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Abstract

Estimation of parameters in the classical Growth Curve model when the
covariance matrix has some specific linear structure is considered. In our
examples maximum likelihood estimators can not be obtained explicitly
and must rely on optimization algorithms. Therefore explicit estimators
are obtained as alternatives to the maximum likelihood estimators. From
a discussion about residuals, a simple non-iterative estimation procedure
is suggested which gives explicit and consistent estimators of both the
mean and the linear structured covariance matrix.

Keywords: Growth curve model, linearly structured covariance matrix, ex-
plicit estimators, residuals.

1E-mail address to the correspondence author: martin.ohlson@mai.liu.se



1 Introduction

The Growth Curve model introduced by Potthoff and Roy (1964) has been
extensively studied over many years. It is a generalized multivariate analysis of
variance model (GMANOVA) which belongs to the curved exponential family.
The mean structure for the Growth Curve model is bilinear in contrary to
the ordinary MANOVA model where it is linear. For more details about the
Growth Curve model see e.g., Kollo and von Rosen (2005), Kshirsagar and
Smith (1995), Srivastava Khatri (1979), Srivastava and von Rosen (1999).

In the MANOVA model, when dealing with measurements on k equivalent
psychological tests, one of the first to consider patterned covariance matrices
was Wilks (1946). A covariance matrix with equal diagonal elements and
equal off-diagonal elements, i.e., a so called uniform structure was studied.
The model was extended by Votaw (1948) to a set of blocks where each block
had a uniform structure.

Olkin and Press (1969) considered a circular stationary model, where vari-
ables are thought of as being equally spaced around a circle, and the covariance
between two variables depends only on the distance between the variables.
Olkin (1973) studied a multivariate version in which each element was a ma-
trix, and the blocks were patterned.

More generally, group symmetry covariance models may be of interest since
they generalize the above models, see for example, Andersson (1975), Jensen
(1988), and Perlman (1987). In Nahtman (2006) marginal permutation invari-
ant covariance matrices were considered and it was proven that permutation
invariance implies a specific structure for the covariance matrices. In particu-
lar shift permutation invariance generates invariant matrices with a Toeplitz
structure, e.g., see Christensen (2007) and Marin and Dhorne (2002).

Furthermore, Anderson (1973) studied when the covariance matrix can be
written as a linear combination of known symmetric matrices but the coef-
ficients of the linear combinations are unknown parameters to be estimated.
Chaudhuri et al. (2007) considered graphical models and derived an algo-
rithm for estimating covariance matrices under the constraint that certain
covariances are zero. As a special case of the model discussed by Chaudhuri
et al. (2007), Ohlson et al. (2009) studied banded covariance matrices, i.e.,
covariance matrices with so called m-dependence structure.

For the Growth Curve model, when no assumption about the covari-
ance matrix was made, Potthoff and Roy (1964) originally derived a class
of weighted estimators for the mean parameter matrix. Khatri (1966) ex-
tended this result and showed that the maximum likelihood estimator also is
a weighted estimator. Under a certain covariance structure, Rao (1967) and
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Reinsel (1982) have shown that the unweighted estimator also is the maximum
likelihood estimator. Furthermore, Chinchilli and Walter (1984) has derived
the likelihood ratio test for this type of covariance matrix.

Several other types of structured covariance matrices, utilized by the
Growth Curve model, do also exist. For example, Khatri (1973) derived the
likelihood ratio test for the intraclass covariance structure and Arnold (1981)
and Lee (1988) considered the uniform covariance structure. The autoregres-
sive covariance structure which is natural for time series and repeated mea-
surements have been discussed by Fujikoshi et al. (1990), Hudson (1983), and
Lee (1988).

Closely connected to the intraclass covariance structure is the random ef-
fects covariance structure studied by Rao (1965, 1975), Reinsel (1982, 1984),
and Ware (1985). More recently, the random-effect covariance structure have
been considered for the mixed MANOVA-GMANOVA models and the Ex-
tended Growth Curve models, e.g., see Yokoyama (1995, 1996, 1997).

Inference on the mean parameters strongly depends on the estimated co-
variance matrix. The covariance matrix for the estimator of the mean is always
a function of the covariance matrix. Hence, when testing the mean param-
eters the estimator of the covariance matrix is very important. Originally,
many estimators of the covariance matrix were obtained from non-iterative
least squares methods. When computer sources became stronger and covari-
ance matrices with structures were considered iterative methods were intro-
duced such as the maximum likelihood method and the restricted maximum
likelihood method, among others. Nowadays, when data sets are very large,
non-iterative methods have again become of interest.

In this paper we will study patterned covariance matrices which are linearly
structured, i.e., see Kollo and von Rosen (2005, Definition 1.3.7). The goal
is not just to obtain reasonable explicit estimators, but also to explore some
new inferential ideas which later can be applied to more general models.

The fact that the mean structure is bilinear will result in decompositions
of tensor spaces instead of linear spaces as in MANOVA. The estimation pro-
cedure which is proposed in this paper will rely on this decomposition. Calcu-
lations do not depend on the distribution of the observations, i.e., the normal
distribution. However, when studying properties of the estimators the normal
distribution is considered.

The organization of this paper is as follows. In Section 2 the main idea is
introduced and the decomposition generated by the design matrices is given.
In order to support the decomposition presented in Section 2 maximum like-
lihood estimators for the non-patterned case are presented in Section 3. Fur-
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thermore, in Section 4 explicit estimators for patterned covariance matrices in
the Growth Curve model are derived. The section will start with a treatment
of patterned covariance matrices in the MANOVA model and then it is shown
how these estimators may be used when finding overall estimators with the
attractive property of being explicit. Finally, some properties of the proposed
estimators will be presented in Section 5 and in Section 6 several numerical
examples are given.

2 Main idea

Throughout this paper matrices will be denoted by capital letters, vectors
by bold lower case letters, and scalars and elements of matrices by ordinary
letters.

Some general ideas of how to estimate parameters in the Growth Curve
model will be presented in this section. The model is defined as follows.

Definition 2.1 Let X : p×n and B : q× k be the observation and parameter
matrices, respectively, and let A : p×q and C : k×n be the within and between
individual design matrices, respectively. Suppose that q ≤ p and r + p ≤ n,
where r = rank(C). The Growth Curve model is given by

X = ABC + E, (1)

where the columns of E are assumed to be independently p−variate normally
distributed with mean zero and an unknown positive definite covariance matrix
Σ, i.e., E ∼ Np,n (0,Σ, In).

The estimators of parameters in the model will be derived via a fairly heuristic
approach but, among others, the advantage is that it presents a clear way,
as illustrated in Section 4, to find explicit estimators of covariance matrices
with complicated structures. Our starting point for estimating parameters in
the Growth Curve model are the two jointly sufficient statistics, the ”mean”
XC′ (CC′)−C and the sum of squares matrix

S = X
(
I−C′ (CC′)−C

)
X. (2)

The distribution of the “mean” and the sum of squares matrix are given by

XC′ (CC′)−C ∼ Np,n

(
ABC,Σ,C′ (CC′)−C

)
(3)
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and

S = X
(
I−C′ (CC′)−C

)
X ∼ Wp (Σ, n− r) , (4)

where − denotes an arbitrary g-inverse, r = rank(C), Np,n(•, •, •) stands for
the matrix normal distribution and Wp(•, •) for the Wishart distribution. Ob-
serve that S and its distribution is independent of the parameter B. If Σ is
known we have from least squares theory the estimator (i.e., the BLUE)

ÃBC = A
(
A′Σ−1A

)−A′Σ−1XC′ (CC′)−C. (5)

In this expression there are two projectors involved, A(A′Σ−1A)−A′Σ−1 and
C′(CC′)−C. Here Σ is included in one of the projectors and indeed we are
working with the space given by the tensor product CΣ(A) ⊗ C(C′), where
CΣ(A) stands for the linear space generated by the columns of A with an
inner product defined via Σ as < x, y >= x′Σ−1y. If there is no subscript,
as in C(C′), it means that the standard inner product is assumed.

As a basis for the inference in our models we perform a decomposition of
the whole tensor space into three parts:

CΣ(A)⊗ C(C′) ¢ (CΣ(A)⊗ C(C′))⊥

= (CΣ(A)⊗ C(C′)) ¢ CΣ(A)⊥ ⊗ C(C′) ¢ V ⊗ C(C′)⊥, (6)

where V represents the whole space and ¢ denotes the orthogonal direct sum
of subspaces. The space CΣ(A)⊗C(C′) is used to estimate ABC and the other
two are used to create residuals. If Σ is unknown it should be estimated and a
general idea is to use the variation in the residual which for the Growth Curve
model is build up by three subresiduals (see Seid Hamid and von Rosen (2006),
von Rosen (1995)). However, for our purposes two of the three residuals are
merged so that they agree with the decomposition in (6):

(CΣ(A)⊗ C(C′)
)⊥ = CΣ(A)⊥ ⊗ C(C′) ¢ V ⊗ C(C′)⊥. (7)

For an illustration of the spaces considered above see Figure 1.
The main problem is that Σ is involved in CΣ(A) and therefore the two

residuals can not immediately be used to estimate Σ. However, we make the
following important observation: The role of Σ is twofold; it is used as a
weight matrix in A(A′Σ−1A)−A′Σ−1 in order to obtain an estimator of B
with small variance, and it describes the variation in data.
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CΣ(A)⊥ R1

R

CΣ(A) ÃBC

C(C′) C(C′)⊥

Figure 1: Decomposition of the space generated by the design matrices A and
C. The matrices R1 and R given in (8) and (9), respectively, are theoretical
residuals used later in the paper.

The theoretical residuals used in this paper which correspond to the sub-
space decomposition are given by (see also Figure 1)

R1 = XC′(CC′)−C− ÃBC

=
(
I−A

(
A′Σ−1A

)−A′Σ−1
)
XC′ (CC′)−C (8)

R = X
(
I−C′ (CC′)−C

)
. (9)

Here R1 is obtained from CΣ(A)⊥⊗C(C′) and R from V ⊗C(C′)⊥. However,
since Σ is unknown it has to be estimated in order to make it possible to find
an expressions for (5) as well as (8).

It is focused on explicit estimators and we start studying Σ in CΣ(A). The
matrix of the sum of squares equals S = RR′ and since S is independent of B,
n−1S

p→ Σ (
p→ denotes convergence in probability) and E[S] = (n − r)Σ we

may use as estimator of Σ in A(A′Σ−1A)−A′Σ−1 a function of S, e.g., n−1S.
Hence, instead of A(A′Σ−1A)−A′Σ−1 we obtain A(A′S−1A)−A′S−1 which
means that the decomposition in (7) should be replaced by

(CS(A)⊗ C(C′))⊥ = CS(A)⊥ ⊗ C(C′) ¢ V ⊗ C(C′)⊥,

i.e., S is used instead of Σ when defining the inner product.
Thus, since the total variation is described by the sum of the squared

residuals a natural estimator is

nΣ̂ = S + R̂1R̂
′
1, (10)

where R̂1 =
(
I−A

(
A′S−1A

)−A′S−1
)
XC′ (CC′)−C.
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3 Maximum likelihood estimators

We will present the well known maximum likelihood estimators for the pa-
rameters in an ordinary Growth Curve model with a non-patterned covari-
ance matrix Σ. The estimators show that the heuristic method presented in
the previous section is relevant and that the maximum likelihood approach
perfectly fits into it.

The maximum likelihood estimator for the mean parameter B in the
Growth Curve model is given by many authors, e.g., see Khatri (1966), Kollo
and von Rosen (2005), and Srivastava and Khatri (1979), and equals

B̂ML =
(
A′S−1A

)−A′S−1XC′ (CC′)− + (A′)oZ1 + A′Z2Co′, (11)

where Z1 and Z2 are arbitrary matrices and S is given in (2). We have used
the notation Ao for any matrix of full rank which is spanning the orthogonal
complement to C(A), i.e., C(Ao) = C(A)⊥.

If A and C are of full rank, i.e., rank(A) = q and rank(C) = k, the
estimator in (11) reduces to one unique estimator:

B̂ML =
(
A′S−1A

)−1 A′S−1XC′ (CC′)−1
. (12)

Furthermore, the maximum likelihood estimator of Σ is given by

nΣ̂ML =
(
X−AB̂MLEC

)(
X−AB̂MLEC

)′
= S + R̂1R̂

′
1, (13)

where the residual R̂1 as before equals

R̂1 = XC′ (CC′)−1 C−AB̂MLC. (14)

Note that S does not depend on the parameter B and we know that

1
n− r

S
p→ Σ. (15)

Furthermore, from (11) it follows that

AB̂MLC = A
(
A′S−1A

)−A′S−1XC′ (CC′)−C (16)

is always unique, i.e., the expression does not depend on the choice of g-
inverses, and therefore Σ̂ML is also always uniquely estimated.
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4 Explicit estimators in the growth curve model
with a linearly structured covariance matrix

In this section we will derive explicit estimators for the parameters in the
Growth Curve model with a covariance matrix which belongs to special class
of patterned matrices, i.e., the class of linearly structured matrices, which is
presented in the next definition.

Definition 4.1 A matrix Σ = (σij) is linearly structured if the only linear
structure between the elements is given by |σij | = |σkl| and there exists at least
one (i, j) 6= (k, l) so that |σij | = |σkl|.
Hence, assume that we have the Growth Curve model

X = ABC + E,

defined in Definition 2.1, but with

E ∼ Np,n

(
0,Σ(p), In

)
,

where Σ(p) is a linearly structured covariance matrix.
The estimation procedure which is proposed in this paper will rely on the

decomposition of the whole space generated by the design matrices, see Figure
1. When estimating Σ(p) the idea is to use the residual variation as when we
obtained the estimator for Σ in the unstructured case. Thus we will consider
S and R̂1R̂

′
1 and the total residual variation is the sum of these two terms.

The problem is how to combine the information from the residuals since the
covariance matrix Σ(p) is patterned.

A fundamental idea, which was presented in Section 2, was to decompose
the space V ⊗ C(C′)⊥ in order to estimate the inner product in CΣ(A).

Different structures on the covariance matrix may lead to different esti-
mation procedures. Which procedure is the best depends on which linear
structure the covariance matrix Σ(p) has.

In this paper we will apply a universal least squares approach and minimize

tr
{(

S− (n− r)Σ(p)
)(

S− (n− r)Σ(p)
)}

(17)

with respect to Σ(p). For notational convenience Σ will be used instead of
Σ(p).
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Let vecΣ(K) be the columnwise vectorized form of Σ(p) where all 0 and
repeated elements (by absolute value) have been disregarded. For example,

Σ(p) =




σ11 σ12 0
σ12 σ22 σ23

0 σ23 σ33




gives

vecΣ(K) = (σ11, σ12, σ22, σ23, σ33)
′ .

Expression (17) will be differentiated with respect to vecΣ(K) and the col-
lection of partial derivatives, i.e., the matrix derivative to be used, is defined
as

dY
dX

=
d vec′Y
d vecX

.

For details of how to use matrix derivatives, in particular for linearly structured
matrices, see Kollo and von Rosen (2005, Section 1.4). Now,

d tr {(S− (n− r)Σ) (S− (n− r)Σ)}
dΣ(K)

= −2(n− r)
dΣ

dΣ(K)
vec(S− (n− r)Σ) = 0. (18)

Moreover,

dΣ
dΣ(K)

=
(
T+

)′
, (19)

where T+ is the Moore-Penrose inverse of T defined in Kollo and von Rosen
(2005, Theorem 1.3.11.), i.e., T is a matrix such that

vecΣ(K) = TvecΣ. (20)

The explicit structure and theory around T and T+ is not of interest to this
paper. From (18) and the relation

vecΣ = T+vecΣ(K) (21)

we obtain the linear equation system
(
T+

)′ vecS = (n− r)
(
T+

)′T+vecΣ(K). (22)
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which gives

(n− r) vecΣ(K) =
(
(T+)′T+

)− (T+)′vecS +
(
(T+)′T+

)o
z,

where z is an arbitrary vector. Hence, the unique estimator is given by

vecΣ(p) = T+vecΣ(K) =
1

n− r
T+

(
(T+)′T+

)− (T+)′vecS,

i.e., we have a first estimator for Σ(p) given by

vecΣ̂
(p)

1 =
1

n− r
T+

(
(T+)′T+

)− (T+)′vecS. (23)

Now, because of C(T+) = C(T′) and the uniqueness property of projectors,
the estimator (23) can be written

vecΣ̂
(p)

1 =
1

n− r
T′ (TT′)−TvecS. (24)

Following the ideas of Section 2, we may consider C
Σ̂1

(A) instead of CΣ(A).
From Figure 1 it follows that the estimator of ABC is obtained by projection
on C

Σ̂1
(A)⊗ C(C′), i.e., a natural estimator is given by

AB̂C = A
(
A′Σ̂

−1

1 A
)−

A′Σ̂
−1

1 XC′ (CC′)−C. (25)

When deriving the final estimator for Σ(p) the idea is to use the residual
variation as when we obtained the estimator for Σ in the unstructured case.
Thus we will consider S and R̂1R̂

′
1 and the total residual variation is the sum

of these two terms. The problem is how to combine the information from the
residuals since Σ(p) is a patterned matrix. The distribution of S is Wishart.
Moreover, given the inner product, i.e., conditioning on S, we have

R̂1R̂
′
1|S ∼ Wp

(
P̂Σ(p)P̂

′
, r

)
,

where the projector P̂ is given by

P̂ = I−A
(
A′Σ̂

−1

1 A
)−

A′Σ̂
−1

1 . (26)

Furthermore, since R̂1R̂
′
1 = P̂S0P̂

′
, where S0 = XC′(CC′)−CX′ and S is

independent of S0 it is very natural to condition R̂1R̂
′
1 with respect to S.

The variation caused by estimating the inner product is not of any direct
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interest and is indeed misleading if using it in the estimation of Σ(p). Again
for notational convenience Σ will be used instead of Σ(p). Moreover, the
notation (Q)()′ is used instead of (Q)(Q)′. Once again we will perform a least
squares approach and minimize

tr
{(

R̂1R̂
′
1 + S−

(
rP̂ΣP̂

′
+ (n− r)Σ

))()′}

=
(
vec

(
R̂1R̂

′
1 + S

)
− Ψ̂vecΣ

)′()
, (27)

where

Ψ̂ = rP̂⊗ P̂ + (n− r)I, (28)

with respect to Σ(p). Expression (27) will now be differentiated with respect
to vecΣ(K) and the collection of partial derivatives is given by

d
(
vec

(
R̂1R̂

′
1 + S

)
− Ψ̂vecΣ

)′()

dΣ(K)

= −2
dΣ

dΣ(K)
Ψ′

(
vec

(
R̂1R̂

′
1 + S

)
− Ψ̂vecΣ

)
= 0. (29)

Thus, from (19) and (29) we obtain

(T+)′Ψ̂
′ (

vec
(
R̂1R̂

′
1 + S

)
− Ψ̂vecΣ

)
= 0

which gives

(T+)′Ψ̂
′
vec

(
R̂1R̂

′
1 + S

)
= (T+)′Ψ̂

′
Ψ̂T+vecΣ(K). (30)

Since

C
(
(T+)′Ψ̂

′
vec

(
R̂1R̂

′
1 + S

))
⊆ C

(
(T+)′Ψ̂

′)
= C

(
(T+)′Ψ̂

′
Ψ̂T+

)

equation (30) is consistent and a general solution is given by

vecΣ(K) =
(
(T+)′Ψ̂

′
Ψ̂T+

)−
(T+)′Ψ̂

′
vec

(
R̂1R̂

′
1 + S

)

+ ((T+)′Ψ̂
′
Ψ̂T+)oz, (31)

where z is an arbitrary vector. Furthermore, using (21) we have the unique
estimator of Σ(p) The result is formulated in the next theorem.
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Theorem 4.1 The least squares estimator which solves (29) is given by

vecΣ̂
(p)

= T+
((

T+
)′ Ψ̂′

Ψ̂T+
)− (

T+
)′ Ψ̂′

vec
(
R̂1R̂

′
1 + S

)
, (32)

where

R̂1 =
(
I−A

(
A′Σ̂

−1

1 A
)−

A′Σ̂
−1

1

)
XC′ (CC′)−C,

Ψ̂ = r

(
I−A

(
A′Σ̂

−1

1 A
)−

A′Σ̂
−1

1

)
⊗

(
I−A

(
A′Σ̂

−1

1 A
)−

A′Σ̂
−1

1

)

+(n− r)I

and Σ̂1 is given in (24). Moreover, AB̂C is presented in (25).

5 Properties of the proposed estimators

The proposed estimators (23) (see also (24)), (25) and (32) are ad hoc based
least square estimators. Hence, it is important to prove some properties, e.g.,
unbiasedness and consistency. We will start with the following lemma.

Lemma 5.1 The estimator Σ̂
(p)

1 given in (23) is a consistent estimator of

Σ(p), i.e., Σ̂
(p)

1
p→ Σ(p).

Proof. We have from (15), that 1
n−rvecS

p→ vecΣ(p). Hence, from (20), (21)
and (23) we have

vecΣ̂
(p)

1 =
1

n− r
T+

(
(T+)′T+

)− (T+)′vecS

p→ T+
(
(T+)′T+

)− (T+)′vecΣ(p)

= T+
(
(T+)′T+

)− (T+)′T+vecΣ(K)

= T+vecΣ(K) = vecΣ(p)

which completes the proof. ¤
Thus, consistency for the estimator Σ̂

(p)

1 (23) is established and now we
can also prove some properties for the estimators (25) and (32). Since the
estimator for the mean AB̂C has dimension p × n it is pointless to discuss
the asymptotic behavior when n tends to infinity. Hence, we will prove the
asymptotic properties for the first m columns of AB̂C, i.e., let Cm be the first
m columns in C.
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Theorem 5.2 Let the estimator AB̂C be given in (25). Then

(i) AB̂C is an unbiased estimator of ABC, i.e., E
(
AB̂C

)
= ABC,

(ii) AB̂Cm is asymptotic equivalent to

ÃBCm ∼ Np,n

(
ABCm,A

(
A′Σ(p)−1

A
)−

A′,C′
m

(
CC′)−Cm

)
,

i.e.,
∥∥∥AB̂Cm − ÃBCm

∥∥∥ = tr
{(

AB̂Cm − ÃBCm

)()′} p→ 0.

Proof. (i) Since S given in (2) and XC′ are independent, Σ̂
(p)

1 given in (23)
and XC′ are also independent. Hence, the expectation of AB̂C is given by

E
(
AB̂C

)
= E

(
A

(
A′Σ̂

−1

1 A
)−

A′Σ̂
−1

1

)
E

(
XC′ (CC′)−C

)

= E
(
A

(
A′Σ̂

−1

1 A
)−

A′Σ̂
−1

1

)
ABCC′ (CC′)−C = ABC,

where the second equality follows from E
(
XC′ (CC′)−C

)
= ABC and the

last equality from A
(
A′Σ̂

−1

1 A
)−

A′Σ̂
−1

1 A = A.

(ii) Let ε > 0 be arbitrary and M an arbitrary constant matrix. Then

P
(∥∥∥AB̂Cm − ÃBCm

∥∥∥ > ε
)

= P
(∥∥∥

(
Q

Σ̂1
−QΣ

)
XC′ (CC′)−Cm

∥∥∥ > ε
)

= P
(∥∥∥

(
Q

Σ̂1
−QΣ

)
XC′ (CC′)−Cm

∥∥∥ > ε,

MM′ −XC′ (CC′)−CmC′
m

(
CC′)−CX′ > 0

)

+ P
(∥∥∥

(
Q

Σ̂1
−QΣ

)
XC′ (CC′)−Cm

∥∥∥ > ε,

MM′ −XC′ (CC′)−CmC′
m

(
CC′)−CX′ ≤ 0

)

< P
(∥∥∥

(
Q

Σ̂1
−QΣ

)
M

∥∥∥ > ε
)

+ P
(
MM′ −XC′ (CC′)−CmC′

m

(
CC′)−CX′ ≤ 0

)
,

where

QΣ = A
(
A′Σ−1A

)−A′Σ−1,
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and if Y is a square matrix, Y > 0 means that Y is positive definite and Y ≤ 0
means that Y is not positive definite, respectively. From Lemma 5.1 we have
Q

Σ̂1

p→ QΣ and hence, P
(∥∥∥

(
Q

Σ̂1
−QΣ

)
M

∥∥∥ > ε
)
→ 0. Furthermore, for

some vector α : p× 1 we have

P
(
MM′ −XC′ (CC′)−CmC′

m

(
CC′)−CX′ ≤ 0

)
(33)

= P
(
α′XC′ (CC′)−CmC′

m

(
CC′)−CX′α ≥ α′MM′α

)

≤
tr

{
C′

m (CC′)−Cm

}
α′Σα + α′ABCmC′

mB′A′α

α′MM′α
,

where we have used the Markov inequality. Since tr
{
C′

m (CC′)−Cm

} ≤
tr

{
C′

m (CmC′
m)−Cm

}
= rank (Cm), we can choose the arbitrary matrix M

such that the probability (33) is sufficiently small. The proof is complete. ¤

Theorem 5.3 The estimator Σ̂
(p)

given in (32) is a consistent estimator of

Σ(p), i.e., Σ̂
(p) p→ Σ(p).

Proof. Using Lemma 5.1 and Cramér-Slutsky’s theorem (Cramér, 1946) we
have

P̂
p→ P = I−A

(
A′Σ−1A

)−A′Σ−1

and

Ψ̂
p→ Ψ = rP⊗P + (n− r)I,

where P̂ and Ψ̂ are given in (26) and (28), respectively. Then

vecΣ̂
(p)

= T+
(
(T+)′Ψ̂

′
Ψ̂T+

)−
(T+)′Ψ̂

′
vec

(
R̂1R̂

′
1 + S

)

p→ T+
(
(T+)′Ψ′ΨT+

)− (T+)′Ψ′vec
(
rPΣP′ + (n− r)Σ

)

= T+
(
(T+)′Ψ′ΨT+

)− (T+)′Ψ′ΨvecΣ

= T+
(
(T+)′Ψ′ΨT+

)− (T+)′Ψ′ΨT+vecΣ(K)

= T+vecΣ(K) = vecΣ(p),

since Ψ has full rank and thus the proof is complete. ¤
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6 Examples

Example 1 (Dental Data, Potthoff & Roy 1964) Dental measurements
on eleven girls and sixteen boys at four different ages (8, 10, 12, 14) were taken.
Each measurement is the distance, in millimeters, from the center of pituitary
to pteryo-maxillary fissure. Suppose linear growth curves describe the mean
growth for both the girls and the boys. Then we may use the Growth Curve
model where the observation, parameter and design matrices are given as
follows (notice the non-traditional way of presenting the 4 × 27 observation
matrix)

X = (x1, . . . ,x27)

=




21 21 20.5 23.5 21.5 20 21.5 23 20 . . .
16.5 24.5 26 21.5 23 20 25.5 24.5 22 . . .
. . . 24 23 27.5 23 21.5 17 22.5 23 22
20 21.5 24 24.5 23 21 22.5 23 21 . . .
19 25 25 22.5 22.5 23.5 27.5 25.5 22 . . .
. . . 21.5 20.5 28 23 23.5 24.5 25.5 24.5 21.5
21.5 24 24.5 25 22.5 21 23 23.5 22 . . .
19 28 29 23 24 22.5 26.5 27 24.5 . . .
. . . 24.5 31 31 23.5 24 26 25.5 26 23.5
23 25.5 26 26.5 23.5 22.5 25 24 21.5 . . .

19.5 28 31 26.5 27.5 26 27 28.5 26.5 . . .
. . . 25.5 26 31.5 25 28 29.5 26 30 25




,

B =
(

b01 b02

b11 b12

)
, A =




1 8
1 10
1 12
1 14


 and C =

(
1′11 0′16

0′11 1′16

)
.

The maximum likelihood estimators for the parameter matrix and the non-
patterned covariance matrix are given by

B̂ML =
(

17.4254 15.8423
0.4764 0.8268

)

and

Σ̂ML =




5.1192 2.4409 3.6105 2.5222
2.4409 3.9279 2.7175 3.0623
3.6105 2.7175 5.9798 3.8235
2.5222 3.0623 3.8235 4.6180


 .
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Assume that the covariance matrix has Toeplitz structure but with different
variances, i.e.,

Σ(p) =




σ1 ρ1 ρ2 ρ3

ρ1 σ2 ρ1 ρ2

ρ2 ρ1 σ3 ρ1

ρ3 ρ2 ρ1 σ4


 .

The T matrix in (20) equals

T =
1
12




12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 2 0 2 0 0 2 0 2 0 0 2 0
0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0
0 0 3 0 0 0 0 3 3 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0
0 0 0 6 0 0 0 0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12




.

The estimates for the parameter matrix and the covariance matrix, (25) and
(32) respectively, are given by (for comparisons, the maximum likelihood es-
timates calculated in Proc Mixed in SAS are also presented)

B̂ =
(

17.4647 15.6624
0.4722 0.8437

)
, B̂ML =

(
17.4116 16.0252
0.4758 0.8216

)

and

Σ̂ =




5.4809 3.2756 3.5978 2.7136
3.2756 4.2452 3.2756 3.5978
3.5978 3.2756 6.2373 3.2756
2.7136 3.5978 3.2756 4.9514


 ,

Σ̂ML =




5.3929 3.2767 3.5284 2.5024
3.2767 5.1759 3.2767 3.5284
3.5284 3.2767 5.4134 3.2767
2.5024 3.5284 3.2767 4.3192


 .

In the next we assume that the covariance matrix is Toeplitz and obtain

T =
1
12




3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 3
0 2 0 0 2 0 2 0 0 2 0 2 0 0 2 0
0 0 3 0 0 0 0 3 3 0 0 0 0 3 0 0
0 0 0 6 0 0 0 0 0 0 0 0 6 0 0 0


 ,
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B̂ =
(

17.4051 16.2589
0.4764 0.7955

)
, B̂ML =

(
17.4092 16.2603
0.4759 0.7972

)

and

Σ̂ =




5.2217 3.2946 3.5934 2.7191
3.2946 5.2217 3.2946 3.5934
3.5934 3.2946 5.2217 3.2946
2.7191 3.5934 3.2946 5.2217


 ,

Σ̂ML =




4.9438 3.0506 3.4053 2.3421
3.0506 4.9438 3.0506 3.4053
3.4053 3.0506 4.9438 3.0506
2.3421 3.4053 3.0506 4.9438


 .

Another well known covariance structure is the compound symmetry structure
given by

Σ(p) =




σ ρ ρ ρ
ρ σ ρ ρ
ρ ρ σ ρ
ρ ρ ρ σ


 .

If this structure holds we obtain

T =
1
12

(
3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 3
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

)
,

B̂ =
(

17.3727 16.3406
0.4795 0.7844

)
, B̂ML =

(
17.3727 16.3406
0.4796 0.7844

)

and

Σ̂ =




5.2127 3.3013 3.3013 3.3013
3.3013 5.2127 3.3013 3.3013
3.3013 3.3013 5.2127 3.3013
3.3013 3.3013 3.3013 5.2127


 ,

Σ̂ML =




4.9052 3.0306 3.0306 3.0306
3.0306 4.9052 3.0306 3.0306
3.0306 3.0306 4.9052 3.0306
3.0306 3.0306 3.0306 4.9052


 .
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We conclude from the above examples that even if we have only 27 observations
the proposed estimates are very close to the maximum likelihood estimates.

Finally, the asymptotic behavior of the estimators is illustrated. (25) and
(32) when Σ(p) is a banded matrix defined in Ohlson et al. (2009) as

Σ(p) = Σ(m)
(k) =

(
Σ(m)

(k−1) σ1k

σ′k1 σkk

)
,

where

σ′k1 = (0, . . . , 0, σk,k−m, . . . , σk,k−1) .

Example 2 (Simulation study) In each simulation a sample of size n = 500
observations was randomly generated from a p-variate Growth Curve model
using MATLAB Version 7.4.0 (The Mathworks Inc., Natick, MA, USA). Next,
the explicit estimates were calculated in each simulation. Simulations were
repeated 500 times and the average values of the obtained estimates were
calculated.

Two cases were studied. The first of them correspond to m = 1, and the
second one considers the case m = 2.

(A) Simulations for p = 5, m = 1

Data was generated with parameters

A =




1 1
1 2
1 3
1 4
1 5




, B =
(

1 1
1 1

)
and C =

(
1′n/2 0′n/2

0′n/2 1′n/2

)
,

where 1n/2 and 0n/2 are vectors of ones and zeroes, respectively, and

Σ(p) =




2 1 0 0 0
1 3 −2 0 0
0 −2 4 −1 0
0 0 −1 5 2
0 0 0 2 6




.
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Based on 500 simulations the average estimates are given by

B̂ =
(

0.9999 1.0125
1.0015 0.9968

)
,

and

Σ̂
(p)

=




2.0019 0.9903 0 0 0
0.9903 2.9796 −1.9933 0 0

0 −1.9933 4.0189 −0.9963 0
0 0 −0.9963 4.9963 1.9887
0 0 0 1.9887 6.0042




.

(B) Simulations for p = 4, m = 2

Corresponding to the previous case the model is defined through

A =




1 1
1 2
1 3
1 4


 , B =

(
1 1
1 1

)
and C =

(
1′n/2 0′n/2

0′n/2 1′n/2

)

and

Σ(p) =




2 1 1 0
1 3 2 1
1 2 4 1
0 1 1 5


 .

After 500 simulations average explicit estimates equal

B̂ =
(

1.0027 0.9797
1.0065 1.0054

)
,

and

Σ̂
(p)

=




1.9933 0.9947 0.9924 0
0.9947 2.9820 1.9950 1.0190
0.9924 1.9950 4.0091 1.0479

0 1.0190 1.0479 4.9935


 .

From the above simulations one conclusion is that the explicit estimates de-
rived in this paper perform very well and are close to the true values.
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