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Abstract

In this paper the extended growth curve model is considered. The literature
comprises two versions of the model. These models can be connected by one-
to-one reparameterizations but since estimators are non-linear it is not obvious
how to transmit properties of estimators from one model to another. Since it is
only for one of the models where detailed knowledge concerning estimators is
available the object in this paper is therefore to present uniqueness properties
and moment relations for the estimators of the second model. For comparison
reasons properties of the other model are also presented, however, without
proofs. It is worth to observe that the presented proofs of uniqueness for
linear combinations of estimators is valid for both models and is indeed a
simplification of proofs given for one of the models.
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1 Introduction

In experiments, in which more than one characteristic of every treatment is measured, multivariate
linear models may be applied. A well known and interesting multivariate linear model is the growth
curve model (GCM) due to [8] which belongs to the curved exponential family. Many results and ref-
erences can be found in [4, Chapter 4]. Among others explicit maximum likelihood estimators (MLE),
estimability conditions, moments and approximative distributions of the estimators are available.

Markiewicz and Szczepańska [7] considered the GCM with additional nuisance parameters. They
determined estimators of the parameters of interest as well as presented the first and second order
moments of this estimator. Kiefer optimal designs and relations between optimality under univariate
and multivariate models were given. Moreover, the GCM with two nuisance parameters was considered
in [3]. The authors gave estimators of the parameters and obtained appropriate moment relations to
determine Kiefer optimal designs.

Consider a linear model
y = A1β1 +A2β2 +A3β3 + ϵ, (1.1)

where Ai ∈ Rn×mi , i = 1, 2, 3, are known design matrices and y ∈ Rn is an observable random vector,
which depends linearly on several parameters. The model in (1.1) represents measurements on a single
response variable y. Here β i ∈ Rmi , i = 1, 2, 3, are vectors of parameters, and ϵ ∈ Rn is a vector
of normally distributed random errors with expectation E[ϵ] = 0, and dispersion matrix D[ϵ] = In,
where In is the identity matrix of size n× n.

If we are measuring p response variables on each sampling unit we can extend (1.1) and consider
the following multivariate linear model

Y = A1B1C1 +A2B2C2 +A3B3C3 +E, (1.2)

where in addition to Ai the matrices Ci ∈ Rqi×p, i = 1, 2, 3, are known. The matrix Y ∈ Rn×p

is an observations matrix and Bi ∈ Rmi×qi , i = 1, 2, 3, are matrices of unknown parameters. The
matrix E ∈ Rn×p is a matrix of random errors, normally distributed, with expectation E[E] = 0
and with dispersion matrix D[E] = D[vec(E)] = Σ ⊗ In, where Σ ∈ R>

p is an unknown positive
definite matrix, vec(E) denotes the vector in Rpn formed by putting the columns of E ∈ Rn×p under
each other, starting from the left, and ⊗ denotes the Kronecker product. The matrices Ai (between
individuals design matrices) are used to design the experiment, i.e. lay out treatments in an appropriate
way, whereas the Ci matrices (within individuals design matrices) are used to describe the relation
between the response variables.

The model in (1.2) will be called extended growth curve model (EGCM). As seen it is a generalized
version of the GCM and is sometimes termed sums of profiles model (see [9]). The model may be viewed
as a multivariate seemingly unrelated regression (SUR) model. However to obtain explicit maximum
likelihood estimators a nested subspace condition has to be imposed. This can be performed in two
different ways leading to different parameterizations. However, it is only for one of them where a lot
of detailed knowledge such as uniqueness conditions for MLEs, moments and asymptotics has been
presented (e.g. [4, Chapter 4]: observe that the role of Ai and Ci in this work are interchanged with
the role of the same matrices in the present paper). When discussing Kiefer optimality, unfortunately,
we need results for the estimators of parameters in the other parametrization.

In the subsequent we are going to refer to the two models as Model I and Model II: (R(•) denotes
the column space)

Definition 1.1. Let all matrices be the same as in (1.2).
Model I:

Y = A1B1C1 +A2B2C2 +A3B3C3 +E, R(C′
3) ⊆ R(C′

2) ⊆ R(C′
1); (1.3)
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Model II:

Y = A1B1C1 +A2B2C2 +A3B3C3 +E, R(A3) ⊆ R(A2) ⊆ R(A1). (1.4)

It will now be shown that Model I and Model II indeed are equivalent, i.e. via reparameterizations
one can derive Model I from Model II or vice versa. From (1.3) it follows that there exist matrices
H1 and H2 such that

R(C′
1) = R(C′

2)�R(H′
1),

R(C′
2) = R(C′

3)�R(H′
2),

where � denotes the orthogonal sum of subspaces. LetΘ1 = (Θ11 : Θ12 : Θ13) andΘ2 = (Θ21 : Θ22).
Then, Model I is equivalent to

Y = (A1 : A2 : A3)(Θ
′
11 : Θ′

21 : B′
3)

′C3 + (A1 : A2)(Θ
′
12 : Θ′

22)
′H2 +A1Θ13H1 +E

which according to Definition 1.1 is of Model II type. The main problem is that because of non-
linearity of estimators it is not obvious how to transmit properties of estimators from one model
to the other, in particular moment relations. This will become clear when explicit estimators are
presented.

In this paper we are mainly interested in the EGCM model with the range condition on the
within-individuals design matrices, i.e. Model I. The reason for this is that in models connected to
experimental designs the ranges of between-individuals design matrices should be disjoint or, the
intersection should be as small as possible (cf. regression models, interference models). For example,
in block designs, the common space of these matrices is the vector of ones.

The aim of this paper is to present results in parallel for both Model I and Model II and in
particular derive new results for Model I. Estimators of the unknown parameters are presented as well
as moments of these estimators. Conditions for uniqueness of the estimators will also be given.

Throughout the paper we use the following notation. Let PX = X(X′X)−X′ and QX = Im −PX

denote the orthogonal projectors on R(X) and its orthocomplement, respectively. Moreover, X−

denotes an arbitrary generalized inverse of the matrix X and Xo is any matrix spanning R(X)⊥. For
a positive definite B we denote PX;B = X(X′BX)−X′B and QX;B = I − PX;B . It follows that
I = PX;B +P′

Xo;B−1 which is equivalent to

B = BX(X′BX)−X′B +Xo(Xo′B−1X)−Xo′ (1.5)

a well known formula which often will be utilized in this paper. We use rank(X) and tr{X} to denote
the rank and the trace of X, respectively. Moreover, sometimes it is written (A)()′ instead of (A)(A)′.

The Introduction is ended by presenting three examples which illustrate Model I and Model II.

Example 1 - Interference model

Consider an agricultural experiment. Suppose it is desired to compare the yield of v different varieties
of grain (treatments). It is likely that there is an interaction between the environment (type of soil,
rainfall, drainage, etc.) and the variety of grain which will alter the yields. So, b blocks [sets of
experimental plots (units)] are chosen in which the environment is fairly consistent throughout the
block; R. A. Fisher and F. Yates, early 1930’s.

Let n experimental units (plots) because of extraneous variability be divided into b blocks each
of size k where the blocks consist of homogeneous units for. Let v treatments be applied to the
units so that each unit receives one treatment. The treatment which is applied to unit j in block
i is determined by the design d. In each block the effect of the treatments applied to each unit is
measured by a random variable y.
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Assume, the response on a given plot may be affected by treatments on neighboring plots as well
as by the treatment applied to that plot. Consider experiments with a one-dimensional arrangement
of plots in each block, and for which the treatments have different left and right neighbor interference
effects. In the literature circular experiments ([2]) and experiments without border plots ([6]) have
studied.

A linear model associated with a design d has the form

y = A1,dβ1 +A2,dβ2 +A3β3 + ϵ,

where βi, i = 1, 2, 3, are the unknown vectors of treatment effects, neighbor effects, and block effects,
respectively, and ϵ is the vector of random errors. The matrix A1,d ∈ Rn×v depends on the design and
it is a binary matrix which satisfies A1,d1v = 1n. The matrix A2,d = ((Ib ⊗H)A1,d : (Ib ⊗H′)A1,d),
is a known matrix of neighbor effects, where

H =

(
0′
k−1 1

Ik−1 0k−1

)
or H =

(
0′
k−1 0

Ik−1 0k−1

)
for the circular design and for the design without border plots, respectively (0k−1 is a k−1 dimensional
vector of zeros). The matrix A3 = Ib ⊗ 1k is the design matrix of block effects.

In the literature such a model is called an interference model with neighbor effects.
Assume, we measure p characteristics of every treatment. Then, we have the following extension

of the interference model:

Y = A1,dB1C1 +A2,dB2C2 +A3B3C3 +E,

where Y ∈ Rn×p is the matrix of observations, Bi, i = 1, 2, 3, are the unknown matrices of treatment,
neighbor and block effects, respectively, and Ci, i = 1, 2, 3, are the restriction matrices.

Assume now, that in the experiment there is no left- and right-neighbor effect and no block
effect for the last characteristic, and for the second last characteristic there is no block effect. Then,
C1 = Ip, C2 = (Ip−1,0p−1) and C3 = (Ip−2,0p−2,0p−2) and we obtain Model 1.

Example 2 - Standard cross-over model with carry-over effects

In a setting of repeated measurements design each of a set of n experimental units is, in each of p
periods, exposed to one of v treatments. At each period we measure the effect of the treatments
applied to each unit by a random variable y. It is assumed that each measurement is influenced by
an additive first order residual effect of the treatment to which the unit under consideration has been
exposed in the period before. Let consider designs with no residual effects on the first period.

The cross-over model associated with the repeated measurements design is of the form

y = A1,dβ1 + (Ib ⊗H)A1,dβ2 + (1b ⊗ Ik : Ib ⊗ 1k)β3 + ϵ

with

H =

(
0′ 0

Ik−1 0

)
,

where β1, β2 are the vectors of treatment and residual effects, and β3 = (α′,β′)′ consists of a vector
of period effects and a vector of unit effects (Kunert, 1983).

The multivariate extension of the cross-over model is of the form

Y = A1,dB1C1 + (Ib ⊗H)A1,dB2C2 + (1b ⊗ Ik : Ib ⊗ 1k)B3C3 +E,

where Y ∈ Rn×p is the matrix of observations, Bi, i = 1, 2, 3, are the unknown matrices of treatment,
residual and period-unit effects, respectively, while Ci, i = 1, 2, 3, are the restriction matrices. If we
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assume now, that in the experiment there is no period effect and no block effect for the first and
second characteristic, and that there is no residual effect for the last characteristic, then C1 = Ip,
C2 = (Ip−1,0p−1) and C3 = (0p−2,0p−2, Ip−2) and we obtain Model 1.

Example 3 - Growth curves

Suppose that we have a random vector y associated to observations which follows the model

y′ = µ+ ϵ′,

where ϵ ∼ Np(0,Σ). Suppose that there exist a linear relation among the components in µ, i.e. µ′ ∈
R(C′). Thus, µ = βC for some β and y′ = βC + ϵ′. Now suppose that we have n independent
observations which all have the same within individual model µ′ ∈ R(C′) and that there is a linear
model between the independent observation. For example, there are three groups of individuals;
one corresponding to a placebo treatment and the others corresponding to two different treatments,
respectively. Thus we end up in the following model

Y = ABC+E,

where Y′ = (y1,y2, . . . ,yn), B = (β′
1,β

′
2,β

′
3)

′, E ∼ Nn,p(0, I,Σ) and

A′ =

 1 1 . . . 1 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 1 1 . . . 1

 .

Moreover suppose that we have a polynomial growth. Then, for example,

C =


1 1 . . . 1
t1 t2 . . . tp
...

...
. . .

...

tq−1
1 tq−1

1 . . . tq−1
p

 .

In this model all individuals follow the same polynomial growth model. However, if each treatment
group follows a polynomial of different order we may for example have the following model

Y = A1B1C1 +A2B2C2 +A3B3C3 +E,

where

A′
1 =

 1 1 . . . 1 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 1 1 . . . 1

 ,

A′
2 =

(
1 1 . . . 1 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 0 . . . 0

)
,

A′
3 =

(
1 1 . . . 1 0 0 . . . 0 0 0 . . . 0

)
,

C1 =


1 1 . . . 1
t1 t2 . . . tp
...

...
. . .

...

tq−3
1 tq−3

1 . . . tq−3
p

 ,
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C2 =
(
tq−2
1 tq−2

1 . . . tq−2
p

)
,

C3 =
(
tq−1
1 tq−1

1 . . . tq−1
p

)
.

Observe that R(A3) ⊆ R(A2) ⊆ R(A1) and thus we have a model which is formulated as Model II.
The above example means, for example, that the mean of the placebo group and the treatment groups
respectively equal

β11 + β12t+ · · ·+ β1(q−2)t
q−3,

β21 + β22t+ · · ·+ β2(q−2)t
q−3 + β2(q−1)t

q−2,

β31 + β32t+ · · ·+ β3(q−2)t
q−3 + β3(q−1)t

q−2 + β3qt
q−1.

2 Maximum likelihood estimators

Maximum likelihood estimators have been presented for Model I as well as Model II.

Theorem 2.1 ([3]). In Model I the maximum likelihood estimators of the parameters equal

B̂1 = (A′
1A1)

−A′
1(Y −A2B̂2C2 −A3B̂3C3)S

−1
3 C′

1(C1S
−1
3 C′

1)
−

+(A′
1)

oZ11C
′
1 +A′

1Z12C
o′

1 ,

B̂2 = (A′
2QA1A2)

−A′
2QA1(Y −A3B̂3C3)S

−1
2 C′

2(C2S
−1
2 C′

2)
−

+(A′
2QA1)

oZ21C
′
2 +A′

2QA1Z22C
o′

2 ,

B̂3 = (A′
3Q(A1:A2)A3)

−A′
3Q(A1:A2)YS−1

1 C′
3(C3S

−1
1 C′

3)
−

+(A′
3Q(A1:A2))

oZ31C
′
3 +A′

3Q(A1:A2)Z32C
o′

3 ,

where

S1 = Y′Q(A1:A2:A3)Y, S2 = S1 +QC′
3;S

−1
1

Y′PQ(A1:A2)A3YQ′
C′

3;S
−1
1

,

S3 = S2 +QC′
2;S

−1
2

Y′PQA1A2YQ′
C′

2;S
−1
2

,

and Zij, i = 1, 2, 3, j = 1, 2, are arbitrary matrices. The ML-estimator of the dispersion matrix can
be written

nΣ̂ = (Y −A1B̂1C1 −A2B̂2C2 −A3B̂3C3)
′()

= S3 +QC′
1;S

−1
3

Y′PA1YQ′
C′

1;S
−1
3

.

Theorem 2.2 ([4]). In Model II the maximum likelihood estimators of the parameters equal

B̂1 = (A′
1A1)

−A′
1(Y −A2B̂2C2 −A3B̂3C3)S

−1
1 C′

1(C1S
−1
1 C′

1)
−

+Z11C
o′

1 +A′o
1 Z12C

′
1,

B̂2 = (A′
2A2)

−A′
2(Y −A3B̂3C3)S

−1
2 QC′

1;S
−1
1

C′
2(C2Q

′
C′

1;S
−1
1

S−1
2 QC′

1;S
−1
1

C′
2)

−

+Z21(C2Q
′
C′

1;S
−1
1

)o
′
+A′o

2 Z22QC′
1;S

−1
1

C′
2,

B̂3 = (A′
3A3)

−A′
3YS−1

3 P3C
′
3(C3P

′
3S

−1
3 P3C

′
3)

−

+Z31(C3P
′
3)

o′ +A′o
3 Z32P3C

′
3,
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where

S1 = Y′QA1Y, S2 = S1 +QC′
1;S

−1
1

Y′PA1QA2PA1YQ′
C′

1;S
−1
1

,

S3 = S2 +P3Y
′PA1QA3PA1YP′

3,

and Zij, i = 1, 2, 3, j = 1, 2 are arbitrary matrices, and

nΣ̂ = (Y −A1B̂1C1 −A2B̂2C2 −A3B̂3C3)
′()

= S3 +P4Y
′PA3YP′

4,

where
Pi = Ui−1 · ... ·U1, i = 3, 4,
Uj = QPjC′

j ;S
−1
j

, j = 1, 2, 3.

Both Theorem 2.1 and Theorem 2.2 can be obtained by solving the following likelihood equations:

0 = A′
1(Y −A1B1C1 −A2B2C2 −A3B3C3)Σ

−1C′
1, (2.6)

0 = A′
2(Y −A1B1C1 −A2B2C2 −A3B3C3)Σ

−1C′
2, (2.7)

0 = A′
3(Y −A1B1C1 −A2B2C2 −A3B3C3)Σ

−1C′
3, (2.8)

nΣ = (Y −A1B1C1 −A2B2C2 −A3B3C3)
′().

3 Uniqueness conditions for the MLEs

Consider the Gauss-Markov model

y = Xβ + ε, E(ϵ) = 0, Cov(ϵ) = σ2Σ,

where Σ is known. It is well known that the least squares estimator of a linear function of the
parameter vector β, say p′β̂, is unique if and only if p′β is estimable. The estimability condition may
be expressed as

p ∈ R(X′).

Now observe, that the condition of estimability of p′β under a linear model with nuisance parameters,

y = Xβ + Zγ + ϵ,

may be expressed as (for more details see e.g. [1])

p ∈ R(X′QZ).

Moreover, it is well known that the necessary and sufficient condition of estimability of linear
parametric functions KΞL in a multivariate linear model

Y = AΞP+E, Cov(E) = Σ⊗ I,

where Σ is a known, positive definite matrix, has the form

R(K′) ⊂ R(A′) and R(L) ⊂ R(P).
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This form of the above condition may be obtained by using the ”vec” operator and then consider
linear spaces generated by Kronecker products, which indeed are tensor spaces. Furthermore, it can
be seen that under the multivariate model with nuisance parameters,

Y = A1ΞP1 +A2ΘP2 +E,

using the elimination of nuisance parameters, the estimablity condition for KΞL can be written

R(L′ ⊗K) ⊂ R((P1 ⊗A′
1)QP ′

2⊗A2
);

for more details see e.g. [3]. These conditions are equivalent to the uniqueness condition of the least
squares estimator of Ξ.

Let us consider Models I and II. We are interested in estimation of linear functions of Bi, i = 1, 2, 3,
which can be presented as

∑
j KjBiLj . Estimability conditions for the linear functions of B2 and B3

have been presented in [3].

Theorem 3.1. The linear functions
∑

j KjBiLj, i = 1, 2, 3, are estimable in Model I if and only if

(i) R
(∑

j Lj ⊗K′
j

)
⊆ R

(
C1QC′

2
⊗A′

1

)
+R

(
C1PC′

2
QC′

3
⊗A′

1QA2

)
+R

(
C1PC′

3
⊗A′

1Q(A2:A3)

)
, for i = 1,

(ii) R
(∑

j Lj ⊗K′
j

)
⊆ R

(
C2QC′

3
⊗A′

2QA1

)
+R

(
C2PC′

3
⊗A′

2Q(A1:A3)

)
, for i = 2,

(iii) R
(∑

j Lj ⊗K′
j

)
⊆ R

(
C3 ⊗A′

3Q(A1:A2)

)
, for i = 3.

Proof. The bearing idea of the proof is the following. If Σ is known we have a usual Gauss-Markov
model. In this case all estimators satisfy, for given Σ, (2.6), (2.7) and (2.8). However, it will appear
that the uniqueness conditions depend only on the design matrices Ai and Ci and are completely
unrelated with Σ. Thus, for all values of Σ, including the MLE, the same conditions for uniqueness
are obtained. Hence, we have the complete solution to uniqueness/estimation problems for the EGCM
and it suffices to consider models with known Σ. Moreover, it is noted that we immediately obtain
conditions for both Model I and Model II and Σ̂ in both models is always uniquely estimated.

Now we consider Model I in some detail.
Let i = 3. Then, using the ”vec” operator and by elimination of nuisance parameters (first B1

and then B2), we obtain the following estimability condition:

R

∑
j

Lj ⊗K′
j

 ⊆ R
(
(C3 ⊗A′

3)QC′
1⊗A1

QQC′
1⊗A1

(C′
2⊗A2)

)
.

Since R(C′
3) ⊆ R(C′

2) ⊆ R(C′
1) we have

(C3 ⊗A′
3)QC′

1⊗A1
= C3 ⊗A′

3QA1 and QC′
1⊗A1

(C′
2 ⊗A2) = C′

2 ⊗QA1A2.

Thus
(C3 ⊗A′

3)QC′
1⊗A1

QQC′
1⊗A1

(C′
2⊗A2) = (C3 ⊗A′

3QA1)QC′
2⊗QA1

A2
.

From the equalities P(A1:A2) = PA1 +PQA1
A2 and QA1Q(A1:A2) = Q(A1:A2) we get

(C3 ⊗A′
3QA1)QC′

2⊗QA1
A2

= C3 ⊗A′
3Q(A1:A2),

and hence (iii) is verified.
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Let i = 2. Using the ”vec” operator and by elimination of nuisance parameters (first B1 and then
B3) we obtain the following estimability condition

R

∑
j

Lj ⊗K′
j

 ⊆ R
(
(C2 ⊗A′

2)QC′
1⊗A1

QQC′
1⊗A1

(C′
3⊗A3)

)
.

Since R(C′
3) ⊆ R(C′

2) ⊆ R(C′
1) we have

(C2 ⊗A′
2)QC′

1⊗A1
= C2 ⊗A′

2QA1 and QC′
1⊗A1

(C′
3 ⊗A3) = C′

3 ⊗QA1A3.

Thus
(C2 ⊗A′

2)QC′
1⊗A1

QQC′
1⊗A1

(C′
3⊗A3) = (C2 ⊗A′

2QA1)QC′
3⊗QA1

A3
=

= C2QC′
3
⊗A′

2QA1 +C2PC′
3
⊗A′

2Q(A1:A3).

Since R(X) = (XX′) we obtain

R

∑
j

Lj ⊗K′
j

 ⊆ R
(
C2QC′

3
C′

2 ⊗A′
2QA1A2 +C2PC′

3
C′

2 ⊗A′
2Q(A1:A3)A2

)
and the nonnegative definiteness of the components in the sum implies (ii).

Let i = 1. Using the ”vec” operator and by elimination of nuisance parameters (first B2 and then
B3) we obtain the estimability condition

R

∑
j

Lj ⊗K′
j

 ⊆ R
(
(C1 ⊗A′

1)QC′
2⊗A2

QQC′
2⊗A2

(C′
3⊗A3)

)
.

Since R(C′
3) ⊆ R(C′

2) ⊆ R(C′
1) we have

(C1 ⊗A′
1)QC′

2⊗A2
= C1QC′

2
⊗A′

1 +C1PC′
2
⊗A′

1QA2 and QC′
2⊗A2

(C′
3 ⊗A3) = C′

3 ⊗QA2A3.

Thus

(C1 ⊗A′
1)QC′

2⊗A2
QQC′

2⊗A2
(C′

3⊗A3) =
(
C1QC′

2
⊗A′

1 +C1PC′
2
⊗A′

1QA2

)
QC′

3⊗QA2
A3

.

Using the fact that PC′
2
PC′

3
= PC′

3
we have QC′

2
PC′

3
= 0, and from the idempotent property of QA2

and the property PQA2
A3 = P(A2:A3) −PA2 we get(

C1QC′
2
⊗A′

1 +C1PC′
2
⊗A′

1QA2

)
QC′

3⊗QA2
A3

= C1QC′
2
⊗A′

1 +C1PC′
2
QC′

3
⊗A′

1QA2 +C1PC′
3
⊗A′

1Q(A2:A3).

Since R(X) = R(XX′) we obtain

R

∑
j

Lj ⊗K′
j


⊆ R

(
C1QC′

2
C′

1 ⊗A′
1A1 +C1PC′

2
QC′

3
PC′

2
C′

1 ⊗A′
1QA2A1 +C1PC′

3
C′

1 ⊗A′
1Q(A2:A3)A1

)
and the nonnegative definiteness of the components in the sum implies (iii).
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Theorem 3.2. The linear functions
∑

j KjBiLj, i = 1, 2, 3, are estimable in Model II if and only if

(i) R
(∑

j Lj ⊗K′
j

)
⊆ R (C1 ⊗A′

1QA2) +R
(
C1QC′

2
⊗A′

1PA2QA3

)
+R

(
C1Q(C′

2:C
′
3)
⊗A′

1PA3

)
, for i = 1,

(ii) R
(∑

j Lj ⊗K′
j

)
⊆ R

(
C2QC′

1
⊗A′

2QA3

)
+R

(
C2Q(C′

1:C3) ⊗A′
2PA3

)
, for i = 2,

(iii) R
(∑

j Lj ⊗K′
j

)
⊆ R

(
C3Q(C′

1:C
′
2)
⊗A′

3

)
, for i = 3.

Proof. Replacing R(C′
3) ⊆ R(C′

2) ⊆ R(C′
1) by R(A3) ⊆ R(A2) ⊆ R(A1), the proof follows

similarly to the previous one.

The next corollary is an immediate consequence of the theorems

Corollary 3.1. Under Model I (Model II) with known Σ, the least squares estimator of a linear
function of Bi, i = 1, 2, 3, is unique if and only if the conditions of Theorem 3.1 (Theorem 3.2) are
satisfied.

Moreover, the following corollaries give some more details for uniqueness of the parameter estima-
tors.

Corollary 3.2. In Model I

(i) B̂1 is unique if and only if

rank(A1) = m1, rank(C1) = q1, R(A2)
⊥ ∩R(A1 : A2) ∩R(A2 : A3) = {0},

R(A1) ∩R(A2) = {0},

(ii) B̂2 is unique if and only if

rank(A2) = m2, rank(C2) = q2, R(A1)
⊥ ∩R(A1 : A2) ∩R(A2 : A3) = {0},

R(A1) ∩R(A2) = {0},

(iii) B̂3 is unique if and only if

rank(A3) = m3, rank(C3) = q3, R(A3) ∩R(A1 : A2) = {0},

Corollary 3.3. In Model II

(i) B̂1 is unique if and only if

rank(A1) = m1, rank(C1) = q1, R(C′
2)

⊥ ∩R(C′
1 : C′

2) ∩R(C′
2 : C′

3) = {0},
R(C′

1) ∩R(C′
2) = {0},

(ii) B̂2 is unique if and only if

rank(A2) = m2, rank(C2) = q2, R(C′
2)

⊥ ∩R(C′
1 : C′

2) ∩R(C′
2 : C′

3) = {0},
R(C′

1) ∩R(C′
2) = {0},

(iii) B̂3 is unique if and only if

rank(A3) = m3, rank(C3) = q3, R(C′
3) ∩R(C′

1 : C′
2) = {0},
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4 Moments

Before considering dispersion matrices of the MLEs of the mean parameters we note that they are
unbiased estimators.

Theorem 4.1. Suppose that in Model I the MLEs KB̂iL, i = 1, 2, 3, are uniquely estimated. Then
KB̂iL, i = 1, 2, 3, are unbiased estimators of KBiL, i = 1, 2, 3.

Proof. KB̂3L is unbiased since S1 is independent of A′
3QA1:A2Y. KB̂2L is unbiased since S2 is

independent of A′
2QA1Y and R(C′

3) ⊆ R(C′
2). KB̂1L is unbiased since S3 is independent of A′

1Y
and R(C′

3) ⊆ R(C′
2) ⊆ R(C′

1).

Theorem 4.2 ([4, Theorem 4.2.6]). Suppose that in Model II the MLEs KB̂iL, i = 1, 2, 3, are uniquely

estimated. Then KB̂iL, i = 1, 2, 3, unbiased estimators of KBiL, i = 1, 2, 3.

Theorem 4.3. Suppose that in Model I the MLEs KB̂iL, i = 1, 2, 3, are uniquely estimated. Let

γ1 = n−rank(A1:A2:A3)−1
n−rank(A1:A2:A3)−p+rank(C3)−1 , γ2 = p−rank(C2)

n−rank(A1:A2)−p+rank(C2)−1 ,

γ3 = (n−rank(A1:A2)−p+rank(C3)−1)(p−rank(C2))
(n−rank(A1:A2:A3)−p+rank(C3)−1)(n−rank(A1:A2)−p+rank(C2)−1) ,

γ4 = p−rank(C1)
n−rank(A1)−p+rank(C1)−1 , γ5 = n−rank(A1:A2)−p+rank(C3)−1

n−rank(A1:A2:A3)−p+rank(C3)−1 ,

γ6 = n−rank(A1)−p+rank(C2)−1
n−rank(A1:A2)−p+rank(C2)−1 , γ7 = n−rank(A1:A2)

n−rank(A1)
,

γ8 = n−rank(A1)−p+rank(C1)−1
n−rank(A1:A2)−p+rank(C1)−1 .

Then,

(i) If γ1 exists

D[KB̂3L] = γ1L
′(C3Σ

−1C′
3)

−L⊗K(A′
3Q(A1:A2)A3)

−K′.

(ii) If γ1, γ2 and γ3 exist

D[KB̂2L] = γ1L
′C′

3(C3Σ
−1C′

3)
−C3L

⊗K(A′
2QA1A2)

−A′
2QA1A3(A

′
3Q(A1:A2)A3)

−A′
3QA1A2(A

′
2QA1A2)

−K′

+ L′(Σ− (1 + γ2)ΣC′
2
o
(C′

2
o′
ΣC′

2
o
)−C′

2
o′
Σ+ γ2ΣC′

3
o
(C′

3
o′
ΣC′

3
o
)−C′

3
o′
Σ

+ γ3C
′
3(C3Σ

−1C′
3)

−C3)L⊗K(A′
2QA1A2)

−K′.

(iii) If γi, i = 1, . . . , 8, exist

D[KB̂1L] = γ1L
′C′

3(C3Σ
−1C′

3)
−C3L

⊗ K(A′
1A1)

−A′
1(I−A2(A

′
2QA1A2)

−A′
2QA1)A3(A

′
3Q(A1:A2)A3)

−A′
3

× (I−QA1A2(A
′
2QA1A2)

−A′
2)A1(A

′
1A1)

−K′

+ L′(Σ− (1 + γ2)ΣC′
2
o
(C′

2
o′
ΣC′

2
o
)−C′

2
o′
Σ+ γ2ΣC′

3
o
(C′

3
o′
ΣC′

3
o
)−C′

3
o′
Σ

+γ3 C′
3(C3Σ

−1C′
3)

−C3)L⊗K(A′
1A1)

−A′
1(A

′
2QA1

A2)
−A1(A

′
1A1)

−K′

+ L′F2L⊗K(A′
1A1)

−K′,
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where

F2 = Σ− (1 + γ4)ΣC′o
1 (C

′o
1
′
ΣC′o

1 )
−C′o

1
′
Σ+ γ4ΣC′o

2 (C
′o
2
′
ΣC′o

2 )
−C′o

2
′
Σ

+ γ4γ5γ6C
′
3(C3Σ

−1C3)
−C3

+ γ4γ6ΣC′o
3 (C

′o
3
′
ΣC′o

3 )
−C′o

3
′
C′

2(C2C
′o
3 (C

′o
3
′
ΣC′o

3 )
−C′o

3
′
C′

2)
−C2C

′o
3 (C

′o
3
′
ΣC′o

3 )
−C′o

3
′
Σ.

Proof: The proofs of (i) and (ii) are given below whereas the proof of (iii), because of lengthy
calculations and similarities with (ii), is presented in the Appendix.

Proof of (i): First observe that

K(B̂3 −B3)L = K(A′
3Q(A1:A2)A3)

−A′
3Q(A1:A2)(Y − E[Y])S−1

1 C′
3(C3S

−1
1 C′

3)
−L.

Since A′
3Q(A1:A2)Y is independent of S1

D[KB̂3L] = E[L′(C3S
−1
1 C′

3)
−C3S

−1
1 ΣS−1

1 C′
3(C3S

−1
1 C′

3)
−L]⊗K(A′

3Q(A1:A2)A3)
−K′.

However, S1 ∼ Wp(Σ, n − rank(A1 :A2 :A3)) and via some calculations, see [4, (4.2.18)–(4.2.23)],
the statement follows.

Proof of (ii): From Theorem 2.1 it follows that

D[KB̂2L] = D[K(A′
2QA1A2)

−A′
2QA1(Y − E[Y])S−1

2 C′
2(C2S

−1
2 C′

2)
−L] (4.9)

+ D[K(A′
2QA1A2)

−A′
2QA1A3(B̂3 −B3)C3S

−1
2 C′

2(C2S
−1
2 C′

2)
−L] (4.10)

+ Cov[K(A′
2QA1A2)

−A′
2QA1(Y − E[Y])S−1

2 C′
2(C2S

−1
2 C′

2)
−L,

K(A′
2QA1A2)

−A′
2QA1A3(B̂3 −B3)C3S

−1
2 C′

2(C2S
−1
2 C′

2)
−L]

+ Cov[K(A′
2QA1A2)

−A′
2QA1A3(B̂3 −B3)C3S

−1
2 C′

2(C2S
−1
2 C′

2)
−L,

K(A′
2QA1A2)

−A′
2QA1(Y − E[Y])S−1

2 C′
2(C2S

−1
2 C′

2)
−L].

Because of independence between A′
2QA1Y and S1 and between A′

2QA1Y and QA1:A2Y, and since
R(C′

3) ⊆ R(C′
2) implies

C3S
−1
2 C′

2(C2S
−1
2 C′

2)
−C2 = C3

we obtain

Cov[K(A′
2QA1A2)

−A′
2QA1(Y − E[Y])S−1

2 C′
2(C2S

−1
2 C′

2)
−L,

K(A′
2QA1A2)

−A′
2QA1A3(B̂3 −B3)C3S

−1
2 C′

2(C2S
−1
2 C′

2)
−L]

= Cov[K(A′
2QA1A2)

−A′
2QA1(Y − E[Y])C′

2(C2C
′
2)

−L,

K(A′
2QA1A2)

−A′
2QA1A3(B̂3 −B3)C3C

′
2(C2C

′
2)

−L] = 0,

where the last equality follows because B̂3 is unbiased. Thus, D[KB̂2L] equals the sum of (4.9) and
(4.10) and we are going to consider these terms separately. However, we immediately obtain from (i)
that (4.10) equals

D[K(A′
2QA1A2)

−A′
2QA1A3(B̂3 −B3)C3S

−1
2 C′

2(C2S
−1
2 C′

2)
−L]

= γ1L
′C′

3(C3Σ
−1C′

3)
−C3L

⊗K(A′
2QA1A2)

−A′
2QA1A3(A

′
3Q(A1:A2)A3)

−A′
3QA1A2(A

′
2QA1A2)

−K′. (4.11)
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Now (4.9) is exploited. The independence between A′
2QA1Y and S2 yields that (4.9) equals

E[L′(C2S
−1
2 C′

2)
−C2S

−1
2 ΣS−1

2 C′
2(C2S

−1
2 C′

2)
−L]⊗K(A′

2QA1
A2)

−K′. (4.12)

The expectation in (4.12) will be considered in detail and

F1 = E[PC′
2;S

−1
2

ΣP′
C′

2;S
−1
2

], (4.13)

is introduced since via L′(C2C
′
2)

−C2F1C
′
2(C2C

′
2)

−L the expectation in (4.12) is obtained. Observe,
that S2 can be rewritten as

S2 = S1 + S1C
′o
3(C

′o′
3 S1C

′o
3)

−C′o′
3 YPQ(A1:A2)A3Y

′C′o
3(C

′o′
3 S1C

′o
3)

−C′o′
3 S1

and, following [4, pp. 376], formula (4.13) can be expressed as

F1 = E[(Ip − S2C
′o
2(C

′o′
2 S2C

′o
2)

−C′o′
2 )Σ(Ip −C′o

2(C
′o′
2 S2C

′o
2)

−C′o′
2 S2)]

= Σ− E[S2C
′o
2(C

′o′
2 S2C

′o
2)

−C′o′
2 Σ]− E[ΣC′o

2(C
′o′
2 S2C

′o
2)

−C′o′
2 S2]

+ E[S2C
′o
2(C

′o′
2 S2C

′o
2)

−C′o′
2 ΣC′o

2(C
′o′
2 S2C

′o
2)

−C′o′
2 S2]

= Σ−Σ1/2E[Σ−1/2S2C
′o
2(C

′o′
2 S2C

′o
2)

−C′o′
2 Σ1/2]Σ1/2

− Σ1/2E[Σ1/2C′o
2(C

′o′
2 S2C

′o
2)

−C′o′
2 S2Σ

−1/2]Σ1/2

+ Σ1/2E[Σ−1/2S2C
′o
2(C

′o′
2 S2C

′o
2)

−C′o′
2 Σ1/2Σ1/2C′o

2(C
′o′
2 S2C

′o
2)

−C′o′
2 S2Σ

−1/2]Σ1/2. (4.14)

Put

V1 = Σ−1/2S1Σ
−1/2, Do

2 = Σ1/2C′o
2, Z = YΣ−1/2, Do

3 = Σ1/2C′o
3,

V2 = V1 +V1D
o
3(D

o′

3 V1D
o
3)

−Do′

3 Z′PQ(A1:A2)A3ZD
o
3(D

o′

3 V1D
o
3)

−Do′

3 V1.

Then, since R(D2)
⊥ ⊆ R(D3)

⊥ equation (4.14) can be written

F1 = Σ−Σ1/2E[V2D
o
2(D

o′

2 V2D
o
2)

−Do′

2 ]Σ1/2 −Σ1/2E[Do
2(D

o′

2 V2D
o
2)

−Do′

2 V2]Σ
1/2

+ Σ1/2E[V2D
o
2(D

o′

2 V2D
o
2)

−Do′

2 Do
2(D

o′

2 V2D
o
2)

−Do′

2 V2]Σ
1/2

= Σ−Σ1/2E[T1]Σ
1/2 −Σ1/2E[T′

1]Σ
1/2 +Σ1/2E[T1T

′
1]Σ

1/2, (4.15)

where

T1 = V2D
o
2(D

o′

2 V2D
o
2)

−Do′

2 . (4.16)

Firstly E[T1] is obtained. Since I = PDo
3
+PD3

E[T1] = PDo
3
E[T1] +PD3E[T1]. (4.17)

Using R(D2)
⊥ ⊆ R(D3)

⊥ it can be observed that

Do′

3 V2D
o
2 = Do′

3 V1D
o
2 +Do′

3 V1D
o
3(D

o′

3 V1D
o
3)

−Do′

3 Z′PQ(A1:A2)A3ZD
o
3(D

o′

3 V1D
o
3)

−Do′

3 V1D
o
2

= Do′

3 (V1 + Z′PQ(A1:A2)A3Z)D
o
2 ≡ Do′

3 W2D
o
2 (4.18)

and similarly

Do′

2 V2D
o
2 = Do′

2 W2D
o
2, (4.19)
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where because of independence between V1 and Z′PQ(A1:A2)A3Z

W2 ∼ Wp(Ip, n− rank(A1 : A2)).

Let us in (4.17) determine PDo
3
E[T1]:

PDo
3
E[T1] = Do

3(D
o′

3 Do
3)

−E[Do′

3 V2D
o
2(D

o′

2 V2D
o
2)

−Do′

2 ]

= Do
3(D

o′

3 Do
3)

−E[Do′

3 W2D
o
2(D

o′

2 W2D
o
2)

−Do′

2 ] = PDo
3
E[W2D

o
2(D

o′

2 W2D
o
2)

−Do′

2 ]

= PDo
3
PDo

2
= PDo

2
= PΣ1/2C′o

2
, (4.20)

(for the last taken expectation see [4, pp. 275]).
Moreover, in (4.17) consider PD3E[T1]. Since V1 is Wishart distributed we can factorize it as

V1 = XX′, where X ∼ Np,n(0, Ip, In). Furthermore, since D′
3(D

o
2 : Do

3) = 0 we have that D′
3X is

independent of Do′

2 X and Do′

3 X, and hence

PD3E[T1] = D3(D
′
3D3)

−E[D′
3V2D

o
2(D

o′

2 V2D
o
2)

−Do′

2 ]

= D3(D
′
3D3)

−E[D′
3V1D

o
2(D

o′

2 W2D
o
2)

−Do′

2

+D′
3V1D

o
3(D

o′

3 W2D
o
3)

−Do′

3 Z′PQ(A1:A2)A3ZD
o
3(D

o′

3 W2D
o
3)

−Do′

3 V1D
o
2(D

o′

2 W2D
o
2)

−Do′

2 ]

= D3(D
′
3D3)

−E[D′
3X(In +X′Do

3(D
o′

3 W2D
o
3)

−Do′

3 Z′PQ(A1:A2)A3ZD
o
3(D

o′

3 W2D
o
3)

−Do′

3 X)X′Do
2

×(Do′

2 W2D
o
2)

−Do′

2 ]

= D3(D
′
3D3)

− E[D′
3X]︸ ︷︷ ︸

0

×E[(In +X′Do
3(D

o′

3 W2D
o
3)

−Do′

3 Z′PQ(A1:A2)A3ZD
o
3(D

o′

3 W2D
o
3)

−Do′

3 X)X′Do
2(D

o′

2 W2D
o
2)

−Do′

2 ]

= 0.

Thus,

E[T1] = PΣ1/2C′o
2

. (4.21)

In the next we consider E[T1T
′
1]. Since again I = PDo

3
+ PD3 and since D′

3X is independent of

Do′

2 X and Do′

3 X, we will calculate

(PDo
3
+PD3)E[T1T

′
1](PDo

3
+PD3) = PDo

3
E[T1T

′
1]PDo

3
+PD3E[T1T

′
1]PD3 ,

since PDo
3
E[T1T

′
1]PD3 = 0. Using (4.18) and (4.19) we can write

PDo
3
E[T1T

′
1]PDo

3

= Do
3(D

o′

3 Do
3)

−E
[
Do′

3 V2D
o
2(D

o′

2 V2D
o
2)

−Do′

2 Do
2(D

o′

2 V2D
o
2)

−Do′

2 V2D
o
3

]
(Do′

3 Do
3)

−Do′

3

= PDo
3
E[W2D

o
2(D

o′

2 W2D
o
2)

−Do′

2 Do
2(D

o′

2 W2D
o
2)

−Do′

2 W2]PDo
3

and therefore, following [4, pp. 419, formula (4.2.51)], we obtain

PDo
3
E[T1T

′
1]PDo

3
= (1− γ2)PΣ1/2C′o

2
+ γ2PΣ1/2C′o

3
, (4.22)

since D2 = Σ−1/2C′
2, D3 = Σ−1/2C′

3 and where γ2 is defined in the statement of the theorem.
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In order to verify (ii) it remains to calculate PD3E[T1T
′
1]PD3 . Using V1 = XX′ and the inde-

pendence of D′
3X with Do′

2 X and Do′

3 X, we obtain

PD3E[T1T
′
1]PD3

= D3(D
′
3D3)

−E[D′
3V2D

o
2(D

o′

2 V2D
o
2)

−Do′

2 Do
2(D

o′

2 V2D
o
2)

−Do′

2 V2D3](D
′
3D3)

−D′
3

= E[tr{V2D
o
2(D

o′

2 W2D
o
2)

−Do′

2 Do
2(D

o′

2 W2D
o
2)

−Do′

2 V2V
−1
1 }]PD3 .

Moreover,

V−1
1 = V−1

1 D3(D
′
3V

−1
1 D3)

−D′
3V

−1
1 +Do

3(D
o′

3 V1D
o
3)

−Do′

3 .

Since D′
3V

−1
1 V2D

o
2 = 0, we get

PD3E[T1T
′
1]PD3

= E[tr{Do′

3 W2D
o
2(D

o′

2 W2D
o
2)

−Do′

2 Do
2(D

o′

2 W2D
o
2)

−Do′

2 W2D
o
3(D

o′

3 V1D
o
3)

−}]PD3 . (4.23)

Without loss of generality from now on we identify Do
2 and Do

3 with matrices of full rank, i.e. Do
2:

p× (p− rank(D2)) and Do
3: p× (p− rank(D3)). We are going to rewrite (4.23) in a canonical form and

use that there exist a non-singular matrix M : (p − rank(D3)) × (p − rank(D3)) and an orthogonal
matrix Γ: p× p such that

Do′

3 = M(Ir : 0)Γ, r = p− rank(D3) = p− rank(C3)

and since R(D2)
⊥ ⊆ R(D3)

⊥ there exists a matrix Q such that

Do
2 = Γ′(Ir : 0)′M′Q.

Therefore the trace in (4.23) equals

tr{W11M
′Q(Q′MW11M

′Q)−1Q′MM′Q(Q′MW11M
′Q)−1Q′MW11(V11)

−1}, (4.24)

where W11 = (Ir : 0)ΓW2Γ
′(Ir : 0)′ and V11 = (Ir : 0)ΓV1Γ

′(Ir : 0)′. The next lemma will be
applied several times in the subsequent and the proof can be found in [4, Theorem 2.4.8, pp. 248-250,
Theorem 2.4.15, pp. 263].

Lemma 4.1. Let V ∼ Wp(I, n), p < n, and W ∼ Wp(I,m), p < m. Then,

B = (V +W)−1/2V(V +W)−1/2

is multivariate beta type I distributed and B is independent of V +W. Moreover,

E[B] = n
m+n Ip,

E[B−1] = m+n−p−1
n−p−1 Ip, n− p− 1 > 0.

Put in (4.24)

N = W
1/2
11 (V11)

−1W
1/2
11

which by Lemma 4.1 follows an inverse multivariate beta type I distribution with the important fact
that the distribution is independent of W11 and

E[N] = n−rank(A1:A2)−r−1
n−rank(A1:A2:A3)−r−1Ir,
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since W11 ∼ Wr(Ir, n− rank(A1 :A2)) and V11 ∼ Wr(Ir, n− rank(A1 :A2 :A3)).
Hence,

PD3E[T1T
′
1]PD3 = γ3PΣ−1/2C′

3
,

since D3 = Σ−1/2C′
3 and γ3 is defined in the formulation of the theorem. Thus,

E[T1T
′
1] = (1− γ2)PΣ1/2C′o

2
+ γ2PΣ1/2C′o

3
+ γ3PΣ−1/2C′

3
(4.25)

and

F1 = Σ− (1 + γ2)ΣC′o
2 (C

′o
2 ΣC′o

2 )
−C′o

2 Σ + γ2ΣC′o
3 (C

′o′
3 ΣC′o

3 )
−C′o′

3 Σ

+ γ3C
′
3(C3Σ

−1C′
3)

−C3. (4.26)

Finally, from (4.11) and (4.26) statement (ii) of the theorem is obtained.

The next theorem can be found in [4, Theorem 4.2.11 (iii)].

Theorem 4.4. For Model II let B̂i, i = 1, 2, 3, be given in Theorem 2.2 and suppose that for each B̂i

the uniqueness conditions in Theorem 3.2 are satisfied. Then, if the dispersion matrices are supposed
to exist,

D[B̂3] =
n−m3−1

n−m3−v2+q3−1 (A
′
3A3)

−1 ⊗ (C3G2(G
′
2ΣG2)

−1G′
2C

′
3)

−1,

D[B̂2] = (A′
2A2)

−1A′
2(PA2 −PA3)A2(A

′
2A2)

−1 ⊗ n−m2−1
n−rank(A1)−v1+q2−1 (C2G1(G

′
1ΣG1)

−1G′
1C

′
2)

−1

+ (A′
2A2)

−1A′
2PA3A2(A

′
2A2)

−1 ⊗
{

n−rank(A3)−1
n−rank(A3)−v3−1W1C

′
3(C3G2(G

′
2ΣG2)

−1G′
2C

′
3)

−1C3W
′
1

+(1 + k2v3

n−rank(A3)−v3−1 )(C2G1(G
′
1ΣG1)

−1G′
1C

′
2)

−1
}
,

D[B̂1] = (A′
1A1)

−1A′
1(PA1 −PA2)A1(A

′
1A1)

−1 ⊗ n−m1−1
n−m1−p+q1−1 (C1Σ

−1C′
1)

−1

+ (A′
1A1)

−1A′
1(PA2 −PA3)A1(A

′
1A1)

−1 ⊗
{
(1 + k1v2

n−rank(A2)−v2−1 )(C1Σ
−1C′

1)
−1

+ n−rank(A2)−1
n−rank(A2)−v2−1W2C

′
2(C2G1(G

′
1ΣG1)

−1G′
1C

′
2)

−1C2W
′
2

}
+ (A′

1A1)
−1A′

1PA3A1(A
′
1A1)

−1 ⊗
{
(1 + k1k2v3

n−rank(A3)−v3−1 )(C1Σ
−1C′

1)
−1

+W2C
′
2(C2G1(G

′
1ΣG1)

−1G′
1C

′
2)

−1C2W
′
2

+ n−rank(A3)−1
n−rank(A3)−v3−1W3C

′
3(C3G2(G

′
2ΣG2)

−1G′
2C

′
3)

−1C3W
′
3

}
,

with

v1 = p− rank(C1), vi = p− rank(C′
1 : · · · : C′

i) + rank(C′
1 : · · · : C′

i−1), i = 2, 3,

kj =
n−rank(Aj+1)−vj−1
n−rank(Aj)−vj−1 , j = 1, 2,

G1 = (C′
1)

o, G2 = G1(G
o′

1 C2)
o,

W1 = (C2G1(G
′
1ΣG1)

−1G′
1C

′
2)

−1C2G1(G
′
1ΣG1)

−1G′
1,

W2 = (C1Σ
−1C′

1)
−1C1Σ

−1, W3 = W2(Ip −C′
2W1).

Next theorems give E(nΣ̂) for Model I and II, respectively.
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Theorem 4.5. For Model I let Σ̂ be given in Theorem 2.1. Then,

E[nΣ̂] = (n− rank(A1 : A2 : A3))Σ

+(rank(A1 : A2 : A3)− rank(A1 : A2))
(
Σ− (1− γ9)C

′
3(C3ΣC′

3)
−C3

)
+(rank(A1 : A2)− rank(A1))Σ

1/2E[T1T
′
1]Σ

1/2 + rank(A1)Σ
1/2E[T2T

′
2]Σ

1/2,

where γ9 = p−rank(C3)
n−rank(A1:A2:A3)−p+rank(C3))−1 and E[T1T

′
1] and E[T2T

′
2] are given by (4.25) and (A-21),

respectively.

Proof. The expression follows from the following calculations:

E[nΣ̂] = E[S1] + rank(QA1:A2A3)E[QC′
3;S

−1
1

ΣQ′
C′

3;S
−1
1

] + rank(QA1A2)E[QC′
2;S

−1
2

ΣQ′
C′

2;S
−1
2

]

+rank(A1)E[QC1;S
−1
3

ΣQ′
C′

1;S
−1
3

]

= E[S1] + rank(QA1:A2
A3)E[QC′

3;S
−1
1

ΣQ′
C′

3;S
−1
1

] + rank(QA1
A2)Σ

1/2E[T1T
′
1]Σ

1/2

+rank(A1)Σ
1/2E[T2T

′
2]Σ

1/2

and E[QC′
3;S

−1
1

ΣQ′
C′

3;S
−1
1

] is obtained from [4, (4.2.45)-(4.2.58)].

Theorem 4.6. For Model II let Σ̂ be given in Theorem 2.2, and v1, v2, v3, k1, k2, G1 and G2 be given
in Theorem 4.4. Then,

E[nΣ̂] = Σ1/2
{
(n− rank(A1))Ip + (rank(A1)− rank(A2))(z11K1 +PΣ1/2G1

)

+(rank(A2)− rank(A3))(z12K1 + z22K2 +PΣ1/2G2
)

+rank(A3)(z13K1 + z21K2 + z33K3 +PΣ1/2G3
)
}
Σ1/2

where

Ki = PΣ1/2Gi−1
−PΣ1/2Gi

, i = 1, 2, 3, G3 = G2(G
′
2C

′
3)

o,

z11 = v1

n−rank(A1)−v1−1 , z12 = k1v2

n−rank(A2)−v2−1 , z22 = v2
n−rank(A2)−v2−1 ,

z13 = k1k2v3

n−rank(A3)−v3−1 , z23 = k2v3
n−rank(C3)−v3−1 , z33 = v3

n−rank(A3)−v3−1 .
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Appendix: Proof of Theorem 4.3 (iii)

The proof of the Theorem 4.3 (iii) is very similar to the proof of Theorem 4.3 (ii) and therefore only
a few details are given. From Theorem 2.1 it follows that

K(B̂1 −B1)L = K(A′
1A1)

−A′
1(Y − E[Y])S−1

3 C′
1(C1S

−1
3 C′

1)
−L (A-1)

−K(A′
1A1)

−A′
1A2(A

′
2QA1A2)

−A′
2QA1(Y − E[Y])S−1

2 C′
2(C2S

−1
2 C′

2)
−L (A-2)

−K(A′
1A1)

−A′
1(I−A2(A

′
2QA1A2)

−A′
2QA1)A3(B̂3 −B3)C3C

′
1(C1C

′
1)

−L. (A-3)

Since A′
1Y is independent of S1, S2, S3, QA1Y and B̂3, and A′

2QA1Y is independent of S1, S2 and

B̂3 the terms given by (A-1), (A-2), (A-3) are uncorrelated. Thus,

D[KB̂1L] = D[K(A′
1A1)

−A′
1(Y − E[Y])S−1

3 C′
1(C1S

−1
3 C′

1)
−L] (A-4)

+ D[K(A′
1A1)

−A′
1A2(A

′
2QA1A2)

−A′
2QA1(Y − E[Y])S−1

2 C′
2(C2S

−1
2 C′

2)
−L] (A-5)

+ D[K(A′
1A1)

−A′
1(I−A2(A

′
2QA1A2)

−A′
2QA1)A3(B̂3 −B3)C3C

′
1(C1C

′
1)

−L]. (A-6)

The dispersion in (A-6) is obtained from Theorem 4.3 (i) and (A-5) can be determined from the
treatment of (4.12) via (4.13), i.e (A-5) equals

L′(C2C
′
2)

−C2F1C
′
2(C2C

′
2)

−L⊗K(A′
1A1)

−A′
1A2(A

′
2QA1A2)

−A′
2A1(A

′
1A1)

−K′, (A-7)

where F1 is given by (4.26). Put

F2 = E[PC′
1;S

−1
3

ΣP′
C′

1;S
−1
3

] (A-8)

and then (A-4) is determined through

L′(C1C
′
1)

−C1F2C1(C1C
′
1)

−L⊗K(A′
1A1)

−K′.

We will copy the approach for obtaining F1. From (4.15) it follows that

F2 = Σ−Σ1/2E[T2]Σ
1/2 −Σ1/2E[T′

2]Σ
1/2 +Σ1/2E[T2T

′
2]Σ

1/2,

where

T2 = V3D
o
1(D

o′

1 V3D
o
1)

−Do′

1 , (A-9)

Do
1 = Σ1/2C′o

1 , V3 = V2 +T1ZPQA1
A2Z

′T′
1.

Moreover

Do′

1 V3D
o
1 = Do′

1 W2D
o
1 +Do′

1 ZPQA1
A2Z

′Do
1 ≡ Do′

1 W3D
o
1.

where W3 ∼ Wp(I, n− rank(A1)). Because R(D1)
⊥ ⊆ R(D2)

⊥ ⊆ R(D3)
⊥,

Do′

2 V3D
o
1 = Do′

2 W3D
o
1, Do′

1 V3D
o
1 = Do′

1 W3D
o
1.

In correspondence with (4.17) we will study

E[T2] = PDo
2
E[T2] +PD3E[T2] +PPDo

3
D2E[T2],

where

PPDo
3
D2 = Do

3(D
o′

3 Do
3)

−Do′

3 D2(D
′
2D

o
3(D

o′

3 Do
3)

−Do′

3 D2)
−D′

2D
o
3(D

o′

3 Do
3)

−Do′

3
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is the orthogonal projection on R(D3)
⊥ ∩R(D2).

It follows that

PDo
2
E[T2] = PDo

1
, PD3E[T2] = 0, PPDo

3
D2E[T2] = 0

which implies

E[T2] = PDo
1
.

Finally we will consider E[T2T
′
2]. Now

PDo
2
E[T2T

′
2]
(
PD3 : PPDo

3
D2

)
= 0, PD3E[T2T

′
2]PPDo

3
D2 = 0

and therefore it is enough to separately consider

PDo
2
E[T2T

′
2]PDo

2
, PD3E[T2T

′
2]PD3 , PPDo

3
D2E[T2T

′
2]PPDo

3
D2 .

First we observe that

PDo
2
E[T2T

′
2]PDo

2
= E[PDo

2
W3D

o
1(D

o′

1 W3D
o
1)

−Do′

1 Do
1(D

o′

1 W3D
o
1)

−Do′

1 W3PDo
2
]

which because of Wishartness of W3 equals (see also (4.22))

(1− γ4)PDo
1
+ γ4PDo

2
, (A-10)

where γ4 was presented in the statement of the theorem. Moreover, we will use that

V−1
2 = V−1

2 D2(D
′
2V

−1
2 D2)

−D′
2V

−1
2 +Do

2(D
o′

2 V2D
o
2)

−Do′

2 ,

V−1
1 = V−1

1 D3(D
′
3V

−1
1 D3)

−D′
3V

−1
1 +Do

3(D
o′

3 V1D
o
3)

−Do′

3

and then

PD3
E[T2T

′
2]PD3

= E[tr{V3D
o
1(D

o′

1 V3D
o
1)

−Do′

1 Do
1(D

o′

1 V3D
o
1)

−Do′

1 V3V
−1
1 }]PD3

= E[tr{V2V
−1
2 V3D

o
1(D

o′

1 V3D
o
1)

−Do′

1 Do
1(D

o′

1 V3D
o
1)

−Do′

1 V3V
−1
2 V2V

−1
1 }]PD3

= E[tr{V2D
o
2(D

o′

2 V2D
o
2)

−Do′

2 V3D
o
1(D

o′

1 V3D
o
1)

−Do′

1

×Do
1(D

o′

1 V3D
o
1)

−Do′

1 V3D
o
2(D

o′

2 V2D
o
2)

−Do′

2 V2V
−1
1 }]PD3

= E[tr{Do′

3 W2D
o
2(D

o′

2 W2D
o
2)

−Do′

2 W3D
o
1(D

o′

1 W3D
o
1)

−Do′

1

×Do
1(D

o′

1 W3D
o
1)

−Do′

1 W3D
o
2(D

o′

2 W2D
o
2)

−Do′

2 W2D
o
3(D

o′

3 V1D
o
3)

−}]PD3 . (A-11)

By assumption there exist matrices U1 and U2 so that

Do
1 = Do

2U1, Do
2 = Do

3U2.

Hence, (A-11) equals

E[tr{(Do′

2 W2D
o
2)

−Do′

2 W3D
o
1(D

o′

1 W3D
o
1)

−Do′

1

×Do
1(D

o′

1 W3D
o
1)

−Do′

1 W3D
o
2(D

o′

2 W2D
o
2)

−U′
2D

o′

3 W2

×Do
3(D

o′

3 V1D
o
3)

−Do′

3 W2D
o
3U2}]PD3 . (A-12)
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Furthermore, according to Lemma 4.1

N1 = (Do′

3 W2D
o
3)

−1/2Do′

3 V1D
o
3(D

o′

3 W2D
o
3)

−1/2,

is independent of Do′

3 W2D
o
3 and Do′

1 W3D
o
1,

E[N−1
1 ] = γ5Ip−rank(C3).

Similarly,

N2 = (Do′

2 W3D
o
2)

−1/2Do′

2 W2D
o
2(D

o′

2 W3D
o
2)

−1/2

is independent of Do′

2 W3D
o
2,

E[N−1
2 ] = γ6Ip−rank(C2),

N3 = (Do′

1 W3D
o
1)

−1/2Do′

1 W2D
o
1(D

o′

1 W3D
o
1)

−1/2

is independent of Do′

1 W3D
o
1,

E[N3] = γ7Ip−rank(C1),

E[N−1
3 ] = γ8Ip−rank(C1).

Then, (A-12) equals

E[tr{(Do′

2 W2D
o
2)

−Do′

2 W3D
o
1(D

o′

1 W3D
o
1)

−Do′

1 Do
1(D

o′

1 W3D
o
1)

−

×Do′

1 W3D
o
2(D

o′

2 W2D
o
2)

−U′
2(D

o′

3 W2D
o
3)

1/2N−1
1 (Do′

3 W2D
o
3)

1/2U2}]PD3

= γ5E[tr{Do′

2 W3D
o
1(D

o′

1 W3D
o
1)

−Do′

1 Do
1(D

o′

1 W3D
o
1)

−Do′

1 W3D
o
2(D

o′

2 W2D
o
2)

−}]PD3

= γ5E[tr{(Do′

1 W3D
o
1)

−Do′

1 Do
1(D

o′

1 W3D
o
1)

−U′
1(D

o′

2 W3D
o
2)

1/2N−1
2 (Do′

2 W3D
o
2)

1/2U1}]PD3

= γ5γ6E[tr{(Do′

1 W3D
o
1)

−Do′

1 Do
1(D

o′

1 W3D
o
1)

−Do′

1 W3D
o
1}]PD3

= γ5γ6E[tr{Do
1(D

o′

1 W3D
o
1)

−Do′

1 }]PD3 = γ4γ5γ6PD3 . (A-13)

The last expression which will be considered requires also some calculations:

PPDo
3
D2E[T2T

′
2]PPDo

3
D2

= E[PPDo
3
D2V3D

o
1(D

o′

1 W3D
o
1)

−Do′

1 Do
1(D

o′

1 W3D
o
1)

−Do′

1 V3PPDo
3
D2 ]

= E[PPDo
3
D2V2D

o
1(D

o′

1 W3D
o
1)

−Do′

1 Do
1(D

o′

1 W3D
o
1)

−Do′

1 V2PPDo
3
D2 ] (A-14)

+E[PPDo
3
D2V2D

o
2(D

o′

2 W2D
o
2)

−Do′

2 (W3 −W2)D
o
1(D

o′

1 W3D
o
1)

−Do′

1

× Do
1(D

o′

1 W3D
o
1)

−Do′

1 V2PPDo
3
D2 ]

(A-15)

+E[PPDo
3
D2V2D

o
1(D

o′

1 W3D
o
1)

−Do′

1 Do
1(D

o′

1 W3D
o
1)

−Do′

1 (W3 −W2)

× Do
2(D

o′

2 W2D
o
2)

−Do′

2 V2PPDo
3
D2 ]

(A-16)

+E[PPDo
3
D2V2D

o
2(D

o′

2 W2D
o
2)

−Do′

2 (W3 −W2)D
o
1(D

o′

1 W3D
o
1)

−Do′

1

× Do
1(D

o′

1 W3D
o
1)

−Do′

1 (W3 −W2)D
o
2(D

o′

2 W2D
o
2)

−Do′

2 V2PPDo
3
D2 ].

(A-17)

Now (A-14) equals

E[tr{W2D
o
1(D

o′

1 W3D
o
1)

−Do′

1 Do
1(D

o′

1 W3D
o
1)

−Do′

1 }]PPDo
3
D2 = γ4γ7PPDo

3
D2 . (A-18)
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Turning to (A-15) this expression equals

E[PPDo
3
D2

W2D
o
2(D

o′

2 W2D
o
2)

−Do′

2 (W3 −W2)D
o
1(D

o′

1 W3D
o
1)

−Do′

1 Do
1(D

o′

1 W3D
o
1)

−Do′

1 W2PPDo
3
D2

]

= E[tr{(W3 −W2)D
o
1(D

o′

1 W3D
o
1)

−Do′

1 Do
1(D

o′

1 W3D
o
1)

−Do′

1 }]PPDo
3
D2

= E[tr{Do
1(D

o′

1 W3D
o
1)

−Do′

1 } − tr{Do
1(D

o′

1 W3D
o
1)

−Do′

1 W2D
o
1(D

o′

1 W3D
o
1)

−Do′

1 }]PPDo
3
D2

= γ4(1− γ7)PPDo
3
D2 . (A-19)

By symmetry we obtain the same expression for (A-16). Finally it is observed that (A-17) equals

E[PPDo
3
D2

W2D
o
2(D

o′

2 W2D
o
2)
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Thus, summing (A-10), (A-13), (A-18), (A-19) and (A-20) we obtain

E[T2T
′
2] = (1− γ4)PDo

1
+ γ4PDo

2
+ γ4γ5γ6PD3 + γ4γ6PPDo

3
D2

and then F2 given in the statement of the theorem is obtained.
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