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Abstract

This paper discusses the possibility of using the Jarque-Bera test for
distributions other than the normal distribution. In addition, it presents
a new idea for performing goodness-of-fit test using bootstrap methods.
It is shown that the bootstrapped Jarque-Bera test can be used alongside
the conventional Jarque-Bera test to increase statistical power. The
proposed tests are simple to use and their properties seem appropriate.
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1 Introduction

The study of distributions is one of the main issues in statistics which con-
cerned with assessing the validity of models. Distributional assumptions play
an important role in estimation, inference, prediction, etc. Because of the im-
portance of this subject, it is often included in statistical textbooks. Goodness-
of-fit tests are covered by D’Agostino and Stephens (1986), Rayner and Best
(1989) and Thode (2002), among many authors.

The main aim of this paper is to study the Jarque-Bera test. This test is
the normality test, which is known in econometrics literature and time series
analysis, see Jarque and Bera (1980) and Kilian and Demiroglu (2000), and
the main reason for its widespread use is its straightforward interpretation and
implementation. However, its lack of generality motivates closer examination.
Furthermore, Our simulations show that it suffers from small sample size. This
paper also examines a new way of performing goodness-of-fit test, implemented
using the bootstrap analysis.

There are a lot of different statistics to test the goodness-of-fit but some
are more well-known, e.g. the Shapiro-Wilk and Kolmogrov-Smironov test,
which are discussed in detail by Shapiro et.al (1968). The Shapiro-Wilk test
is also used in the study of normality. Its statistic is:

SW =

(∑n
i=1 aiX(i)

)2

∑n
i=1

(
Xi −X

)2 ,

where X(i) is the order statistics and ai are constants obtained from the means,
variances and covariances of the order statistics of a sample of size n from the
normal distribution. The Shapiro-Wilk test actually compares an estimate
of the standard deviation using a linear combination of the order statistics.
It is one of the most frequently used test and is recommended for everyday
practice, e.g. Thode (2002).

The Kolmogrov-Smirnov test is used in studies of the exponential distri-
bution, but it can also be used for other distributions. Its statistic is:

Dn = sup
1≤i≤n

|F (xi)− Fn(xi)| (1)

It is a form of minimum distance estimation for comparing a sample with a
reference probability distribution by using its CDF. Under the null hypothesis,√

nDn converges to the Kolmogorov distribution. It is discussed in detail in
Kendall and Stuart (1973).

The main purpose of the present paper is to produce a generalization of
the Jarque-Bera test. This is presented in Section 2, which also includes a
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bootstrapped version of the test. Section 3 outlines a new test, Section 4
explains the bootstrap method and Section 5 includes a study of the power
of the tests proposed and discusses their goodness-of-fit testing of the normal
distribution and the exponential distribution to reveal their applicability.

2 Jarque-Bera test

To generalize the Jarque-Bera (JB) test , we start by defining it. Its statistics
is

JB =
n

6

(
γ̂2 + (K̂ − 3)2/4

)
, (2)

where γ̂ and K̂ are the sample skewness and kurtosis. Under the normality of
observations, JB has an asymptotic chi-square distribution with two degrees of
freedom. It is obvious that it is based on the idea of analyzing the asymptotic
properties of γ̂ and K̂. If X1, · · · , Xn

iid∼ N(µ, σ2) then

E(γ̂) ' 0, V (γ̂) ' 6
n

,

E(K̂) ' 3, V (K̂) ' 24
n

.

Skewness is discussed by Kendall et al. (1998) and kurtosis by Cramér (1945).
D’Agostino and Stephens (1986) discussed their usage to study normality.
They also suggest a combination of kurtosis and skewness, which is similar
to the JB statistics. Moreover, they classify this sort of test as a moment
test because it is an approach to testing departure from normality using third
and fourth moment of the random variable. Jarque and Bera (1980, 1987)
discuss this test using the Lagrange-Multiplier test. Generalization of this
test is rather difficult, because the expectation and variance of skewness and
kurtosis are not known for other distributions.

The essential question about the Jarque-Bera test is how it can be used for
testing other distributions. It is obvious that the JB statistic can be written
as the quadratic form,

JB = (θ − θ̂)′W (θ − θ̂) =
[

γ̂ K̂ − 3
] [

1
6/n 0
0 1

24/n

][
γ̂

K̂ − 3

]
, (3)

where θ is the parameters concerned and W is the diagonal matrix where
elements are the reciprocal of variance of skewness and kurtosis.
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This motivates us to study a more general form of this formula, which
includes the mean and variance because they include important information
on the distribution that can be handled in test statistics because the aim is to
generalize the JB test to other distributions. The generalized JB statistic is

D =
[

X − µ S2 − σ2 γ̂ − γ K̂ −K
]
W




X − µ
S2 − σ2

γ̂ − γ

K̂ −K


 . (4)

One choice is W = I because the reciprocal of the variance of skewness and
kurtosis for other distributions are not known. Moreover, these parameters
are not independent and therefore it is rather difficult to find the distribution
of D.

The aim of the bootstrap method is to estimate the standard error. There-
fore it can be used to estimate W , i.e. the diagonal matrix where elements are
the reciprocal of the variance of the parameters concerned. This is referred to
as DW in the reminder of this paper.

The next section discusses the methodology of the new test, which is re-
ferred to here as a G-test. In explaining the procedure the normal distribution
is used, but it can be generalized to other distributions.

3 New test

As mentioned earlier, the aim is to study the distribution using the parame-
ters concerned; mean, variance, skewness and kurtosis. This type of statistic
test is called a moments test by D’Agostino and Stephen (1986). Letting
X1, · · · , Xn

iid∼ F , we can study the following hypothesis:

H0 : F0(x) d= F (x). (5)

This idea is to construct new parameters by considering the fact that the first
four moments, µi = E(X−µ)i, i = 1, · · · , 4, are functions of the first, second,
third and fourth power of the variable, respectively. Consider arbitrary values
of U1, U2, U3, U4 and U5, where U1 < U2 < U3 < U4 < U5 or vice versa. There
is one more parameter than the parameters concerned. Later, we discuss why
five values should be used. It is logical that if Ui can be used to find µ1, then
we should focus on U j

i which can be used to find µj . The following equations

3



show how U j
i can be used to find µj .

T1U1 + T2U2 + T3U3 + T4U4 + T5U5 = µ1, (6)
T1U

2
1 + T2U

2
2 + T3U

2
3 + T4U

2
4 + T5U

2
5 = µ2, (7)

T1U
3
1 + T2U

3
2 + T3U

3
3 + T4U

3
4 + T5U

3
5 = µ3, (8)

T1U
4
1 + T2U

4
2 + T3U

4
3 + T4U

4
4 + T5U

4
5 = µ4, (9)

T1 + T2 + T3 + T4 + T5 = C, (10)

Assume that C is given, which is the summation of the coefficients. It actually
helps to control the coefficients that plays the role as the penalty. U and θ are
defined as:

U =




U1 U2 U3 U4 U5

U2
1 U2

2 U2
3 U2

4 U2
5

U3
1 U3

2 U3
3 U3

4 U3
5

U4
1 U4

2 U4
3 U4

4 U4
5

1 1 1 1 1




, (11)

θ =




µ1

µ2

µ3

µ4

C




. (12)

There is a solution for Ti because T = U−1θ which can be used for study of
the distribution. Matrix U is the Vandermonde matrix and it is nonsingular,
so therefore there exists a unique values for Ti.

If the distribution is standard normal, then the estimation of moments
must be close to µ1 = 0, µ2 = 1, µ3 = 0 and µ4 = 3 respectively. Therefore
by substituting these values in equation (6)-(10), the solutions are the values
that can be expected if the underlying distribution of observations is standard
normal. Hence they are referred to as the theoretical values, Ti, i = 1, ..., 5.

Based on the sample, the equations are as bellow,

O1U1 + O2U2 + O3U3 + O4U4 + O5U5 = µ̂1 (13)
O1U

2
1 + O2U

2
2 + O3U

2
3 + O4U

2
4 + O5U

2
5 = µ̂2 (14)

O1U
3
1 + O2U

3
2 + O3U

3
3 + O4U

3
4 + O5U

3
5 = µ̂3 (15)

O1U
4
1 + O2U

4
2 + O3U

4
3 + O4U

4
4 + O5U

4
5 = µ̂4 (16)

O1 + O2 + O3 + O4 + O5 = C, (17)
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where µ̂i is an estimator of µi. If the chosen distribution is correct then it is
expected that Oi will be close to Ti. O is

O = U−1θ̂ (18)

Any suggested criterion should include comparison of Ti and Oi which
are referred to as the theoretical and observed value. Here the discrepancy
measure is the square distance of the theoretical value and observed value:

G = ‖T −O‖ = (θ̂ − θ)′(U−1)′U−1(θ̂ − θ). (19)

It is obvious that (U−1)′U−1 plays a role as the weight in the JB test. The
main question that may arise concerns the distribution of the suggested crite-
rion. The bootstrap method is used to obtain the distribution. The following
section describes use of the bootstrap method to handle the distribution of D,
DW and G which are given in (4) and (22).

Another question is which value should be used for Ui. There are many
ways to choose the value. The first option is to use the original observations
such as U = (q10, q25, q50, q70, q85) where q is the quantile of observation. The
second is to use fixed values such as U = (1, 2, 3, 4, 5). In Sections 5 and 6,
these choices are discussed by simulation.

4 Semiparametric bootstrap

Over the last three decades since the seminal paper by Efron (1979), a great
deal of effort has been devoted to the theory and methods of bootstrap. It
is known as an inferential tool to study the uncertainty in statistics which
makes it interesting to use. There are two basic categories of approaches, the
parametric and nonparametric bootstrap. The nonparametric bootstrap is
based on the original sample where the empirical distribution, Fn, is involved
in the resampling process. In contrast, the parametric bootstrap is based on an
assumed distribution which can be used in resampling. Thus the parametric
bootstrap approach is not based on resampling from original observations.
For details about the bootstrap method, see Efron and Tibshirani (1993) and
Davison and Hinkley (1997).

It is obvious that the nonparametric bootstrap cannot be used directly in
the study of goodness-of-fit test because it does not include any information
on the given distribution. From this point of view, the semiparametric boot-
strap is more useful. It is the adjusted nonparametric bootstrap that uses the
underlying distribution in the nonparametric approach. To see how to choose
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a suitable pi for observation under the null hypothesis, see Hall and Wilson
(1991), Davison and Hinkley (1996) and Efron and Tibshirani (1993). In the
nonparametric bootstrap, any observation has 1

n chance of participate in re-
sampling, because the real empirical distribution which gives the appropriate
pi to observations is not known.

Steps in the semiparametric bootstrap are as follows:

1. Suppose X = (X1, · · · , Xn) is an i.i.d. random sample of the distribution
F .

2. We are interested in D(F ) and G(F ) which are given in (4) and (19),
respectively.

3. Let {Gλ, λ ∈ Λ} be the distribution under H0. pi can be found by:

pi =





G((x[1] + x[2])/2) i = 1
G((x[i+1] + x[i])/2)−G((x[i] + x[i−1])/2) 2 ≤ i ≤ n− 1
1−G((x[i] + x[i−1])/2) i = n

(20)

where G is the CDF of the Gλ and x[i] is the order statistics.

4. For i = 1, · · · , B, resample (X∗
i1, · · · , X∗

in) from the empirical distribu-
tion Gn(x) =

∑n
i=1 piI(Xi ≤ x).

5. Calculate P -value = #{G(X∗)>G(X)}+1
B+1 .

The idea of the semiparametric bootstrap is not given to the bootstrap
method in the way that we have considered. For example, Hall et.al (2000)
use the bootstrap as continuous rather than as a discrete stochastic process
and use the term semiparametric. Furthermore, Good (2004, p. 48) uses the
semiparametric test to study the variance as scale parameter in the statistical
distribution using the bootstrap method. Actually the term semiparametric is
considered for the semiparametric model, not the semiparametric resampling.

In the reminder of this paper, .SB and .PB are added to the names of
the statistics concerned (G, D and DW) to denote the semiparametric and
parametric bootstrap version, respectively.

5 Power of tests

This section studies the validity of the tests proposed for the standard nor-
mal and exponential distribution, it is done by study the probability of type I
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error and the statistical power. It presents some Monte Carlo experiments in
order to study finite sample properties of tests, implemented by 1000 simula-
tions. In Tables 1-4 the proposed tests are simultaneously based on the same
simulated data, which increases the accuracy of the comparisons. The boot-
strap resampling is done by B = 500. In making a comparative evaluation of
testing procedures we seek certain desirable features such as high power and
applicability.

5.1 Normal distribution

There are several goodness-of-fit tests for the standard normal distribution,
each with its own relative merits. As it is the essential statistical distribution,
many powerful tests have been devised, such as the JB and SW test. The
study is carried out by simulating i.i.d samples from N(0, 1). In this case, we
assume that the mean and variance are known. Obviously, this is unrealistic
in practice, although it is a good benchmark for treating realistic cases where
the parameters are unknown and have to be estimated. Tables 1-4 include
the study of proposed tests in comparison with the JB test and the SW test.
It should be mentioned that the first two rows are the JB and SW test, the
second two rows are the G test with U1 = (q10, q25, q50, q70, q85) and the third
two rows U2 = (1, 2, 3, 4, 5). The last four rows include the semiparametric
and parametric bootstrap of D and DW.

Table 1 includes simulations of type I error at the levels α = 0.05 and
α = 0.10, which is an essential feature of any given statistical test. Tables
2, 3 and 4 show the results of statistical power at the level 1− β = 0.90 and
1 − β = 0.80. The entries in Table 1 are the ratio of times that normality
is rejected when the underlying distribution is the normal whereas in Tables
2-4, the entries are the ratio of times that the normality is rejected when the
underlying distribution is not normal. The distributions are t(df = 5), χ2

(df = 5) and Exp(λ = 1), respectively. In terms of type I error, see Table 1,
the JB test has the lowest error. Although the G and D test are not as strong
as the JB test at the level of α = 0.05 and α = 0.10, they are appropriate.
In many cases, the given tests have better results than the SW test. For
example the D.SP test is very close to the JB test and better than the SW
test. In this case, the semiparametric bootstrap is better than the parametric
bootstrap test.

Table 2 includes the study of statistical power, the underlying distribution
is t5. At first glance can see the SW test has more power than the JB test for
small sample size, but for moderate sample, they have same statistical power.
Many of the proposed tests have better power than the JB and SW test, for
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Table 1: Study of type I error, α = 0.05 and 0.10. The underlying distribution
is normal.

α = 0.05 α = 0.1
test \ sample size 10 30 50 100 10 30 50 100
SW test 0.049 0.042 0.038 0.052 0.097 0.089 0.093 0.098
JB test 0.008 0.016 0.031 0.037 0.013 0.034 0.044 0.064
G.SB test1 0.009 0.042 0.035 0.061 0.035 0.091 0.071 0.115
G.PB test1 0.042 0.057 0.040 0.049 0.115 0.116 0.075 0.119
G.SB test2 0.014 0.042 0.063 0.075 0.035 0.121 0.134 0.135
G.PB test2 0.044 0.039 0.042 0.046 0.079 0.097 0.088 0.100
D.SB test 0.012 0.044 0.044 0.072 0.027 0.085 0.073 0.104
D.PB test 0.045 0.036 0.043 0.050 0.097 0.096 0.071 0.101
DW.SB test 0.009 0.049 0.050 0.074 0.036 0.121 0.097 0.133
DW.PB test 0.047 0.037 0.041 0.045 0.097 0.102 0.086 0.097

1: U1 = (q10, q25, q50, q70, q85);
2: U2 = (1, 2, 3, 4, 5). Same notation in the tables hereafter.

Table 2: Study of power, 1− β = 0.90 and 0.80. The underlying distribution
is t.

1− β = 0.90 1− β = 0.80
test\ sample size 10 30 50 100 10 30 50 100
SW test 0.172 0.315 0.425 0.653 0.257 0.437 0.527 0.748
JB test 0.069 0.305 0.438 0.674 0.109 0.364 0.513 0.745
G.SB test1 0.069 0.291 0.431 0.692 0.155 0.367 0.506 0.747
G.PB test1 0.136 0.318 0.445 0.672 0.231 0.390 0.520 0.741
G.SB test2 0.112 0.335 0.404 0.500 0.258 0.469 0.524 0.591
G.PB test2 0.206 0.341 0.393 0.485 0.321 0.456 0.501 0.578
D.SB test 0.082 0.354 0.495 0.738 0.153 0.426 0.560 0.791
D.PB test 0.171 0.385 0.494 0.730 0.256 0.450 0.570 0.778
DW.SB test 0.110 0.373 0.511 0.742 0.198 0.467 0.595 0.797
DW.PB test 0.193 0.399 0.509 0.723 0.259 0.479 0.594 0.789

example G.PB and DW.PB. It is obvious that the parametric bootstrap has
more ability to diagnose non-normality from normality.

Consider another example of their statistical power. In Table 3, the un-
derlying distribution is χ2

5, a skewed distribution. Here, the SW test is better
than the JB test. Most of the parametric bootstrap has better performance
than the JB test.

In Table 4, the underlying distribution is Exp(1). It is obvious that the
JB test is quite weak for small sample sizes, whereas the D.PB test and
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Table 3: Study of non-normality, 1 − β = 0.90 and 0.80. The underlying
distribution is χ2

5.

1− β = 0.90 1− β = 0.80
test\ sample size 10 30 50 100 10 30 50 100
SW test 0.301 0.753 0.934 0.997 0.436 0.865 0.975 1
JB test 0.085 0.504 0.786 0.990 0.128 0.630 0.894 0.997
G.SB test1 0.173 0.758 0.916 0.996 0.365 0.876 0.973 1
G.PB test1 0.280 0.735 0.912 0.994 0.443 0.851 0.962 1
G.SB test2 0.166 0.772 0.925 0.995 0.372 0.879 0.977 1
G.PB test2 0.286 0.736 0.916 0.998 0.449 0.879 0.969 1
D.SB test 0.109 0.438 0.581 0.823 0.193 0.532 0.677 0.904
D.PB test 0.216 0.490 0.656 0.926 0.336 0.660 0.852 0.985
DW.SB test 0.159 0.666 0.880 0.991 0.278 0.807 0.942 0.997
DW.PB test 0.243 0.670 0.888 0.995 0.380 0.833 0.9649 0.998

Table 4: Study of non-normality, 1 − β = 0.90 and 0.80. The underlying
distribution is Exp(1).

1− β = 0.90 1− β = 0.80
test\ sample size 10 30 50 100 10 30 50 100
SW test 0.551 0.978 1 1 0.689 0.992 1 1
JB test 0.176 0.813 0.981 1 0.246 0.906 0.996 1
G.SB test1 0.261 0.684 0.683 0.621 0.509 0.771 0.736 0.667
G.PB test1 0.420 0.813 0.840 0.878 0.655 0.885 0.894 0.919
G.SB test2 0.301 0.933 0.990 1 0.553 0.985 0.997 1
G.PB test2 0.470 0.958 0.995 1 0.660 0.988 1 1
D.SB test 0.193 0.670 0.854 0.983 0.284 0.752 0.905 0.995
D.PB test 0.322 0.768 0.941 1 0.467 0.907 0.989 1
DW.SB test 0.265 0.896 0.984 1 0.417 0.963 0.998 1
DW.PB test 0.397 0.938 0.994 1 0.580 0.985 1 1

DW.PB test have better results. In this case the G.SB test with U1 =
(q10, q25, q50, q70, q85) does not have good performance.

The appendix (Figures 1-4) contains the violin plots of the simulated tests
which help to illustrate the performance of these tests. The violin plot is a
combination of a box plot and a kernel density plot, see Hintze and Nelson
(1998). It helps to compare the distribution of simulations. Figure 1 is the
violin plot of P-value when the underlying distribution is normal, It is obvious
that for a sample size of 10, the JB test has higher P-values than theD.SB test
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Table 5: Study of type I error, α = 0.05 and 0.10. The underlying distribution
is Exp(1)

α = 0.05 α = 0.10
test\ sample size 10 30 50 100 10 30 50 100
K-S test 0.003 0.010 0.005 0.008 0.019 0.019 0.021 0.014
G.SB test1 0.003 0.017 0.017 0.027 0.013 0.027 0.035 0.052
G.PB test1 0.005 0.020 0.023 0.042 0.028 0.034 0.037 0.056
G.SB test2 0.031 0.063 0.067 0.077 0.083 0.129 0.151 0.139
G.PB test2 0.026 0.027 0.028 0.041 0.061 0.079 0.074 0.081
D.SB test 0.002 0.009 0.019 0.034 0.006 0.014 0.037 0.071
D.PB test 0.043 0.048 0.039 0.055 0.083 0.097 0.090 0.103
DW.SB test 0.034 0.044 0.031 0.051 0.057 0.079 0.074 0.081
DW.PB test 0.035 0.042 0.039 0.052 0.090 0.088 0.085 0.112

and the G.SB test with U1. With increasing the sample size, the accuracy
of the JB test decreases. Figure 2 is the violin plot of P-value when the
underlying distribution is t5. The change in performance of the JB test from
a sample size of 10 to 30 is interesting, it clarifies that the JB is unreliable for
the small sample size. It is obvious that the G.SB and G.PB tests with U2
have more statistical power than the others. The same results holds for the
χ2

5 and Exp(1), the plots for which are given in the Figures 3 and 4.

5.2 Exponential distribution

Here the same discussions as for the normal distribution is applied to the
exponential distribution which has µ = λ, σ2 = λ2, γ = 2 and K = 9. Tables
5 and 6 show the results for the type I error and the statistical power test,
respectively. The entries in Tables 5 and 6 are the Kolmogorov-Smirnov test
in comparison with the proposed tests.

Table 5 confirms that the method discussed has an appropriate level of
accuracy for the study of the exponential distribution. The G.SB test with
u1 and the D.SB test perform better than the others.

Table 6 includes the statistical power of the tests when the underlying
distribution is χ2

5. This agrees with the efficiency of the proposed tests, not
for DW.SB, and confirms that the G and D tests have quite high statistical
power to diagnosis the exponential distribution from the chi-square distribu-
tion. Tables 6 also shows that the DW.SB test is not appropriate. This is
expected, because p1, (20), gives high weight to the first observation, hence
the generated samples from semiparametric bootstrap seems come from the
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Table 6: Study of power, at the level 1 − β = 0.90 and 0.80, the underlying
distribution is χ2

5

1− β = 0.90 1− β = 0.80
test\ sample size 10 30 50 100 10 30 50 100
K-S test 0.135 0.663 0.930 1.000 0.322 0.847 0.982 1.000
G.SB test1 0.340 0.849 0.957 0.998 0.541 0.939 0.985 0.998
G.PB test1 0.063 0.550 0.866 0.994 0.522 0.885 0.966 0.998
G.SB test2 0.250 0.783 0.943 0.997 0.438 0.920 0.980 0.998
G.PB test2 0.018 0.425 0.794 0.993 0.399 0.850 0.958 0.998
D.SB test 0.055 0.603 0.938 1.000 0.390 0.925 0.980 1.000
D.PB test 0.018 0.722 0.931 0.996 0.521 0.940 0.984 1.000
DW.SB test 0.004 0.004 0.008 0.018 0.014 0.006 0.019 0.024
DW.PB test 0.313 0.532 0.655 0.827 0.505 0.702 0.788 0.901

exponential distribution, although it is not problem for parametric distribu-
tion. It should be mentioned that D.SP does not include the weight hence it
does not affect by the appropriate value of P1.

Figures 5 and 6 in the appendix show the violin plots of the P-value when
the underlying distribution is Exp(1) and χ2

5, respectively.

6 Conclusion

There are always some advantages and disadvantages for any given statis-
tics. These statistics can be easily calculated and implemented into statistical
softwares and have appropriate power in comparison with the discussed tests.

Although comparison of the SW test and JB test was not our object, it
is obvious that the JB test has less type I error, but the SW test has more
statistical power than JB.

In the case of G, it has appropriate accuracy, although it is rather difficult
to give an optimal u in general, it obvious that u1 and u2 perform well for
the exponential and normal distribution, respectively. G has fairly interesting
result and performs well. The G.PB performs better than G.SB for the study
of normality, for the study of exponential distribution, it is inverse.

In the case of D, which is extracted directly based on JB, the result of
study of normal is quite good. But the DW.SB test cannot perform well for
study of the exponential distribution, although in the normal case it works
well.

The bootstrapped version of JB, DW.SP , has high statistical power, ren-
dering it suitable for use along with the JB test in the study of normal dis-
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tribution. However in the non-normal distribution, G test is appropriate.
The new bootstrapped test, G, proposed includes simultaneously moments

and can thus be considered as a multiparametric test. The procedure for this
test can also be considered an extension of work on the bootstrap method,
which shows the applicability of semiparametric bootstrap, specially in the
normal distribution.

It is arguably possible to find procedures that are more sensitive to some
distribution properties, for example can add more equations by using other
parameters such as the fifth power of centered moment, if it exists.

Following the outlines described, the viewpoint of generality are more in-
teresting, as it is discussed for the exponential distribution along with the
normal distribution. As previously mentioned, the JB test does not directly
use the mean and variance which include information on the observations and
also the assumptions of distribution. These parameters are used in the new
tests presented here and are a features of these tests that seems to be particu-
larly relevant. The most obvious property of a statistical procedure is that it
should be trustworthy, as the simulated type I error and the statistical power
show. These results highlight the benefits of the bootstrap approach, which
are more apparent, even richer and probably is less well understood.
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Appendix

Here the violin plots are given for the study of simulations.

Figure 1: Violin plot of the simulated P-value when distribution is normal.
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Figure 2: Violin plot of the simulated P-value for the study of normality when
the distribution is t5.

Figure 3: Violin plot of the simulated P-value for the study of normality when
the distribution is χ2

5.
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Figure 4: Violin plot of the simulated P-value for the study of normality when
the distribution is Exp(1).

Figure 5: Violin plot of the simulated P-value for the study Exp(1) when the
underlying distribution is Exp(1).

15



Figure 6: Violin plot of the simulated P-value for the study Exp(1) when the
underlying distribution is χ2

5.
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