(xi − µ)(xi − µ)′. (2.7)
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Thus δ̂1 and δ̂2, given in (1.4), can be approximated in probability by

δ̂∗1 = (trS∗/p), and δ̂∗2 = p−1
[
trS∗2 −N−1(trS∗)2

]
, (2.8)

respectively. In order to prove the consistency of δ̂∗1 and δ̂∗2 , we need some
results on quadratic forms, stated in the following subsection.

2.1 Moments of quadratic forms

Lemma 2.1. Let u = (u1, ..., up)
′ where ui are iid with mean 0, variance

1, fourth moment γ, sixth moment γ6 and eighth moment γ8. Then for any
A = (aij) and B = (bij) symmetric matrices of size p× p,

(a) E(u′Au)2 =

[
(γ − 3)

p∑
i=1

a2ii + 2trA2 + (trA)2

]
,

(b) V ar(u′Au) =

[
(γ − 3)

p∑
i=1

a2ii + 2trA2

]
,

(c) E[(u′Au)(u′Bu)] =

[
(γ − 3)

p∑
i=1

aiibii + 2tr(AB) + (trA)(trB)

]
,

(d) Cov[(u′Au), (u′Bu)] =

[
(γ − 3)

p∑
i=1

aiibii + 2tr(AB)

]
,

(e) V ar[(u′u)2] = p(γ8−γ2)+4p(p−1)(γ6−γ)+4(p−1)(p−2)(p−3)(γ−1),

(f) E(u′u)3 = pγ6 + 3p(p− 1)γ + p(p− 1)(p− 2).

Lemma 2.2. Let ui and vj be independently and identically distributed with
mean 0, variance 1 and fourth moment γ, i, j = 1, ..., p. Then for u =
(u1, ..., up)

′, and v = (v1, ..., vp)
′, and any p× p symmetric matrix B = (bij),

V ar[u′Bv]2 = (γ−3)2
p∑

i=1

p∑
j=1

b4ij+6(γ−3)

p∑
i=1

 p∑
j=1

b2ij

2

+6trB4+2(trB2)2.
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2.2 Consistency of δ̂∗1 and δ̂∗2

For the sake of convenience of presentation, we shall not distinguish between
δi and δoi = limp→∞ δi, i = 1, ..., 4. From (1.1), S∗ = N−1

∑N
i=1Cziz

′
iC

′. Let
B = C ′C = (bij). Then

E(δ̂∗1) =
N

Np
E(z′iBzi) =

trB

p
= δ1,

V ar(δ̂∗1) =
N

N2p2
V ar(z′iBzi) =

1

Np

[
(γ − 3)

p∑
i=1

b2ii
p

+ 2
trB2

p

]
.

Thus, under Assumption A, V ar(δ̂∗1) = O((Np)−1), and δ̂∗1 is a consistent esti-
mator of δ1. Now δ̂∗2 = p−1

[
trS∗2 −N−1(trS∗)2

]
= N(N − 1)N−2

(
trB2/p

)
+

a1 + a2 + a3, where

a1 =
1

N2p

N∑
i=1

(z′iBzi − trB)2, a2 = −

[
1

N3p

N∑
i=1

(z′iBzi − trB)

]2
,

a3 =
2

N2p

N∑
i<j

[(z′iBzj)
2 − trB2].

We have,

E(a1) =
1

Np
V ar(z′iBzi) =

1

N

[
(γ − 3)

p∑
i=1

b2ii
p

+
2trB2

p

]
,

E(−a2) =
1

N2

[
V ar(z′iBzi)

p

]
.

Thus, from Markov’s inequality, both a1 and a2 go to zero in probability as
(N, p) → ∞. Similarly, from Lemma 2.2, it can be shown that V ar(a3) → 0
as (N, p) → ∞. Hence δ̂∗2 is a consistent estimator of δ2 under the Assumption
A.

2.3 Variance of δ̂∗2 under the hypotheses H1 and H2

The proposed statistic T1 is invariant under the scalar transformations xi →
cxi, c ̸= 0. Thus we may assume without any loss of generality that Σ = I
under the hypothesis H1, the same as for the hypothesis H2. Hence all the
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results in this subsection are obtained under the assumption that Σ = Ip.
When Σ = Ip, the observation matrix can be expressed in two ways:

Z = (zij) = (z1, ..., zN ) = (w1, ...,wp)
′ = (wij). (2.9)

Under H1 and H2 all the elements zij or wij are iid with mean 0 and
variance 1. Thus,

E(wi) = 0, Cov(wi) = IN ,

since wi is an N-dimensional random vector. We shall now express δ̂∗2 in terms
of wi as B = I under H1 and H2. Thus under H1 or H2,

S∗ =
1

N
ZZ ′ =

1

N
(w1, ...,wp)

′(w1, ...,wp) (2.10)

To evaluate the variance of δ̂∗2, we rewrite δ̂∗2 in terms of random vectors
wi, i = 1, ..., p. That is, (≈ stands for approximately equal to)

δ̂∗2 ≈ q1 + q2, (2.11)

where

q1 =
1

N2p

p∑
i=1

v2ii, vii = (w′
iwi), (2.12)

q2 =
2

N2p

 p∑
i<j

(
v2ij −

1

N
viivjj

) , vij = w′
iwj . (2.13)

Let w be a random vector having the same distribution as wi, and v =
w′w. Then, from Lemma 2.1(a)

E(q1) =
1

N2
E(v2) =

1

N
(N + γ − 1).

Let

uij = v2ij −
1

N
viivjj = (w′

iwjw
′
jwi)−

1

N
(w′

iwi)(w
′
jwj). (2.14)

Then

q2 =
2

Np

p∑
i<j

uij , and E(q2) = 0. (2.15)

From Lemma 2.1(e), we get the following theorem.
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Theorem 2.3. Let q1 be given in (2.12). Then,

V ar(q1) = 4(γ − 1)(Np)−1[1 +O(N−1p−1)].

To calculate the variance of q2, we first evaluate

Cov(uij , uik) =

E
[
((w′

jwi)
2 −N−1(w′

iwi)(w
′
jwj))((w

′
kwi)

2 −N−1(w′
iwi)(w

′
kwk))

]
,

for i ̸= j ̸= k. Since,

E[(w′
iwjw

′
jwi)(w

′
iwkw

′
kwi)] = E(w′

iwi)
2,

− 1

N
E[(w′

iwjw
′
jwi)(w

′
iwi)(w

′
kwk)] = −E(w′

iwi)
2,

− 1

N
E[(w′

iwi)(w
′
jwj)(w

′
iwkw

′
kwi)] = −E(w′

iwi)
2,

1

N2
E[(w′

iwi)(w
′
jwj)(w

′
iwi)(w

′
kwk)] = E(w′

iwi)
2,

it follows that
Cov(uij , uik) = 0, i ̸= j ̸= k. (2.16)

Hence,

V ar(q2) =
4

N4p2

p∑
i<j

V ar(uij) =
2p(p− 1)

N4p2
V ar(uij).

Thus, we need to evaluate V ar(uij) = E(u2ij), since E(uij) = 0. Let
Aj = (aik(j)) = wjw

′
j , wj = (wj1, ..., wjN )′. Then, for i ̸= j,

u2ij = v4ij −
2

N
v2ijviivjj +

1

N2
v2iiv

2
jj , and v4ij = (w′

iwjw
′
jwi)

2 = (w′
iAjwi)

2.

Hence, for i ̸= j

E(v4ij) = E[E(w′
iAjwi)|Aj ]

2 = N [3N + (γ2 − 3)].

Next, we evaluate

E(v2ijviivjj) = E[w′
iAjwiw

′
iwitrAj ] = N(N + γ − 1)2.

Finally,
E(v2iiv

2
jj) = E(w′

iwi)
2E(w′

jwj)
2 = N2[N + γ − 1]2.

Hence,

V ar(uij) = (N − 1)[(γ − 1)2 + 2N ],

and we get the following theorem.
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Theorem 2.4. Let w1, ...,wp be iid with mean 0 and covariance IN , and
fourth moment γ. Then the variance of q2 in (2.15) is given by

V ar(q2) =
4

N4p2
p(p− 1)

2
(N − 1)[(γ − 1)2 + 2N ] ≈ 4

N2

[
1 +

(γ − 1)2

2N

]
.

We may also prove

Theorem 2.5. Let q1 and q2 be given by (2.12) and (2.15), respectively. Then,
Cov(q1, q2) = 0.

Theorem 2.6. Let δ̂∗1 and q2 be given by (2.8) and (2.15), respectively. Then,
Cov(δ̂∗1 , q2) = 0.

3 Proof of Theorem 1.4

To establish the joint asymptotic normality of k statistics

t
(n)
i,p =

p∑
j=1

x
(n)
ij , i = 1, ..., k

we consider an arbitrary linear combination

t(n)p = c1t
(n)
1,p + ...+ ckt

(n)
k,p =

p∑
j=1

k∑
i=1

cix
(n)
ij ≡

p∑
j=1

y
(n)
j

where without any loss of generality c21 + ...+ c2k = 1, and y
(n)
j =

∑k
i=1 cix

(n)
ij .

From the definition of multivariate normality, see Srivastava and Khatri

(1979), the joint normality for all c1, .., ck will follow if the normality of t
(n)
p

is established. Let F
(n)
l be the σ-algebra generated by the random variables

(x
(n)
1j , ..., x

(n)
kj , j = 1, ..., l), l = 1, ..., p. Then F0 ⊂ F

(n)
1 ⊂ ... ⊂ F

(n)
p ⊂ F,

where (∅, F0,Λ) is the probability space and ∅ being the null set.

Lemma 3.1. Let x
(n)
ij be a sequence of random variables, and y

(n)
j =∑k

i=1 cix
(n)
ij , j = 1, ..., p, and n = O(pδ), δ > 0. We assume that

(i) E(y
(n)
j |F (n)

j−1) = 0,

(ii) lim
(N,p)→∞

E[(y
(n)
j )2] < ∞,
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(iii)

p∑
j=0

E[(y
(n)
j )2|F (n)

j−1]
p−→ σ2

0, as (n, p) → ∞,

(iv) L ≡
∑p

j=0E[(y
(n)
j )2 I(|y(n)j | > ϵ)|F (n)

j−1]
p−→ 0, as (n, p) → ∞,

Then t
(n)
p =

∑p
j=1 y

(n)
j

d→ N(0, σ2
0), as (n, p) → ∞.

The proof of this lemma follows from Theorem 4 of Shiryayev (1984, p.

511), since the first two conditions imply that {x(n)j , F
(n)
j } forms a sequence of

integrable martingale differences. The condition (iv) is known as Lindeberg’s
condition. To verify this condition, we note that from Markov’s and Cauchy-
Schwarz inequalities

P [L > δ] ≤
p∑

j=0

E[(y
(n)
j )4]/δϵ2.

Thus,

E[(y
(n)
j )4] ≤ k3

k∑
i=1

c4iE[(x
(n)
ij )4] ≤ k3

k∑
i=1

E[(x
(n)
ij )4].

Hence, if
p∑

j=1

E[(x
(n)
ij )4] → 0,

for all i = 1, ..., k, the Lindeberg condition is satisfied. It is rather simple to
evaluate σ2

0 in most cases.
Because of the invariance of the statistic T1 under a scalar transformation,

we shall assume as before that Σ = I and thus B = I in both the hypotheses
H1 and H2. We first consider the joint distribution of δ̂∗1 and q1 defined in
(2.2) and (2.6) respectively, under Σ = Ip.

Let ξi = (ξ1i, ξ2i)
′ where ξ1i = N− 1

2 (w′
iwi−N), ξ2i = N− 3

2 [(w′
iwi)

2−N2−
N(γ − 1)], i = 1, ..., p and wi is as in Section 2. Then the vectors ξ1,...,ξp are
iid with mean 0 and covariance matrix Ω1 given by

Ω1 =

(
γ − 1 2(γ − 1)

2(γ − 1) 4(γ − 1)

)
.

Hence, from the multivariate central limit theorem

(1/
√
p)

p∑
i=1

ξi −→ N2(0,Ω1),

10



irrespective of whether N goes to infinity and then p goes to infinity or p goes
to infinity and then N goes to infinity. Since

δ̂∗1 =
1

p
√
N

p∑
i=1

ξ1i + 1, and q1 =
1

p
√
N

p∑
i=1

ξ2i + 1 +
γ − 1

N
,

we get the following Lemma.

Lemma 3.2. The asymptotic distribution of δ̂∗1 and q1 is bivariate normal
given by (

δ̂∗1
q1

)
d−→ N2

[(
1
1

)
,

1

Np
Ω1

]
as (N, p) → ∞ in any manner.

It remains to find the distribution of q2, to obtain the joint distribution of
δ̂∗1 and δ̂∗2. Note that from (2.15),

Nq2 =

p∑
j=2

ηj =
2

Np

p∑
j=2

(
j−1∑
i=1

uij

)
.

Let Fj be the σ-algebra generated by the random vectors w1,...,wj . Letting
w0 = 0, and F0 = (∅,Λ) = F−1, where ∅ is the empty set and Λ is the whole
space, we find that F0 ⊂ F1 ⊂ ... ⊂ Fp ⊂ F . Also,

E(ηj |Fj−1) = 0.

Then

E(η2j |Fj−1) =
4

N2p2

[
j−1∑
i=1

E(u2ij |Fj−1) + 2

j−1∑
k<l

E(ukjulj |Fj−1)

]

≡ 4

N2p2

[
j−1∑
i=1

biN + 2

j−1∑
k<l

cklN

]

and

E(η2j ) =
4

N2p2
[(j − 1)bN + (δ − 1)(δ − 2)cN ], j ≤ p

where

bN = E(biN ) = E(u2ij) = N(N − 1)[2 +
(γ − 1)2

N
],
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giving

E(η2j ) =
4N(N − 1)

N2p2
(j − 1)[2 +

(γ − 1)2

N
] < ∞, j ≤ p.

From the definition, it follows that (ηk, Fk) is a sequence of integrable
martingale differences. To prove the normality of Nq2, we apply Lemma 3.1.
We note that

E

 p∑
j=0

E(η2j |Fj−1)

 =

p∑
j=0

E(η2j ) =
2N(N − 1)

N2p2
p(p− 1)[2 +

(γ − 1)2

N
].

Thus

lim
p→∞

E

 p∑
j=0

E(η2j |Fj−1)

 = 4,

and σ2
0 = 4. If we show that υ2 = V ar

[∑p
j=2E(η2j |Fj−1)

]
→ 0, as (N, p) →

∞, we find that

υ2 = V ar

 4

N2p2

 p∑
j=2

(
j−1∑
i=1

biN + 2

j−1∑
k<l

cklN

) ,

where

biN = E(u2ij |Fj−1), i < j

= E

[
(w′

jAiwj)
2 − 2

N
(w′

jAiwj)vjjvii +
1

N2
v2ii(w

′
jwj)

2|Fj−1

]
,

with Ai = wiw
′
i = (arl(i)) : N ×N . Using Lemma 2.1, yields

biN = (γ − 3)

N∑
r=1

a2rr(i) + 3(w′
iwi)

2

− 2

N

[
(γ − 3)

N∑
l=1

all(i) + 2w′
iwi +Nw′

iwi

]
(w′

iwi)

+
1

N2
[(γ − 3)N + 2N +N2](w′

iwi)
2

= d(w′
iwi)

2 + (γ − 3)

(
N∑
k=1

w4
ik

)
, d =

(
2− γ − 1

N

)
.

12



Thus, to show that the variance of 4(N2p2)−1
(∑p

j=2

∑j−1
i=1 biN

)
goes to zero,

it will be sufficient to show that the variance of 4d(N2p2)−1
∑p

j=2

∑j−1
i=1 w

′
iwi,

as well as the variance of 4(γ−3)(N2p2)−1
∑p

j=2

∑j−1
i=1

(∑N
k=1w

4
ik

)
go to zero.

Clearly,

V ar

 4d

N2p2

p∑
j=2

(
j−1∑
i=1

w′
iwi

) =
16d2

N4p
V ar

p−1∑
j=1

(p− j)(w′
jwj)

≤ 16d2

N4p
[(γ − 3)N +N2] → 0 as (N, p) → ∞.

Similarly, we need to show that

V ar

 8

N2p2

p∑
j=2

j−1∑
k<l

cklN

 =
82

N4p4
V ar

 p−1∑
1≤k<l

(p− l − 1)cklN

→ 0.

For this, we need to calculate cklN which after some calculations can be shown
to equal

cklN = E[ukjulj |Fj−1] = (γ − 3)

N∑
r=1

w2
rr(k)w

2
rr(l) + 2

[
v2kl −

γ − 1

N
vkkvll

]
,

k < l < j.

Thus,

64

N4p4
V ar

 p−1∑
1≤k<l

(p− l − 1)cklN

 ≤ 64

N4p2
V ar

 p−1∑
1≤k<l

cklN


=

64

N4p2
V ar

 p−1∑
1≤k<l

{
(γ − 3)

N∑
r=1

w2
rr(k)w

2
rr(l) + 2

(
v2kl −

γ − 1

N
vkkvll

)} .

We need to show that the variance of each of the terms goes to zero.
Clearly, the first term is of the order O(N−3). Similarly, from the results of
Section 2, the second term is of the order O(N−2) and the third term is of the
order O(N−3). Hence, we have shown that condition (iii) is satisfied.

Next, we show that

p∑
k=0

E(η4k) → 0 as (N, p) → ∞.

13



For this, we note that ηj = 2(Np)−1
∑j−1

i=1 uij , and hence,

N4p4
p∑

j=0

E(η4j ) = 16E

p∑
j=2

[
j−1∑
i=1

u4ij + 6

j−1∑
k<l

u2kju
2
lj

]
.

= 16E

 p∑
j=2

j−1∑
i=1

E(u4ij |Fj−1) + 6

j−1∑
k<l

E(u2kju
2
lj |Fj−1)

 .

Now (Ai = wiw
′
i)

u4ij =

[
(w′

jAiwj)
2 − 2

N
(w′

jAiwj)vjjvii +
1

N2
v2ii(w

′
jwj)

2

]2
= (w′

jAiwj)
4 +

4

N2
(w′

jAiwj)
2v2jjv

2
ii +

1

N4
v4ii(w

′
jwj)

4

− 4

N
(w′

jAiwj)
3vjjvii

+
2

N2
(w′

jAiwj)
2(w′

jwj)
2v2ii −

4

N3
(w′

jAiwj)(w
′
jwj)

2v3iivjj .

Let
gi = E(u4ij |Fj−1), i < j,

and
hkl = E(u2kju

2
lj |Fj−1).

Then,

p∑
j=2

E(η4j ) =
16

N4p4

p−1∑
j=1

(p− j)E(gj) + 6

p−1∑
1≤k<l

(p− l − 1)hkl


≤ 16

N4p3

p−1∑
j=1

E(gj) + 6

p−1∑
1≤k<l

E(hkl)


= O(p−2) +O(p−1),

from Lemma 2.1. Thus, the Lindeberg condition is also satisfied. Hence, as
(N, p) → ∞,

Nq2 → N(0, 4)

or equivalently q2 is asymptotically normally distributed as normal with mean
0 and variance 4/N2 under the hypothesis H.

14



We shall now apply Lemma 3.1 again to obtain the joint normality of δ̂∗1, q1,
and q2. In the notation of Lemma 3.1, let

t
(n)
1,p =

p∑
i=1

(
ξ1i√
p

)
, t

(n)
2,p =

p∑
i=1

(
ξ2i√
p

)
, t

(n)
3,p =

p∑
i=1

ηi.

It is easy to check that

p∑
i=1

E

[(
ξ1i√
p

)4
]

and

p∑
i=1

E

[(
ξ2i√
p

)4
]

go to zero as (N, p) → ∞ while we have already shown that

p∑
i=1

E(η4i ) → 0 as

(N, p) → ∞. Similarly, the convergence can be satisfied. Hence, we have δ̂∗1
q1
q2

 ∼ N3

 1
1
0

 ,

(
(Np)−1Ω1 0

0 4/N2

)
Hence (

δ̂∗1
δ̂∗2

)
∼ N2

[(
1
1

)
,

1

Np
Ω

]
,

where Ω is defined in (1.7). This proves Theorem 1.4.

4 Robustness of the sphericity test: proof of Theo-
rem 1.1

In this section, we first discuss various tests available for testing the hypothesis
of ‘sphericity’ H1. When N > p, the likelihood ratio test (LRT) is based on
the ratio of the arithmetic mean to the geometric mean of the eigenvalues of
the sample covariance matrix S. The power of the LRT is a monotonically in-
creasing function of the ratio of the eigenvalues of Σ, see Carter and Srivastava
(1977). Another test, known in the literature as the locally best invariant test
(LBIT) was originally proposed by Nagao (1970) but it was John (1971) and
Sugiura (1972) who showed that it is the LBIT. It is based on the statistic

U =

[
trS2

pδ̂21

]
− 1

15



It may be noted that
(
trS2

p

)
is a consistent estimator of

(
trΣ2

p

)
, if
( p
N

)
→ 0.

Thus, when p
N → c ̸= 0, Ledoit and Wolf considered the statistic U − c and

using the asymptotic result of Jonsson (1982) gave its (N, p) asymptotic null-
distribution under the assumption A and the assumption that

( p
N

)
→ c as

(N, p) → ∞. The (N, p) asymptotic non-null distribution of U − c can be
obtained from Corollary 2.1 of Srivastava (2005).

It may be noted that the statistic U exists irrespective of whether N ≤ p
or N > p. Next, we define a measure of sphericity which differs from the one
given by Ledoit and Wolf (2002). From Cauchy-Schwarz inequality, we have
for a p× p positive definite matrix Σ,

δ2
δ21

=
(tr(Σ2)/p)

(trΣ/p)2
≥ 1. (4.17)

The equality holds if and only if (iff) all the eigenvalues of Σ are equal to some
unknown constant, say λ. That is, iff Σ = λIp. Thus, as in Srivastava (2005),
a measure of sphericity may be defined by

ms =

[
(tr(Σ2)/p)

(trΣ/p)2
− 1

]
, (4.18)

which takes the value zero iff Σ = λI, the sphericity hypothesis. The statistic
T1 defined in Section 1 is a consistent estimator of ms. It may be noted that
the statistic T1 is invariant under the scalar transformation xi → axi, a ̸= 0.
Thus, without any loss of generality, we may assume that λ = 1 in obtaining
the distribution of T1.

We use Theorem 1.4 to obtain the distribution of T1 under the hypothesis
H1 as (N, p) → ∞. Under H1, δ̂1 and δ̂2 are consistent estimators of δ1 = 1,
and δ2 = 1 respectively. Now

∂T1

∂δ̂1
= −2

δ̂2

δ̂31
,

∂T1

∂δ̂2
=

1

δ̂21

Thus (Np)−1(−2, 1)Ω(−2, 1)′ = 4N−2.

Hence, under H1, T1
d−→ N(0, 4N−2) as (N, p) → ∞, proving Theorem

1.1, as well as showing that the test statistic T1 for testing sphericity is robust.

5 A robust test for testing that Σ is an identity
matrix: proof of Theorem 1.2

Despite the monotonicity property of the power function of the LRT for this
problem established by Nagao (1967) and DasGupta (1969), it cannot be con-
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sidered since N ≤ p. Thus, we consider a test based on a consistent estimator
of the distance function that measures the departure of the hypothesis from
the alternative, namely,

mI =
1

p
tr(Σ− I)2 = δ2 − 2δ1 + 1.

Thus, Rao (1948), and independently Nagao (1973) proposed a test statistic

V =
1

p
trS2 − 2δ̂1 + 1,

for testing the hypothesis that Σ = Ip. Ledoit and Wolf (2002) modified it to

W = V − p

n
[δ̂21 − 1],

and obtained its null distribution under the condition that

lim
(N,p)→∞

p

N
= c > 0.

Using consistent estimators of δ1 and δ2, Srivastava (2005) proposed a test
based on the statistic

T2 = δ̂2 − 2δ̂1 + 1,

and obtained its null as well as non-null distribution as (N, p) → ∞. In this
article we show that T2 is a robust test under the non-normality model (1.1)-
(1.2). To obtain the distribution T2, we use Theorem 1.4. Since

∂T2

∂δ̂1
= −2,

∂T2

∂δ̂2
= 1,

we have
(Np)−1(−2, 1)′Ω(−2, 1)′ = 4N−2

Thus as (N, p) → ∞, T2
d−→ N(0, 4

N2 ), and hence proving Theorem 1.2
and the robustness of the test statistic T2 as it does not depend on γ, γ3, γ5−γ8,
it is the same distribution as given by Srivastava (2005) under the assumption
of normality.
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6 Robustness of the diagonality test T3: proof of
Theorem 1.3

When the observations are normally distributed, the LRT is based on the
determinant of the sample correlation matrix.

R = (rij), rii = 1, rij =
sij

(siisjj)1/2
,

provided N > p. When N ≤ p, the determinant of R does not exist. By defin-

ing the distance function as the sum of squared correlations ρ2ij
σ2
ij

σiiσjj
,
∑
i<j

ρ2ij

which is zero iff ρij = 0, Srivastava (2005, 2006) proposed a test based on
the normalized version of its consistent estimator. Schott (2005) also gave
its distribution under the condition that p

N → c. However, since the conver-
gence to normality is slow, Srivastava (2005, 2006) proposed a test based on
Fisher’s transformation, and obtain its (N, p) asymptotic distribution. Srivas-
tava (2005) defined another distance function to measure the departure from
the hypothesis H3. It is given by

md =


 trΣ2

p∑
i=1

σ2
ii

− 1

 , Σ = (σij),

which is zero if and only if ρij = 0. Under normality, a test based on its
consistent estimator is given by the test statistic T3 defined in Section 1.
The (N,p) asymptotic distribution is given in Srivastava (2005) and its power
compared in Srivastava (2006) with the test based on Fisher’s transformation
and shown to be at least as good as based on the Fisher’s transformation. In
this section, we show that this test T3 defined in Section 1 is robust under
the model (1.1)-(1.2). As in Section 2, we can for the asymptotic distribution
purposes, consider δ̂∗2 based on S∗ instead of S, and N in place of N − 1 and
may show that

δ̂∗2 ≈ δ̂∗20 + 2

p∑
i<j

(s∗ij
2 − 1

N
s∗iis

∗
jj),

where δ̂∗20 = p−1
∑p

i=1 s
∗
ii
2.
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Under the hypothesis H3, Σ = D with C = D1/2. Hence, if wi are iid
with mean 0, covariance In, with fourth moment γ and the existence of eight
moments, we can write

s∗ij = didjw
′
iwj for all i, j = 1, ..., p.

Let

q∗3 =
2

p

p∑
i<j

(
s∗ij

2 − 1

N
s∗iis

∗
jj

)
≡ 2

N2p

p∑
i<j

didjuij ,

with E(uij) = 0, and Cov(uij , uik) = 0, i ̸= j ̸= k. Hence

V ar(q∗3) = 4

p∑
i<j

d2i d
2
jV ar(uij) =

4

N2
[δ220 − p−1δ40] +O(N−3).

We now show that δ̂∗20 and δ̂∗40 are consistent estimators of δ20 =
p−1

∑p
i=1 σ

2
ii and δ40 = p−1

∑p
i=1 σ

4
ii, respectively under the hypothesis H3

when C = D1/2 = diag(d
1
2
1 , ..., d

1
2
p ). In terms of the iid random vector wi,

δ̂20 =
1

pN2

p∑
i=1

d2i (w
′
iwi)

2,

and its variance is given by

V ar(δ̂20) =
1

pN4
V ar(w′

iwi)
2

(
p∑

i=1

d4i
p

)
= O(N−1p−1)

from Assumption A and Lemma 2.1(e). Since E(δ̂20) = δ20[1+O(N−1)], δ̂20 is
a consistent estimator of δ20. Similarly, it can be shown that δ̂40 is a consistent
estimator of δ40. Let

η∗k =
2

Np
dk

k−1∑
i=1

diuik

Then following the steps of Section 3, it can be shown that {η∗k, Fk} is a
sequence of integrable martingale difference satisfying the convergence condi-
tion and Lindeberg’s condition, i.e. Lemma 3.1, (iii), (iv). Thus, Theorem 1.3
follows and thus the test statistic T3 is shown to be robust.
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